
CS 6110 S11 Lecture 24 Scott’s D∞ Construction 4 April 2011

To develop a denotational semantics for a language with recursive types, or to give a denotational semantics
for the untyped lambda calculus, it is necessary to find domains that are solutions to domain equations. Given
some domain constructor F(D), we need to be able to solve for the domain D satisfying the isomorphism:

D ∼= F(D)

We have seen some strategies for solving such equations earlier. In particular, inductively defined sets also
satisfy a similar the equation, with the rule operator taking the role of F . However, inductively defined
sets do not generate complete partial orders; they only produce the elements that can be constructed by
some finite number of applications of F . This means that we cannot use them in any semantics where it is
necessary to take a fixpoint over D.

While it would be nice to be able to solve this equation as an equality, an isomorphism between the domains
is sufficient.

We are looking for an isomorphism witnessed by continuous bijections up and down = up−1:

up : [D → F(D)] down : [F(D) → D]

These maps, being continuous, must also be monotone:

d ⊑ d′ ⇒ up(d) ⊑ up(d′) d ⊑ d′ ⇒ down(d) ⊑ down(d′)

1 Approximating the Solution

We have already seen that for other recursive definitions x = f(x), we can find a solution by taking the
limit of the sequence fn(⊥), where ⊥ is some initial element. We can apply the same strategy to solving
domain equations. We start from some initial domain D0 and apply F repeatedly to obtain a sequence of
domains D0, F(D0), F2(D0), F3(D0), . . ., where each domain in the sequence is a better approximation to
the desired solution, yet preserves and extends the structure of the earlier approximations.

2 An Ordering on Domains

We need a way to relate domains in the sequence. We will define a relation D <∼ E on CPOs that says
roughly that E extends D while preserving its structure. Our goal is to have a sequence of better and better
approximations

D0 <∼ F(D0) <∼ F2(D0) <∼ F3(D0) <∼ · · · ,

then to use these approximations to take a limit of the sequence, much as we did in previous fixpoint
constructions.

Two domains D and E are related if there exists a way of embedding D into E while preserving its structure.
We can characterize this embedding in terms of a pair of functions: an embedding function e : [D → E] and
a projection function p : [E → D]. These functions must be continuous. Also, as depicted in Fig. 1, they
must agree in the following sense: for all elements x ∈ D and y ∈ E,

p(e(x)) = x e(p(y)) ⊑ y.

Equivalently,

p ◦ e = idD e ◦ p ⊑ idE .

1

Figure 1: An embedding-projection pair

From the first equation it follows that e is injective (one-to-one) and p is surjective (onto). On elements of
E of the form e(x) for some x ∈ D, p acts as an inverse of e; and on elements in E not of that form, the
projection function p maps them to an element of D whose corresponding E element is related. Together,
these functions are called an embedding-projection pair (ep-pair). We write D <∼ E when such an ep-pair
exists.

If either D or E is pointed, then so is the other, and both e and p are strict. If ⊥D exists, then for any d ∈ E,
⊥D ⊑ p(d), so by monotonicity, e(⊥D) ⊑ e(p(d)) ⊑ d. As d was arbitrary, ⊥E exists and equals e(⊥D). On
the other hand, if ⊥E exists, then ⊥E ⊑ d for every element d ∈ E. By monotonicity of p, p(⊥E) ⊑ p(d).
Since p is onto, ⊥D exists and equals p(⊥E).

3 A Simple Domain Equation

For example, consider the domain equation D ∼= D⊥. This is essentially the domain equation for a lazy
infinite stream of unit values. Assuming that the solution to the equation is a CPO (and it will be), we can
use it to give meaning to expressions like letrec x.(null, x), where we need to take a fixpoint over D.

Let D0 = {⊥} and let Dn+1 = (Dn)⊥ for n ≥ 0. There is a simple way to define embedding-projection pairs
en : Dn → Dn+1 and pn : Dn+1 → Dn so that Dn <∼ Dn+1.

Recall that the map ⌊·⌋ : D → D⊥ embeds D into D⊥ by taking d ∈ D to its copy ⌊d⌋ ∈ D⊥ and adding a
new bottom element ⊥. Note that this cannot be e, since it is not strict.

We define en and pn inductively in terms of ⌊·⌋:

en(⊥) = ⊥ pn(⊥) = p0(⌊⊥⌋) = ⊥
en+1(⌊d⌋) = ⌊en(d)⌋ pn+1(⌊d⌋) = ⌊pn(d)⌋

The construction is illustrated in Fig. 2. In that figure, the solid left-to-right arrows represent e and the
dashed right-to-left arrows represent p. Also, for every e arrow there is an implicit p arrow in the opposite
direction. The vertical lines represent ⊑.

This may seem like a needlessly complex way to define en and pn, but it is done this way to show the approach
that is used for more complex domain equations. Given these definitions, we easily show by induction that
en and pn form a valid ep-pair.

