
CS 6110 S11 Lecture 21 The Fixed-Point Theorem 16 March 2011

1 Denotational Semantics of while-do

Last time, guided by the intuition that the programs while b do c and if b then c ; while b do c else skip should
be equivalent, we defined the denotation of the statement while b do c as the least solution to the equation

W
△
= λσ ∈ Σ.

{
(W )∗(C[[c ]]σ), if B[[b ]]σ,
σ, otherwise

in Σ → Σ⊥; that is, the least fixpoint of the operator

F △
= λw ∈ Σ → Σ⊥ . λσ ∈ Σ.

{
(w)∗(C[[c ]]σ), if B[[b ]]σ,
σ, otherwise

of type (Σ → Σ⊥) → (Σ → Σ⊥). More simply, we might write

F △
= λw ∈ Σ → Σ⊥ . λσ ∈ Σ. if B[[b ]]σ then (w)∗(C[[c ]]σ) else σ

with the understanding that the if-then-else here is purely mathematical. Here if w : Σ → Σ⊥, then
(w)∗ : Σ⊥ → Σ⊥ is the lift of w, which sends ⊥ to ⊥ and x to w(x) for x ∈ Σ − {⊥}.

In order to show that the least fixpoint of F exists, we will apply the Knaster–Tarski theorem. However,
we only proved the Knaster–Tarski theorem for the partial order of subsets of some universal set ordered by
set inclusion ⊆. We need to extend it to the more general case of chain-complete partial orders (CPOs). To
apply this theorem, we must know that the function space Σ → Σ⊥ is a CPO and that F is a continuous
map on this space.

2 Chain-Complete Partial Orders and Continuous Functions

Recall that a binary relation ⊑ on a set X is a partial order if it is

• reflexive: x ⊑ x for all x ∈ X;

• transitive: for all x, y, z ∈ X, if x ⊑ y and y ⊑ z, then x ⊑ z;

• antisymmetric: for all x, y ∈ X, if x ⊑ y and y ⊑ x, then x = y.

It is a total order if for all x, y ∈ X, either x ⊑ y or y ⊑ x.

If A ⊆ X, we say that x is an upper bound for A if y ⊑ x for all y ∈ A. We say that x is a least upper bound
or supremum of A if

• x is an upper bound for A, and

• for all other upper bounds y of A, x ⊑ y.

Upper bounds and suprema need not exist. For example, the set of natural numbers N under its natural
order ≤ has no supremum in N. However, if the supremum of any set exists, it is unique. A partially ordered
set is said to be complete if all subsets have suprema. The supremum of a set C, if it exists, is denoted

⊔
C.

1



Note that all elements of X are (vacuously) upper bounds of the empty set ∅, so if the supremum of ∅
exists, then it is necessarily the least element of the entire set. In this case we give it the name ⊥.

A chain is a subset of X that is totally ordered by ⊑. For example, in the partial order of subsets of {0, 1, 2}
ordered by set inclusion, the set {∅, {2}, {1, 2}, {0, 1, 2}} is a chain. A partially ordered set is chain-complete
if all nonempty chains have suprema. A chain-complete partially ordered set is called a CPO. The empty
chain ∅ is not included in the definition of chain-complete, but if the empty chain also has a supremum,
then it is necessarily the least element ⊥ of the CPO. A CPO with a least element ⊥ is called pointed.

Let X and Y be CPOs (we use ⊑ to denote the partial order in both X and Y ). A function f : X → Y
is monotone if f preserves order; that is, for all x, y ∈ X, if x ⊑ y then f(x) ⊑ f(y). For example, the
exponential function λx. ex : R → R is monotone. A function f : X → Y is continuous if f preserves
suprema of nonempty chains; that is, if C ⊆ X is a nonempty chain in X, then

⊔
x∈C f(x) exists and equals

f(
⊔

C). Here
⊔

x∈C f(x) is alternate notation for
⊔

{f(x) | x ∈ C}.

Every continuous map is monotone: if x ⊑ y, then y =
⊔
{x, y}, so by continuity f(y) = f(

⊔
{x, y}) =⊔

{f(x), f(y)}, which implies that f(x) ⊑ f(y).

In the definition of continuity, we excluded the empty chain ∅. If it were included, then a continuous function
would have to preserve ⊥; that is, f(⊥) = ⊥. A continuous function that satisfies this property is called
strict. We do not include ∅ in the definition of continuous functions, because we wish to consider non-strict
functions, such as the F of Section 1.

3 The Knaster–Tarski Theorem in CPOs

Let F : D → D be any continuous function on a pointed CPO D. Then F has a least fixpoint fix F
△
=⊔

n Fn(⊥). The proof is a direct generalization of the proof for set operators given in an earlier lecture,
where ⊥ was ∅ and

⊔
was

∪
. In a nutshell: by monotonicity, the Fn(⊥) form a chain; since D is a CPO,

the supremum fix F of this chain exists; and by continuity, fix F is preserved by F .

