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1 Denotational Semantics for REC

So far the most interesting thing we have given a denotational semantics for is the while loop. What about
functions? We now have enough machinery to capture some of their semantics, even for mutually recursive
functions. We show how to give a semantics for the language REC [Win93, Chp. 9].

1.1 REC Syntax

p ::= let d in e

d ::= f(x1, . . . , xn) = e | f(x1, . . . , xn) = e and d

e ::= n | x | e1 ⊕ e2 | let x = e1 in e2 | ifp e0 then e1 else e2 | fi(e1, . . . , eai)

The expressions d are function declarations. The functions can be mutually recursive. It is reasonable to
expect that under most semantics, let f(x) = f(x) in f(0) will loop infinitely, but let f(x) = f(x) in 0 will
halt and return 0.

For example,

let f1(n,m) = ifp m2 − n then 1 else (n mod m) · f1(n,m+ 1)
and f2(n) = ifp f1(n, 2) then n else f2(n+ 1)
in f2(1000)

In this REC program, f2(n) finds the first prime number p ≥ n. The value of n mod m is positive iff m does
not divide n.

1.2 CBV Denotational Semantics for REC

The meaning function is [[e ]] ∈ FEnv → Env → Z⊥, where Env and FEnv denote the sets of variable
environments and function environments, respectively, as used in REC.

ρ ∈ Env = Var → Z

φ ∈ FEnv = (Za1 → Z⊥) × · · · × (Zan → Z⊥)

Here Var is a countable set of variables, Z is the set of integers, which are the values that can be bound to
a variable in an environment, and Zm = Z× Z× · · · × Z︸ ︷︷ ︸

m times

.
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[[n ]]φρ
△
= n

[[x ]]φρ
△
= ρ(x)

[[e1 ⊕ e2 ]]φρ
△
= let v1 ∈ Z = [[e1 ]]φρ in

let v2 ∈ Z = [[e2 ]]φρ in

v1 ⊕ v2

= [[e1 ]]φρ ⊕⊥ [[e2 ]]φρ

[[ let x = e1 in e2 ]]φρ
△
= let y ∈ Z = [[e1 ]]φρ in

[[e2 ]]φρ[y/x]

[[ ifp e0 then e1 else e2 ]]φρ
△
= let v0 ∈ Z = [[e0 ]]φρ in

if v0 > 0 then [[e1 ]]φρ else [[e2 ]]φρ

[[fi(e1, . . . , eai)]]φρ
△
= let v1 ∈ Z = [[e1 ]]φρ in

...
let vai ∈ Z = [[eai ]]φρ in

(πi φ)(v1, . . . , vai)

The meaning of a program let d in e is

[[ let d in e ]]
△
= [[e ]]φρ0,

where ρ0 is some initial environment containing default values for the variables (say 0), and if the function
declarations d are

f1(x1, . . . , xa1) = e1 and . . . and fn(x1, . . . , xan) = en,

then

φ = fix λψ ∈ FEnv . (λv1 ∈ Z, . . . , va1 ∈ Z. [[e1 ]]ψρ0[v1/x1, . . . , va1/xa1 ],
...

λv1 ∈ Z, . . . , van ∈ Z. [[en ]]ψρ0[v1/x1, . . . , van/xan ]),

or more accurately,

φ = fix λψ ∈ FEnv . (λv ∈ Za1 . [[e1 ]]ψ ρ0[π1(v)/x1, . . . , πa1(v)/xa1 ],
...

λv ∈ Zan . [[en ]]ψ ρ0[π1(v)/x1, . . . , πan
(v)/xan

]).

For this fixpoint to exist, we need to know that FEnv a pointed CPO and that the function FEnv → FEnv
to which we are applying fix is continuous. The domain FEnv is a product, and a product is a pointed CPO
when each factor is a pointed CPO. Each factor Zai → Z⊥ is a pointed CPO, since a function is a pointed
CPO when the codomain of that function is a pointed CPO, and Z⊥ is a pointed CPO. Therefore, FEnv is
a pointed CPO.

The function τ : FEnv → FEnv to which we are applying fix is continuous, because it can be written using
the metalanguage. Here is the argument. We illustrate with n = 2 and a1 = a2 = 1 for simplicity, thus we
assume the declaration d is

f1(x) = e1 and f2(x) = e2.
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Then

φ = fix λψ ∈ FEnv . (λv ∈ Z. [[e1 ]]ψρ0[v/x], λv ∈ Z. [[e2 ]]ψρ0[v/x]).

This gives the least fixpoint of the operator

τ = λψ ∈ FEnv . (λv ∈ Z. [[e1 ]]ψρ0[v/x], λv ∈ Z. [[e2 ]]ψρ0[v/x]),

provided we can show that τ is continuous. We can write

τ = λψ ∈ FEnv . (λv ∈ Z. [[e1 ]]ψρ0[v/x], λv ∈ Z. [[e2 ]]ψρ0[v/x])
= λψ ∈ FEnv . (τ1(ψ), τ2(ψ))
= λψ ∈ FEnv . ⟨τ1, τ2⟩ (ψ)
= ⟨τ1, τ2⟩,

where τi : FEnv → FEnv is

τi = λψ ∈ FEnv . λv ∈ Z. [[ei ]]ψρ0[v/x].

Because ⟨τ1, τ2⟩ is continuous iff τ1 and τ2 are, it suffices to show that each τi is continuous. Now we can
write τi in our metalanguage.

τi = λψ ∈ FEnv . λv ∈ Z. [[ei ]]ψρ0[v/x]
= λψ ∈ FEnv . λv ∈ Z. [[ei ]]ψ (subst ρ0 x v)
= λψ ∈ FEnv . λv ∈ Z. ([[ei ]]ψ) ((subst ρ0 x) v)
= λψ ∈ FEnv . λv ∈ Z. (([[ei ]]ψ) ◦ (subst ρ0 x)) v
= λψ ∈ FEnv . (([[ei ]]ψ) ◦ (subst ρ0 x))
= λψ ∈ FEnv . compose ([[ei ]]ψ, subst ρ0 x)
= λψ ∈ FEnv . compose ([[ei ]]ψ, const (subst ρ0 x)ψ)
= λψ ∈ FEnv . compose (⟨[[ei ]], const (subst ρ0 x)⟩ψ)
= λψ ∈ FEnv . (compose ◦ ⟨[[ei ]], const (subst ρ0 x)⟩)ψ
= compose ◦ ⟨[[ei ]], const (subst ρ0 x)⟩
= compose (compose, ⟨[[ei ]], const (subst ρ0 x)⟩).

Now we can argue that τi is continuous. The composition of two continuous functions is continuous, so
it suffices to know that compose and ⟨[[ei ]], const (subst ρ0 x)⟩ are continuous. We argued last time that
compose is continuous. To show ⟨[[ei ]], const (subst ρ0 x)⟩ is continuous as a function, it suffices to show
that both [[ei ]] and const (subst ρ0 x) are continuous as functions. The former is continuous by the induction
hypothesis (structural induction on e). The latter is a constant function on a discrete domain and is therefore
continuous.

1.3 CBN Denotational Semantics

The denotational semantics for CBN is the same as for CBV with two exceptions:

[[ let x = e1 in e2 ]]φρ
△
= [[e2 ]]φρ[[[e1 ]]φρ/x]

[[fi(e1, . . . , eai)]]φρ
△
= (πi φ)([[e1 ]]φρ, . . . , [[eai ]]φρ).

We must extend Env = Var → Z⊥ and FEnv = (Za1
⊥ → Z⊥) × · · · × (Zan

⊥ → Z⊥).
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