4 A Solution to the Domain Equation

We are now ready to define the solution domain. It is the projective limit (or inverse limit) limn Dn of the
domains Dn: the set of infinite sequences (dn | n ≥ 0) = (d0, d1, d2, . . .) such that for all n ≥ 0, dn ∈ Dn

2

Figure 2: Successive approximations for D ∼= D⊥

and dn = pn(dn+1), ordered componentwise. Given a component dn of this tuple, it is possible to apply the
projection functions pn−1, pn−2, . . . , p0 to obtain all the previous tuple elements. For brevity, we often write
just (dn) for (dn | n ≥ 0).

The domain limn Dn forms a CPO under the componentwise order. To show it is complete, if A is a chain in
limn Dn, then for each index n, {πn(d) | d ∈ A} forms a chain in Dn, where πn is the projection onto the nth
component. Since Dn is complete,

⊔
d∈A πn(d) exists, and it is easily shown that

⊔
A = (

⊔
d∈A πn(d) | n ≥ 0).

What are the elements of D? There is a least element (⊥,⊥,⊥, . . .) (call it x0), and successive elements
x1 = (⊥, ⌊⊥⌋, ⌊⊥⌋, . . .), x2 = (⊥, ⌊⊥⌋, ⌊⌊⊥⌋⌋, ⌊⌊⊥⌋⌋, . . .), and so on. Finally, there is the supremum of all
the other elements, x∞ = (⊥, ⌊⊥⌋, ⌊⌊⊥⌋⌋, ⌊⌊⌊⊥⌋⌋⌋, . . .), corresponding to the diagonal in Figure 2. This last
element makes the partial order complete. Thus the domain is order-isomorphic to N ∪ {∞}.

It remains to show that limn Dn is a solution to the domain equation D ∼= D⊥; that is, there is an isomo-
morphism up : D → D⊥. Define

up(x0)
△
= ⊥ up(xn+1)

△
= ⌊xn⌋, n ≥ 0 up(x∞)

△
= ⌊x∞⌋.

In other words,

up(⊥,⊥,⊥, . . .) = ⊥ up(⊥, ⌊d0⌋, ⌊d1⌋, ⌊d2⌋) = ⌊(d0, d1, d2, . . .)⌋

The inverse function is down : D⊥ → D:

down(⊥) = x0 = (⊥,⊥,⊥, . . .) down(⌊(dn | n ≥ 0)⌋) = (pn(⌊dn⌋) | n ≥ 0).

5 A Related Example

Suppose we want to represent infinite lists of natural numbers. We might write the domain equation D ∼=
(N × D)⊥. This would allow us to give a semantics to the result of the following code, an infinite list of
prime numbers, assuming that pairs in our language are lazy:

letrec primes_from =
λn:nat.if is_prime n
then (n, primes_from (n+1))
else primes_from (n+1)

in primes_from 2

Using the domain equation above, we would expect this code to return the infinite stream (2, 3, 5, . . .)
(identifying (a, (b, (c, . . .))) with (a, b, c, . . .)). To obtain this denotation, define

3

D0 = {⊥} en(⊥) = ⊥ pn(⊥) = p0(m,⊥) = ⊥
Dn+1 = (N× Dn)⊥ en+1(m, d) = (m, en(d)) pn+1(m, d) = (m, pn(d))

(we have omitted the lifting notation ⌊·⌋ in the definition of pn and en for notational simplicity).

Then Dn+1 = {(m, d) | d ∈ Dn} ∪ {⊥}. One can prove inductively that Dn consists of all tuples of the form
(a0, a1, a2, . . . , ak,⊥) for k < n. The functions en are identity functions and pn takes (a0, a1, . . . , am−1, am,⊥)
to itself if m < n and to (a0, a1, . . . , am−1,⊥) if m = n.

The projective limit limn Dn consists of sequences that are constant for all but finitely many components,
corresponding to elements of the Dn, and sequences of the form

(⊥, (a0,⊥), (a0, a1,⊥), (a0, a1, a2,⊥), . . .)

whose nth component is of length n, corresponding to the infinite stream (a0, a1, a2, . . .).

This example is more clearly understood by identifying the object (a0, a1, a2, . . . , ak,⊥) with the string
a0a1 · · · ak ∈ N∗, where N∗ denotes the set of finite length strings in N. Under this correspondence, Dn

consists of all strings in N∗ of length at most n, and ⊥ corresponds to the empty string. The projective
limit consists of N∗ ∪Nω, where Nω consists of all infinite-length strings a0a1a2 · · · . The ordering is x ⊑ y
if x is a prefix of y.

Under this correspondence, it is easy to see how N∗ ∪ Nω is a solution to the domain equation; that is,
N
∗ ∪Nω and N× (N∗ ∪Nω) ∪ {ε} are isomorphic. For a ∈ N and x ∈ N∗ ∪Nω, define

up(ε) = ε down(ε) = ε

up(ax) = (a, x) down(a, x) = ax

6 Scott’s D∞ Construction

Dana Scott showed that this general approach could be followed to obtain the first nontrivial solution to the
equation D ∼= [D → D], where [D → D] represents the set of all continuous functions from D to D. We start
from some pointed domain D0 containing at least two elements. For example, we could choose D0 = {⊥, ∗}
with ⊥ ⊑ ∗. We then apply F(D) = [D → D] to obtain domains D1 = [D0 → D0], D2 = [D1 → D1], and
so on. As before, we define en : Dn → Dn+1 and pn : Dn+1 → Dn inductively:

e0(d0) = λy ∈ D0 . d0 p0(d1) = d1(⊥D0)
en+1(dn+1) = en ◦ dn+1 ◦ pn pn+1(dn+2) = pn ◦ dn+2 ◦ en

where dn ∈ Dn.

