
CS 6110 S11 Lecture 11 A Functional Language 18 February 2010

1 Definition of FL

Let us construct a functional language FL by augmenting the λ-calculus with some more conventional pro-
gramming constructs. This is a richer language than any we have seen, one that we might actually like to
program in. We will give semantics for this language in two ways: a structural operational semantics and a
translation to the CBV λ-calculus.

In addition to λ-abstractions, we also introduce tuples (e1, . . . , en), numbers n, booleans, and a value null
corresponding to OCaml () or Java null.

1.1 Expressions

e ::= λx1 . . . xn . e | e0 · · · en | x | n | true | false | null

| (e1, . . . , en) | #n e | if e0 then e1 else e2

| let x = e1 in e2 | letrec f1 = λx1 . e1 and . . . and fn = λxn . en in e

1.2 Values

v ::= λx1 . . . xn . e | n | true | false | null | (v1, . . . , vn)

1.3 Evaluation Contexts

We define evaluation contexts so that evaluation is left-to-right and deterministic.

E ::= [ · ] | v0 · · · vm E em+2 · · · en | #nE | if E then e1 else e2

| let x = E in e | (v1, . . . , vm, E, em+2, . . . , en)

There are no holes on the right-hand side of if because we will want e1 and e2 to be evaluated lazily. Even
in an eager, call-by-value language, we want some laziness.

The structural congruence rule takes the usual form:

e
1−→ e′

E[e ] 1−→ E[e′ ]

1.4 Reductions

(λx1 . . . xn . e) v1 · · · vn → e{v1/x1}{v2/x2} · · · {vn/xn}
n1 ⊕ n2 → n3 if n1 ⊕ n2 = n3 under the corresponding arithmetic operation ⊕

#n (v1, . . . , vm) → vn, where 1 ≤ n ≤ m

if true then e1 else e2 → e1

if false then e1 else e2 → e2

let x = v in e → e{v/x}
letrec . . . → to be continued
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We can already see that there will be problems with soundness. For example, what happens with the
expression if 3 then 1 else 0? The evaluation is stuck, because there is no reduction rule that applies to this
term, but it is not a value. Unlike the λ-calculus, not all terms work in all contexts. We do not have an
explicit notion of type in this language; the types are simply the different kinds of expression forms that can
appear on the left-hand side of the various reduction rules. Nevertheless, we consider expressions that are
stuck to contain a runtime type error.

2 Translating FL to λ-CBV

2.1 Application and Abstraction, Numbers and Booleans

To capture the semantics of FL, we can also translate it to the call-by-value λ-calculus. Here are some of the
basic translation rules:

[[λx1 . . . xn . e ]]
△
= λx1 . . . xn . [[e ]]

[[e0 · · · en ]]
△
= [[e0 ]] [[e1 ]] [[e2 ]] · · · [[en ]]

[[x ]]
△
= x

[[n ]]
△
= λfx. fnx

[[null ]]
△
= id

[[true ]]
△
= λxy. x id

[[ false ]]
△
= λxy. y id

[[ if e0 then e1 else e2 ]]
△
= [[e0 ]] (λz. [[e1 ]]) (λz. [[e2 ]]).

Notice that we implement booleans by combining our earlier λ-calculus implementation of booleans with the
delayed-evaluation trick employed in the translation from CBN to CBV λ-calculus.

2.2 Tuples

Let us consider the translation of tuples. We have already seen how to represent lists in the λ-calculus using
the functions list, head, tail, nil, and empty with the following properties:

head (list e1 e2) = e1

tail (list e1 e2) = e2

empty (list e1 e2) = false

empty nil = true.

Using these constructs, we can define the translation from tuples to λ-CBV as follows:

[[( ) ]]
△
= nil

[[(e1, e2, . . . , en)]]
△
= list [[e1 ]] [[(e2, . . . , en)]]

[[#n e ]]
△
= head (tailn−1 [[e ]]).

As above, this translation is not sound, because there are stuck FL expressions whose translations are not
stuck; for example, #1 ( ).
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2.3 Let and Letrec

Now come the last of our FL constructs, let and letrec. For let expressions, we define

[[ let x = e1 in e2 ]]
△
= (λx. [[e2 ]]) [[e1 ]].

The letrec construct
letrec f1 = λx1 . e1 and . . . and fn = λxn . en in e

allows us to define mutually recursive functions, each of which is able to call itself and other functions defined
in the same letrec block. We will consider only the case n = 1. Recall that, using the Y -combinator, we can
produce a fixpoint Y (λf . λx. e) of λf . λx. e. We can think of Y (λf . λx. e) as a recursively-defined function
f such that f = λx. e, where the body e can refer to f . Then we define

[[ letrec f = λx. e1 in e2 ]]
△
= (λf . [[e2 ]]) (Y (λf . [[λx. e1 ]])).

3 Strong Typing

Revisiting our earlier example, if 3 then 1 else 0, we see that the translation to λ-CBV is not sound, because
its image [[ if 3 then 1 else 0]] reduces to a value under the CBV rules—there is no way for a closed term to
get stuck in the CBV or CBN λ-calculus. However, this value does not correspond to the stuck non-value
if 3 then 1 else 0 in the FL language. It is meaningless gibberish.

