
CS 6110 S11 Lecture 18 Predicate Transformers 9 March 2011

1 Axiomatic Semantics

So far we have focused on operational semantics, which are natural for modeling computation or talking
about how state changes from one step of the computation to the next. In operational semantics, there is a
well-defined notion of state. We take great pains to say exactly what a state is and how it is manipulated
by a program.

In axiomatic semantics, on the other hand, we do not so much care what the states actually are, but only
the properties that we can observe about them. This approach emphasizes the relationship between the
properties of the input (preconditions) and properties of the output (postconditions). This approach is
useful for specifying what a program is supposed to do and talk about a program’s correctness with respect
to that specification.

2 Preconditions and Postconditions

The preconditions and postconditions of a program say what is true before and after the program executes,
respectively. Often the correctness of the program is specified in these terms. Typically this is expressed
as a contract: as long as the caller guarantees that the initial state satisfies some set of preconditions, then
the program will guarantee that the final state will satisfy some desired set of postconditions. Axiomatic
semantics attempts to say exactly what preconditions are necessary for ensuring a given set of postconditions.

3 An Example

Consider the following program to compute xp:

y = 1;
q = 0;
while (q < p) {
y = y x;
q = q + 1;

}

The desired postcondition we would like to ensure is y = xp; that is, the final value of the program variable
y is the pth power of x. We would also like to ensure that the program halts. One essential precondition
needed to ensure halting is p ≥ 0, because the program will only halt and compute xp correctly if that holds.
Note that p > 0 will also guarantee that the program halts and produces the correct output, but this is a
stronger condition (is satisfied by fewer states, has more logical consequences).

p > 0︸ ︷︷ ︸
stronger

⇒ p ≥ 0︸ ︷︷ ︸
weaker

The weaker precondition is better because it is less restrictive of the possible starting values of p that ensure
correctness. Typically, given a postcondition expressing a desired property of the output state, we would like
to know the weakest precondition that guarantees that the program halts and satisfies that postcondition
upon termination.

1

4 Weakest Preconditions

Given a program S and a postcondition φ, the weakest property of the input state that guarantees that S
halts in a state satisfying φ is called the weakest precondition of S and φ and is denoted wp S φ. This says
that

• wp S φ implies that S terminates in a state satisfying φ (wp S φ is a precondition of S and φ),

• if ψ is any other condition that implies that S terminates in a state satisfying φ, then ψ ⇒ wp S φ
(wp S φ is the weakest precondition of S and φ).

As in the λ-calculus, juxtaposition represents function application, so wp can be viewed as a higher-order
function that takes a program S and a postcondition φ and returns the weakest precondition of S and φ. The
function wp can also be viewed as taking a program and returning a function that maps postconditions to
preconditions. For this reason, axiomatic semantics is sometimes known as predicate transformer semantics.

5 Guarded Commands

Dijkstra introduced the Guarded Command Language (GCL) with the grammar

S ::= skip | x := E | S1; S2

| if B1 → S1 []B2 → S2 [] · · · []Bn → Sn fi

| do B1 → S1 []B2 → S2 [] · · · []Bn → Sn od

where the Bi are Boolean expressions. The Bi are called guards because they guard the corresponding
statements Si. The symbol [] is the nondeterministic choice operator and is not to be confused with |. In if
and do statements, a clause Bi → Si is said to be enabled if its guard Bi is true.

Informally, when executing the if statement, at least one of its clauses must be enabled, otherwise it is a
runtime error. One of the enabled clauses Bi → Si is chosen nondeterministically and the corresponding
statement Si is executed. The do statement works similarly, except that there is no requirement that at
least one clause be enabled. If none are enabled, execution just falls through to the following statement. If
at least one is enabled, then one of the enabled clauses is chosen nondeterministically for execution. After
the clause is executed, the guards are reexamined, and the process is repeated. This process repeats until
all guards become false.

6 Weakest Preconditions in GCL

We now show how to determine the weakest preconditions for each part of GCL, as well as provide generic
examples and special cases of the wp function.

Skip

Since skip does not do anything, we have wp skip φ ⇔ φ. Examples:

• wp skip (x = 1) ⇔ x = 1

• wp skip false ⇔ false.

2

Assignments

For assignments x := E,

wp (x := E) φ ⇔ φ{E/x}.

