
CS 6110 S11 Lecture 22 Domain Constructions 18 March 2011

1 A Metalanguage for Domain Constructions

Last time we did several constructions that required us to check that various domains were CPOs and that
various associated operations were continuous. How can we avoid doing this kind of check over and over
again? One solution is to create an abstract metalanguage consisting of some basic operations that will
allow us to do domain constructions (like function spaces, direct products, etc.) and that will ensure that
the domains that are constructed are CPOs and the associated functions are continuous. We can compose
these constructions to create more complicated domains from simpler ones and always be assured that the
desired mathematical properties hold.

The simplest objects will be the discrete CPOs Z, N and U for the integers, the natural numbers, and the
unit domain, respectively. The unit domain contains a single element unit. These all have the discrete order,
meaning that if x ⊑ y, then x = y.

For any domain A, we can construct a new domain A⊥, which is A adjoined with a new element ⊥ below
all the previous elements. Note that ⊥ is intended to be a new element, so we can actually iterate this
operation. The associated operations are the natural embedding ⌊·⌋ : D → D⊥ and the lifting operation
(·)∗ : (D → E⊥) → (D⊥ → E⊥) defined by

(d)∗ △
= λx ∈ D⊥ .

{
d(x), if x ̸= ⊥,
⊥, if x = ⊥.

Both these operations are continuous, and when (·)∗ is applied to a continuous function, the result is a
continuous function. As a convenient syntactic sugar, we write let x ∈ D = e1 in e2 as a shorthand for
(λx ∈ D. e2)∗ e1. That is, let is strict in that if e1 = ⊥, the let is ⊥ too.

1.1 Products

Given CPOs D and E, we can form the product D ×E consisting of all ordered pairs (d, e) with d ∈ D and
e ∈ E, ordered componentwise. This is the set-theoretic Cartesian product of D and E with (d, e) ⊑ (d′, e′)
iff d ⊑ d′ and e ⊑ e′. This is a CPO, and it is easy to check that

⊔
d∈X,e∈Y (d, e) = (

⊔
X,

⊔
Y ). Along

with the product constructor come the projections π1 and π2 defined by π1(d, e) = d and π2(d, e) = e,
which are continuous. If f : C → D and g : C → E, then the function (f, g) : C → D × E defined by

(f, g)
△
= λx. (f(x), g(x)) is continuous if f and g are. This is the unique function satisfying the equations

f = π1 ◦ (f, g) and g = π2 ◦ (f, g). The binary product can be generalized to an arbitrary product
∏

x∈X Dx

with associated projections πy :
∏

x∈X Dx → Dy.

1.2 Sums

Given CPOs D and E, we can form the sum (or coproduct) D + E, corresponding to the disjoint union of
D and E. We would like to take the union of the sets D and E, but we need to mark the elements to make
sure we can tell which set they originally came from in case D and E have a nonempty intersection. To do
this, we define

D + E
△
= {ι1(d) | d ∈ D} ∪ {ι2(e) | e ∈ E},

where ι1 and ι2 are any one-to-one functions with disjoint ranges; for example, we could take ι1(x) = (1, x)
and ι2(x) = (2, x). We define ιi(x) ⊑ ιj(y) iff i = j and x ⊑ y. Any chain in D + E must be completely
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contained in {ι1(x) | x ∈ D} or {ι2(x) | x ∈ E}, so D + E is a CPO. The associated operations are the
injections ι1 : D → D + E and ι2 : E → D + E, which are continuous. If f : D → C and g : E → C, then
we can combine f and g into a function f + g : D + E → C using a case construct:

f + g
△
= λx. case x of ι1(y) → f(y) | ι2(y) → g(y).

This is continuous if f and g are, and it is the unique function satisfying the equations f = (f + g) ◦ ι1 and
g = (f + g) ◦ ι2. As with products and projections, the binary coproduct can be generalized to an arbitrary
coproduct

∑
x∈X Dx with associated injections ιy : Dy →

∑
x∈X Dx.

1.3 Continuous Functions

We argued briefly in the last lecture that the space of continuous functions [D → E ] from a CPO D to a
CPO E under the pointwise order form a CPO. Let us look at this result a little more carefully.

