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Please vote at the link on the web page.

1. Which do you prefer? A or B?
2. Which do you prefer? C or D?
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Powerball Payouts

Source: http://www.powerball.net

The Jackpot is currently estimated at
$90 mil. — $68 mil. cash value

Payout Probability
68× 106 3.4223× 10−9

1× 106 5.99501× 10−7

50,000 1.09514× 10−6

100 9.63726× 10−5

7 3.15067× 10−3

4 3.71854× 10−2

Expected winnings are $1.0603. A ticket
costs $2, so the net expected gain is
−$0.9397.
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Powerball Payouts

Source: http://www.powerball.net

The Jackpot is currently estimated at
$90 mil. — $68 mil. cash value

Payout Probability
68× 106 3.4223× 10−9

1× 106 5.99501× 10−7

50,000 1.09514× 10−6

100 9.63726× 10−5

7 3.15067× 10−3

4 3.71854× 10−2

For a net expected payoff of 0 the cash
payout must be $342.6 mil.
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An Important Fact!

Deductions for Gambling Losses

Playing the lottery is classed as gambling as far as the
Internal Revenue Service (IRS) is concerned, which means
that you are entitled to a tax deduction on any losses
incurred. To file these deductions, you will need to keep an
accurate record of your wins and losses, as well as any
evidence of them, such as the tickets you bought. You must
itemize the deductions on the tax form 1040, obtainable
from the IRS website. The losses you deduct cannot exceed
your income from all forms of gambling, including but not
limited to horse racing, casinos, and raffles.

Source https://www.powerball.net/taxes
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Problems with Expected Values

Am I 17 million times better off winning $68 million than I am
winning $4?.
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Problems with Expected Values

Pascal’s Wager

God Exists There is No God
Succeed in Believing Eternal Life Finite, Deluded Life

Remain an Atheist Oh, Hell! What I now presume

God Exists There is No God
Succeed in Believing ∞ x

Remain an Atheist y z

At what odds should you choose to remain an atheist?
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Problems with Expected Values

The Saint Petersburg Paradox

Here is a game:

É Flip a fair coin until tails comes up.

É If the first T appears at flip N, you are
paid $2N.

How much would you be willing to pay to play
this game?
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2
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4
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2n
· 2n + · · · = +∞
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History of EU

É Daniel Bernoulli’s resolution of the St. Petersburg paradox was
to introduce expected utility. He observed that although
∑

n 2−n2n is unbounded,
∑

n 2−n log 2n = 2 log 2. If you were to
pay w for the wager, your expected utility is
∑

n 2−n log(2n − w). This is a good bet for w < $1.81.

É It came under criticism in the 1930s.

É People evaluate gambles by looking at the mean, the
variance, and other statistics. (Hicks 1931)
É The utility function whose expectation is being taken is

"cardinal". (Tintner 1942)

So the late 40’s and early 50’s brought forth the zoo of functions.
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History of EU

É von Neumann and Morgenstern (1947) provided the first
axiomatization of EU preferences.

É Much of the acceptance of EU in the early 50s came from the
normative force of the axioms. But there has been pushback
against the descriptive validity of EU since the late 40s. Milton
Friedman and Leonard Savage wrote a famous and famously
bad paper in 1948 that tried to reconcile the fact that people
buy both insurance and lottery tickets with EU. Few of the
major players in 1950s decision theory thought that EU was
empirically valid.
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What’s To Like About EU

É Additive separability across states - independence axiom,
sure thing principle

É Stochastic monotonicity

É Representation properties e.g. risk aversion
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Characterization of EU Preferences

When does a preference relation have an EU representation?

X Outcomes of lotteries (finite for now)

L l = {p1,x1; . . . ,pN,xN)} A simple lottery with
probabilities p1, . . . ,pN and prizes x1, . . . ,xN.

∆ is the set
�

(p1, . . . ,pN) : pn ≥ 0 &
∑

n pn = 1
	

.

12/43



Characterization of Preferences
Notation

Kreps provides three levels of organization

É A fixed & finite prize space. Lotteries are elements in ∆.
Useful for drawing pictures.

É An infinite set of possible prizes, but lotteries are probability
distributions with finite support, that is, each lottery assigns
probability 1 to some finite set of prizes. This is what Kreps
means by a “simple lottery”. The set of such lotteries is a
mixture space. Kreps calls this PS but since P is overloaded in
this class I will call it L.

É Lotteries with countable and continuum support. Kreps
doesn’t name it and neither will I.
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Three Alternatives

l = (0.4,x1; 0.2,x2; 0.4,x3)

(1,0,0)

(0,1,0) (0,0,1)

l l

x1

x3x2

A representation of ∆ and L.
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Simple & Compound Lotteries
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Reduction of Compound Lotteries
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Mixture Spaces

Definition. A mixture space is a non-empty set M together with an
operation

[0,1]×M ×M→M

(λ,l,m)→ lλm

s.t.