4 Flat Domains

Let S be a set with the discrete ordering, which means that any two distinct elements of S are ⊑-incomparable.
We can make S into a pointed CPO S⊥ by adding a new bottom element ⊥ and defining ⊥ ⊑ ⊥ ⊑ x ⊑ x
for all x ∈ S, but nothing else. This is called a flat domain. For example, N⊥ looks like

⊥
aaa
bb@ �""!!!0 1 2 3 4 5 6 · · ·

Any flat domain is chain-complete, since every chain is finite, and every finite nonempty chain has a maximum
element, which is its supremum.

5 Continuous Functions on CPOs Form a CPO

Now we claim that if C and D are CPOs, then the space of continuous functions f : C → D is a CPO under
the pointwise ordering

f ⊑ g
△⇐⇒ ∀x ∈ C f(x) ⊑ g(x).

2



This space is denoted [C → D ]. It is easily verified that ⊑ is a partial order on [C → D ]. If D is pointed

with bottom element ⊥, then [C → D ] is also pointed with bottom element ⊥ △
= λx ∈ C.⊥.

We need to show that [C → D ] is chain-complete. Let C be a nonempty chain in [C → D ]. Define

G
△
= λx ∈ C.

⊔
g∈C

g(x).

First, G is a well-defined function, since for any x ∈ C, {g(x) | g ∈ C} is a chain in D, therefore its supremum⊔
g∈C g(x) exists. Also, the function G is continuous, since for any nonempty chain E in C,

G(
⊔

E) =
⊔
g∈C

g(
⊔

E) by the definition of G

=
⊔
g∈C

⊔
x∈E

g(x) since each g ∈ C is continuous

=
⊔

x∈E

⊔
g∈C

g(x) by the lemma below

=
⊔

x∈E

G(x) again by the definition of G.

The third step in the above argument uses the following lemma.

Lemma 1. If axy is a doubly-indexed collection of members of a partially ordered set such that

(i) for all x,
⊔

y axy exists,

(ii) for all y,
⊔

x axy exists, and

(iii)
⊔

y

⊔
x axy exists,

then
⊔

x

⊔
y axy exists and is equal to

⊔
y

⊔
x axy.

Proof. Clearly
⊔

y

⊔
x axy is an upper bound for all axy, therefore it is an upper bound for all

⊔
y axy; and if

b is any other upper bound for all
⊔

y axy, then axy ⊑ b for all x, y, therefore
⊔

y

⊔
x axy ⊑ b, so

⊔
y

⊔
x axy is

the least upper bound for all
⊔

y axy; that is,
⊔

x

⊔
y axy =

⊔
y

⊔
x axy.

To apply this lemma, we need to know that

(i) for all g ∈ C,
⊔

x∈E g(x) exists,

(ii) for all x ∈ E,
⊔

g∈C g(x) exists, and

(iii)
⊔

g∈C
⊔

x∈E g(x) exists.

But (i) holds because all g ∈ C are continuous, therefore
⊔

x∈E g(x) = g(
⊔

E); (ii) holds because {g(x) | g ∈
C} is a chain in D, and D is chain-complete; and (iii) follows from (i) and (ii) by taking x =

⊔
E.

3



6 Fixpoints and the Semantics of while-do

Now let us return to the denotational semantics of the while loop. We previously defined the function

F : (Σ → Σ⊥) → (Σ → Σ⊥)

F △
= λw ∈ Σ → Σ⊥ . λσ ∈ Σ. if B[[b ]]σ then (w)∗(C[[c ]]σ) else σ.

Any function Σ → Σ⊥ is continuous, since chains in the discrete space Σ contain at most one element, thus
the space of functions Σ → Σ⊥ is the same as the space of continuous functions [Σ → Σ⊥ ]. Moreover, the
lift (w)∗ : Σ⊥ → Σ⊥ of any function w : Σ → Σ⊥ is continuous.

By previous arguments, the function space [Σ → Σ⊥ ] is a pointed CPO, and F maps this space to itself. To
obtain a least fixpoint by Knaster–Tarski, we need to know that F is continuous.

Let us first check that it is monotone. This will ensure that, when trying to check the definition of continuity,
when C is a chain, {F(d) | d ∈ C} is also a chain, so that

⊔
d∈C F(d) exists. Suppose d ⊑ d′. We want to

show that F (d) ⊑ F (d′). But for all σ,

F(d)(σ) = if B[[b ]]σ then (d)∗(C[[c ]]σ) else σ

⊑ if B[[b ]]σ then (d′)∗(C[[c ]]σ) else σ

= F(d′)(σ).

Here we have used the fact that the operator (·)∗ is monotone, which is easy to check.

Now let us check that F is continuous. Let C be an arbitrary chain. We want to show that
⊔

d∈C F(d) =
F(

⊔
C). We have⊔

d∈C

F(d) =
⊔
d∈C

λσ. if B[[b ]]σ then (d)∗(C[[c ]]σ) else σ

= λσ.
⊔
d∈C

if B[[b ]]σ then (d)∗(C[[c ]]σ) else σ

= λσ. if B[[b ]]σ then
⊔

d∈C

(d)∗(C[[c ]]σ) else σ

= λσ. if B[[b ]]σ then (
⊔

C)∗(C[[c ]]σ) else σ = F(
⊔

C),

since B[[b ]]σ does not depend on d and since the lift operator (·)∗ is continuous.

4