To understand the definition of en and pn, it helps to consider the following diagram:

The first three domains constructed by this process D0, D1, D2 look like this:

4

The domains grow very rapidly after this point; D3 contains 416416 elements, thought this is a small fraction
of the 1010 elements of DD2

2 !

Note that D1 = [D0 → D0] contains only three elements. The function ⊥ 7→ ∗, ∗ 7→ ⊥ (which would be
represented in the figure as ∗⊥) is not continuous; it is not even monotone. This would be a function that
terminates on a divergent argument and diverges on a value, which is clearly not computable. As we progress
farther up the chain of domain approximations, more and more of the functions in the full function space
Dn → Dn are not continuous.

As before, we define D∞ as the projective limit limn Dn. Thus an element of D∞ is an infinite tuple of
functions.

There is an embedding-projection pair êm, p̂m between any Dm and limn Dn. This is a general construction
that holds for any inverse limit, not just D∞. For any d ∈ Dm, define êm(d) = (d0, d1, d2, . . .) such that

dn = πn(êm(d))
△
=

{
pn(pn+1(· · · pm−1(d) · · ·)) if n ≤ m

en−1(en−2(· · · em(d) · · ·)) if n > m

and p̂m
△
= πm. Using the properties of en and pn, one can show the requisite properties of ep-pairs:

• êm : Dm → D∞ and p̂m : D∞ → Dm are continuous

• p̂m ◦ êm = idDm

• êm ◦ p̂m ⊑ idD∞ .

Moreover, these maps commute with the en and pn in the following sense:

• êm+1 ◦ em = êm

• pm ◦ p̂m+1 = p̂m.

We define up : D∞ → [D∞ → D∞] that maps an element d ∈ D∞ to a function up(d) : [D∞ → D∞]. The
input to up(d) is an infinite tuple x = (xn | n ≥ 0) in which xn ∈ Dn. Moreover, d itself is such a tuple, and
we need a way to treat it as a function that operates on tuples. We define y = (ym | m ≥ 0) = up(d)(x) by
applying dn+1 to xn for all n, then projecting all the results down to each ym and joining them.

y0 = d1(x0) ⊔ p0(d2(x1)) ⊔ · · · ⊔ (p0 ◦ p1 ◦ · · · ◦ pn)(dn+2(xn+1)) ⊔ · · ·
y1 = d2(x1) ⊔ p1(d3(x2)) ⊔ · · · ⊔ (p1 ◦ p2 ◦ · · · ◦ pn)(dn+2(xn+1)) ⊔ · · ·

. . .

ym = dm+1(xm) ⊔ pm(dm+2(xm+1)) ⊔ · · · ⊔ (pm ◦ pm+1 ◦ · · · ◦ pm+k)(dm+k+2(xm+k+1)) ⊔ · · ·
. . .

5

One must show that the elements to be joined form a chain in Dm.

Using up, we can define down, which constructs the tuple of approximations of f ∈ D∞ → D∞ at every Dn

by projecting the action of f down to Dn.

down(f) = (dn | n ≥ 0) d0 = f(⊥D0) dn+1 = p̂n ◦ f ◦ ên.

7 Semantics of the Untyped λ-Calculus

With D∞, we can give an extensional semantics for the untyped λ-calculus. It looks familiar except for the
use of up and down. We have a naming environment ρ ∈ Var → D∞ and a semantic function such that
[[e]]ρ ∈ D∞:

[[x]]ρ = ρ(x)
[[e0 e1]]ρ = up([[e0]]ρ) ([[e1]]ρ)
[[λx. e]]ρ = down(λv ∈ D∞ . [[e]]ρ[v/x])

This semantics does not distinguish between nontermination and termination, which is a bit unsatisfactory.
If we want to model the CBV λ-calculus more faithfully, we can use the domain equation D ∼= [D → D⊥]
instead. For CBN, we would use D ∼= [D⊥ → D⊥]. The equations are solved similarly to D ∼= [D → D].

8 Other Equations

Can we find solutions to domain equations in general? It turns out that a solution exists if we have a set of
equations of the form D1 = F1(D1, . . . Dn), . . . , Dn = Fn(D1, . . . Dn), where each of the Fi is constructed
using compositions of the following domain constructions: D⊥, D×E, D +E, D → E⊥. (This is a sufficient
but not necessary condition). Winskel [Win93, Chp. 12] shows one way to build solutions using information
systems. Thus we can construct complex recursive domain equations and be sure that we have a well-defined
mathematical basis for denotational semantics.

References

[Win93] Glynn Winskel. The Formal Semantics of Programming Languages. MIT Press, 1993.

6