Essentially, we need to show that if fn is a chain in [D → E ], then it has a supremum
⊔

n fn ∈ [D → E ].
There is an obvious candidate. For each x ∈ D, the set fn(x) forms a chain in E, because for all x,
fn(x) ⊑ fn+1(x); and since E is a CPO, this chain has a supremum

⊔
n(fn(x)). Thus the function

fω
△
= λx ∈ D.

⊔
n

(fn(x))

seems a likely candidate. This function is clearly an upper bound of the chain fn in the pointwise ordering,
and for any other upper bound g, we have

∀n fn ⊑ g ⇒ ∀n ∀x fn(x) ⊑ g(x) by definition of ⊑
⇒ ∀x ∀n fn(x) ⊑ g(x) switching quantifiers

⇒ ∀x
⊔
n

(fn(x)) ⊑ g(x) by definition of supremum

⇒ ∀x fω(x) ⊑ g(x) by definition of fω

⇒ fω ⊑ g by definition of ⊑,

thus fω is the supremum of the chain fn among functions D → E.

However, this is not quite enough. We know that fω : D → E, but we do not yet know that it is continuous.
We must show that for any chain dm in D, fω(

⊔
m dm) =

⊔
m(fω(dm)).

It would be nice to try to argue as follows:

fω(
⊔
m

dm) =
⊔
n

(fn(
⊔
m

dm)) by definition of fω

=
⊔
n

⊔
m

(fn(dm)) by the continuity of fn

=
⊔
m

⊔
n

(fn(dm)) by wishful thinking

=
⊔
m

fω(dm) by definition of fω.

Alas, the wishful thinking proves little. We need to show that joins (
⊔

) commute. This will follow from the
following lemma.

Lemma 1. If anm is a doubly-indexed collection of members of a partially ordered set such that
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(i) for all n,
⊔

m anm exists,

(ii) for all m,
⊔

n anm exists, and

(iii)
⊔

m

⊔
n anm exists,

then
⊔

n

⊔
m anm exists and is equal to

⊔
m

⊔
n anm.

Proof. Clearly
⊔

m

⊔
n anm is an upper bound for all anm, therefore it is an upper bound for all

⊔
m anm;

and if b is any other upper bound for all
⊔

m anm, then anm ⊑ b for all n, m, therefore
⊔

m

⊔
n anm ⊑ b, so⊔

m

⊔
n anm is the least upper bound for all

⊔
m anm; that is,

⊔
n

⊔
m anm =

⊔
m

⊔
n anm.

To apply this lemma we let anm = fn(dm). This justifies the “wishful thinking” step above. We have thus
shown that fω =

⊔
n fn ∈ [D → E ].

1.4 Operations on Continuous Functions

There are several useful operations on continuous functions that we can use for domain constructions.

• apply : [D → E ] × D → E that applies a given function to a given argument;

• compose : [E → F ] × [D → E ] → [D → F ];

• curry : [D × E → F ] → [D → [E → F ] ];

• uncurry : [D → [E → F ] ] → [D × E → F ]; and most importantly,

• fix : [D → D ] → D, defined by λg ∈ [D → D ].
⊔

n gn(⊥), that takes a function and returns its least
fixpoint. To apply fix, D must have a bottom element ⊥.

All these functions are continuous. We argue that compose is continuous. The type of compose is

compose : [E → F ] × [D → E ] → [D → F ]

and we would like to know that

compose ∈ [ [E → F ] × [D → E ] → [D → F ] ].

We must show that

compose(
⊔
m,n

(fm, gn)) =
⊔
m,n

compose(fm, gn).

Since
⊔

m,n(fm, gn) = (
⊔

m fm,
⊔

n gn), this amounts to showing

(
⊔
m

fm) ◦ (
⊔
n

gn) =
⊔
m,n

(fm ◦ gn). (1)

For all x,

(
⊔
m

fm)((
⊔
n

gn)(x)) = (
⊔
m

fm)(
⊔
n

(gn(x))) by definition of
⊔

n gn

=
⊔
m

(fm(
⊔
n

(gn(x)))) by definition of
⊔

m fm

=
⊔
m,n

(fm(gn(x))) by the continuity of fm.

This proves (1).
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