Here φ{E/x} denotes safe substitution of E for x in the formula φ, in which variables bound by quantifiers
∀x or ∃x are renamed if necessary to avoid capture. Note that the mapping φ 7→ φ{E/x} goes right-to-left;
that is, φ{E/x} is the precondition that must hold of the input state in order to ensure that the postcondition
φ holds of the output state. Examples:

• wp (x := 1) (x = 1) ⇔ true. In words, x = 1 is true after x := 1 no matter what holds before
execution.

• wp (y := 1) (x = 1) ⇔ x = 1.

• wp (x := y) (x = 1) ⇔ (x = 1){y/x} ⇔ y = 1.

• wp (x := x+ 1) (x = 3)
⇔ (x = 3){x+ 1/x} by definition of assignment
⇔ x+ 1 = 3 by substitution
⇔ x = 2 by arithmetic,

so wp (x := x+ 1) (x = 3) ⇔ x = 2.

Sequential Composition

To determine the weakest precondition for which φ holds after executing S1;S2, we first find the weakest
precondition for which φ holds after the execution of S2, and then determine the weakest precondition that
ensures that property after S1:

wp (S1;S2) φ ⇔ wp S1 (wp S2 φ).

Examples:

• wp (x := 1; y := 2) (x = 1 ∧ y = 2)
⇔ wp (x := 1) (wp (y := 2) (x = 1 ∧ y = 2)) by definition of ;
⇔ wp (x := 1) (x = 1 ∧ 2 = 2) by definition of assignment
⇔ 1 = 1 ∧ 2 = 2 by definition of assignment
⇔ true by predicate calculus.

• wp (x := x+ 1; y := y − 1) (x ≤ y)
⇔ wp (x := x+ 1) (wp (y := y − 1) (x ≤ y)) by definition of ;
⇔ wp (x := x+ 1) (x ≤ y − 1) by definition of assignment
⇔ x+ 1 ≤ y − 1 by definition of assignment
⇔ y − x ≥ 2 by arithmetic.

3

If

In an if statement, at least one guard Bi must be true. This condition is expressed by the disjunction
B

△
=

∨
iBi. The Si that is chosen for execution is chosen nondeterministically among all enabled clauses,

and in order to guarantee the postcondition φ, all enabled clauses had better guarantee φ. Thus

wp (if B1 → S1 [] · · · []Bn → Sn fi) φ ⇔ B ∧
∧
i

(Bi ⇒ wp Si φ).

Example: The following program computes the maximum of two numbers.

MAX
△
= if x ≥ y → z := x [] y ≥ x→ z := y fi

To prove that the program halts and correctly computes the maximum of x and y regardless of input state,
it suffices to show that true is the weakest precondition corresponding to the postcondition z = maxx, y.

wp MAX (z = maxx, y)
⇔ x ≥ y ∨ y ≥ x

∧ (x ≥ y ⇒ (wp (z := x) (z = maxx, y))
∧ (y ≥ x⇒ (wp (z := y) (z = maxx, y)) by definition of if

⇔ true

∧ (x ≥ y ⇒ x = maxx, y)
∧ (y ≥ x⇒ y = maxx, y) by predicate calculus and the definition of assignment

⇔ true by predicate calculus.

Do

Since do has the complication that it may not terminate, it is difficult to formalize its weakest precondition.
In fact, over arbitrary structures, first-order predicate logic is not sufficiently expressive to formulate weakest
preconditions for this construct. However, we can use infinitary logic (logic with infinite conjunctions and
disjunctions). We can write

wp (do B1 → S1 [] · · · []Bn → Sn od) φ ⇔
∨
k

Pk,

where informally Pk is the weakest precondition ensuring that the do statement terminates in exactly k
iterations and satisfies φ upon termination. Formally, let E be the body of the do statement (thus the
statement is do E od), and let B =

∨
iBi as above. Define inductively

P0
△
= ¬B ∧ φ, (1)

Pk+1
△
= B ∧ wp (if E fi) Pk. (2)

The basis condition (1) says that no clause is enabled and φ is true of the input state, which is equivalent
to the condition that the body E of the do statement is executed exactly 0 times and terminates in a state
satisfying φ. The inductive condition (2) says that B is true, thus the body E of the do statement is executed
at least once, and after executing the body once, Pk will hold, implying that the do statement will execute
exactly k more times and satisfy φ upon termination.

If you don’t like infinitary logic, you can do the same thing with the µ-calculus predicate

µP. (¬B ∧ φ) ∨ (B ∧ wp (if E fi) P),

which denotes the least fixpoint of the monotone map λP . (¬B ∧ φ) ∨ (B ∧ wp (if E fi) P) on predicates.