All reasonably powerful languages confront this problem in one way or another, but there is more than one
approach to dealing with it. A language in which no term can get stuck during evaluation is said to be
strongly typed. There is no way to apply an operation to a value of the wrong type. Note that strong typing
and static typing are not the same property. For example, the language C is statically typed (the compiler
figures out types for all expressions), but it is possible to write code that gets stuck, such as the following:

int x = 1;
int a[4];
a[4] = 2;

What this code does depends on what machine it is compiled on and what compiler options are used. For
example, it might result in the variable x holding the value 2, or perhaps some other variable or even the
return address register containing that value. The program may compute the wrong results, crash, or do
something completely unpredictable, such as jumping to memory address 2 and executing code.

In C, when an expression is evaluated whose results are not defined by the semantics, either the outcome is
“implementation-defined” or else the program is an incorrect C program. Experience has shown that this is
not necessarily a good idea, especially when it comes to building secure systems. That the buck has been
passed to the programmer is of little consolation, if the system is successfully attacked by a buffer overrun
that exploits implementation-defined behavior to jump to code controlled by the attacker.

Some statically typed languages are strongly typed. Examples include Java and the various ML languages.
And some languages that are not statically typed are strongly typed, such as Scheme. And finally, some
languages, such as Forth and assembly code, are neither strongly nor statically typed.

Even in languages like OCaml that are statically typed, there are terms that are stuck unless we define some
kind of runtime type checking. For example, the expression 0/0 causes a runtime error. Runtime checking
is needed to provide well-defined behavior in these cases.
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3.1 Runtime Type Checking

As defined, FL is not explicitly a strongly typed language. We can solve this problem by extending the
operational semantics with rules that reduce all stuck expressions to a special error value error. The new
term error represents a runtime error. This term cannot occur in a well-formed program, but may arise
during evaluation whenever an otherwise stuck expression occurs.

We implement runtime type checking for FL by building a translation from FL to itself. The effect will
be that when this new translation is layered on top of the translation above, the resulting target λ-CBV
program will faithfully and soundly represent evaluation of the original FL program. And the work done
in the translated code arguably does a better job of showing what happens in such a language than the
operational semantics does.

To build a sound translation, we will need a representation of the error value. More generally, we will need
to be able to tell what kind of value we have when an operation is to be applied, so we can catch values of
the wrong type. The idea is to tag each value with an integer representing its type. We could use 0 to tag
the error value, 1 to tag null, etc. The actual values do not matter, as long as they are distinct. Let us give
them symbolic names:

Err
△
= 0 Null

△
= 1 Bool

△
= 2

Num
△
= 3 Tuple

△
= 4 Func

△
= 5

We use tags to check that we are getting the right kind of values where they are expected. For example, we
could check that we have a Boolean value for the test in a conditional if-then-else construct by testing that
the value’s tag is 2.

Let us call the new translation E [[e ]], where the E stands for “error”. Define translations of the various
constructor forms as follows, tagging values appropriately:

E [[null ]]
△
= (Null, null) E [[t ]]

△
= (Bool, t), t ∈ {true, false}

E [[n ]]
△
= (Num, n) E [[(e1, . . . , en)]]

△
= (Tuple, n, (E [[e1 ]], . . . , E [[en ]]))

E [[error ]]
△
= (Err, error) E [[λx1, . . . , xn . e ]]

△
= (Func, n, λx1, . . . , xn . E [[e ]])

Each value is paired with an indication of its runtime type. In addition, λ-abstractions are tagged with the
number of their arguments, so that the argument count can be checked when the abstraction is applied. The
translation of other terms needs to check tags. For example, we can translate if as follows, checking the value
of the conditional to make sure it has the boolean tag 2:

E [[ if e0 then e1 else e2 ]]
△
= let z = E [[e0 ]] in

if #1 z = Bool

then (if #2 z then E [[e1 ]] else E [[e2 ]])
else E [[error ]]

where z ̸∈ FV(e1) ∪ FV(e2).

Similarly, for arithmetic:

E [[e1 + e2 ]]
△
= let z1 = E [[e1 ]] in

let z2 = E [[e2 ]] in

if (#1 z1 = Num) ∧ (#1 z2 = Num)
then (#2 z1) + (#2 z2)
else E [[error ]]
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where z1, z2 ̸∈ FV(e1) ∪ FV(e2).

Of course, we will need more translation rules for the various other constructs. The rule for function
application checks that the number of actual parameters matches the number of formal parameters:

E [[e0 e1 · · · en ]]
△
= let z = E [[e0 ]] in

if (#1 z = Func) ∧ (#2 z = n)
then #3 z E [[e1 ]] · · · E [[en ]]
else E [[error ]]

where z ̸∈ FV(ei) for i ∈ {0, . . . , n}.

4 Summary

We have made FL strongly typed using runtime type checking. However, this does not really solve the problem
of unexpected values arising at runtime; it merely converts unpredictable behavior into a predictable error
value.

We can further improve the situation by introducing an exception mechanism that allows a program to catch
error conditions and handle them in some graceful way. In general, however, it is difficult for programs to
handle errors effectively, even with an exception mechanism.

Another approach is to use static (compile-time) reasoning supported by a type system that rules out certain
stuck expressions. This reduces the cost associated with runtime type checking and ensures that certain errors
cannot occur. However, type systems can never be expressive enough to rule out all unexpected expressions,
because it is impossible in general to predict the values of expressions at compile time. We will have more
to say about type systems later in the course.
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