4

7 Refinement

For nondeterministic programs S and T, we say that S refines T iff for any starting state, the set of possible
final states of S is a (not necessarily strict) subset of the set of possible final states of T.

Consider for example

S
△
= if x = 1 → y := 1 [] x ̸= 1 → skip fi

T
△
= if x = 1 → y := 1 [] x = 1 → y := 2 [] x ̸= 1 → skip fi

For input state (x = a, y = b), the only possible final states of S are (x = 1, y = 1) if a = 1 and (x = a, y = b)
if a ̸= 1, whereas the possible final states of T are {(x = 1, y = 1), (x = 1, y = 2)} if a = 1 and just
(x = a, y = b) if a ̸= 1, therefore S refines T.

The refinement relation is usually used only with programming languages with some form of nondeterministic
choice as a relative measure of how nondeterministic a program is. A correctness specification might be
written using nondeterministic choice, since often we may be happy with any one of a range of outcomes.
Any deterministic program that refines the specification is considered correct.

8 Weakest Liberal Preconditions

Recall that the weakest precondition of a program S and a postcondition φ is the weakest precondition that
guarantees that S halts and satisfies φ upon halting.

The weakest liberal precondition (wlp) of a program S and a postcondition φ is the weakest precondition that
guarantees that if S halts, then it satisties φ upon halting. The weakest liberal precondition of S and φ is
denoted wlp S φ.

The difference between wp S φ and wlp S φ is that wp S φ implies that S terminates, whereas wlp S φ does
not. Since wlp S φ is weaker than wp S φ, it is presumably easier to establish.

Recall that weakest preconditions of the do construct of GCL are not necessarily expressible in first-order
logic. In fact, the same will be true of the weakest liberal preconditions. However, we may be able to find
some precondition that will be sufficient to establish correctness, even though that precondition may not
necessarily be the weakest. In other words, we will find ψ such that ψ ⇒ wlp S φ.

Recall that if and do statements look like

if B1 → S1 []B2 → S2 [] · · · []Bn → Sn fi

do B1 → S1 []B2 → S2 [] · · · []Bn → Sn od

Define

B
△
=

n∨
i=1

Bi.

We will look for a property ψ such that

(i) ψ ∧B ⇒ wlp (if B1 → S1 []B2 → S2 [] · · · []Bn → Sn fi) ψ

(ii) ψ ∧ ¬B ⇒ φ.

5

Property (i) says that ψ is a loop invariant: if it holds before execution of the body of the do loop, and if at
least one clause in the body is enabled, then it holds after one execution of the body. It follows by induction
that if ψ holds before execution of the do loop, then it will hold after any number of iterations of the loop.
Property (ii) says that if ψ holds and no clause of the loop is enabled (so that the loop will fall through),
then the postcondition φ is satisfied.

These observations say that the following proof rule is valid:

ψ ∧B ⇒ wlp (if B1 → S1 []B2 → S2 [] · · · []Bn → Sn fi) ψ ψ ∧ ¬B ⇒ φ

ψ ⇒ wlp (do B1 → S1 []B2 → S2 [] · · · []Bn → Sn do) φ
.

Note that a loop invariant need not hold continuously throughout the execution of the body of the loop. It
is enough that it holds when the loop iteration is complete.

For example, consider the following program, which for some function f : Int → Bool finds the least x such
that f(x) (assume that such an x exists, so that the program will terminate).

x := 0;
do ¬f(x) → x := x+ 1 od

An appropriate postcondition that specifies what it means for the program to be correct is

φ
△⇐⇒ f(x) ∧ ∀y 0 ≤ y < x ⇒ ¬f(y).

(read as “f holds of x and does not hold of any number smaller than x”). One method of finding a good
loop invariant is to look at ways of weakening the postcondition, thereby allowing more states to satisfy the
predicate. In this case, we can eliminate the conjunct asserting that we have already found a good x. This
yields the invariant

ψ
△⇐⇒ ∀y 0 ≤ y < x ⇒ ¬f(y).

One can show that this is indeed an invariant and satisfies the two premises of the proof rule above with
B = ¬f(x), therefore

ψ ⇒ wlp (do ¬f(x) → x := x+ 1 od) φ.

The definitions of wlp S φ for the other basic constructs of GLC are the same as wp S φ except for if, which
is

wlp (if B1 → S1 [] · · · []Bn → Sn fi) φ
△
=

n∧
i=1

(Bi ⇒ wlp Si φ).

Note that we no longer require B as with wp, since we do not have to ensure halting.

6