A.1 l1m = l,

A.2 lλm = m(1− λ)l,

A.3 (lλm)μm = l(λμ)m.

A function U : M→ R is mixture-preserving if for all λ,l,m

U(lλm) = λU(l) + (1− λ)U(m)
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Some Properties of Mixture Spaces

É l0m = m

Proof. l0m A2
= m1l A1

= m.

É lλl = l

Proof. lλl
A1
= (l1l)λl

A2
= (l0l)λl

A3
= l0l = l.

É (lλm)μ(lνm) = l(λν + (1− λ)ν)m

Proof. See Fishburn (1982).
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Examples of Mixture Spaces

É A convex set is a mixture space with lλm = λl + (1− λ)m.

É M = {l,m,n}. For all λ, mλm = m and nλn = n,
l0m = m1l = n0m = m1n = m,
l0n = n1l = m0n = n1m = n, and all other mixtures equal
l.

É M = {l,m,n}. For all λ ∈ (0,1), lλm = mλl = m,
mλn = nλm = n, nλl = lλn = l, and the 0,1 mixtures are
chosen according to A.1 and A.2.

Here are two properties of convex sets not shared by all mixture
spaces:

É (lβm)αn = lαβ(qα(1− β)(1− αβ)−1n) (associativity)

É for α 6= 0, lαn = mαn implies that l = m. (determinacy)
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Why Mixture Spaces?

Why not just reduce compound lotteries to simple lotteries and
embed them in a convex set as the picture on slide 14 suggests?

x2

x3

s1

s2

s3

x1

x4

0.5

0.5

Reduce this!

s1, s2 and s3 are states of nature without given probabilities.
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The Mixture Space Representation Theorem

Theorem. Let � be a binary relation on a mixture space M. Assume:

É (Preference) � is a preference relation,

É (Archimedean) For all l,m,n ∈M such that l �m � n, there
are 0 < α,β < 1 such that

lαn �m � lβn,

É (Independence) For all l,m,n ∈M and 0 < α ≤ 1, if l �m

then
lαn �mαn.

Then � has a mixture-preserving representation: m � n iff
U(m) > U(n), and U(mαn) = αU(m) + (1− α)U(n). Furthermore, if V
is another mixture-preserving representation, for some α > 0 and β,

V(m) = αU(m) + β.
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Archimedean Axiom

n

m

l×
l1/2n

The Lexicographic Order

É l �m � n.

É For all α > 0, lαn �m
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Independence Axiom

The usual justification goes as follows:

x1

x2

z1

z2
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x1

x2

y2

y1

r

s

v
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L1

L2

L1pM

L2pM

Independence: L1 � L2 iff
L1pM � L2pM.

Suppose L1 is preferred to L2.
Now imagine flipping a coin and
getting L1 on H and a default
lottery M on T. How should it
compare to getting L2 on H and
the same default on T.

This sounds normatively
plausible. Descriptively the
reduction of compound lotteries
is questionable. The Allais
paradox (to come) provides a
counterexample.
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Proof of the Representation Theorem

Here are a bunch of facts that can be quickly derived:

É If m � n and 0 ≥ α < β ≥ 1 then mβn �mαn.

This is a monotonicity property.
É If l ¼m ¼n and l � n, then for exactly one 0 ≤ α ≤ 1

m ∼ lαn.

Among other things, this suggests that indifference curves are
not thick.

É If l ∼m then lαn ∼mαn

This says two things:

É If l ∼m then for all 0 ≤ α ≤ 1
lαm ∼mαm = m,
Indifference curves are lines.
É Indifference curves are

parallel.

x1

x3x2
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Proof of the Representation Theorem

Idea. Suppose x1 is the best mixture and x3 is the worst.

x1

x3x2

U(x1) = 1

U(x3) = 0

l∗
l

U(l) solves

l ∼ l∗

and

l∗ = x1U(l)x3

This idea extends to the case
where there is no best and worst
mixture. See Kreps p. 55.
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Application to von Neumann–Morgenstern EU

Theorem. Let L denote the set of lotteries on a finite outcome
space X and let � be a preference order satisfying axioms A.1.–3.
Then there exists a u : X→ R such that

U(p) = Epu ≡
∑

n

pnu(xn)

represents �. Furthermore, v : X→ R similarly represents � iff
v = αu+ β with α > 0.

Proof. L with the convex combination operation is a mixture space.
The mixture space representation theorem gives a representation
U : l→ R such that U(pγq) = γU(p) + (1− γ)U(q). Arguing by
induction on the cardinality of X proves that U(p) =

∑

n pnu(xn). �
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Cardinal Utility?

A relational system R = 〈X,R1, . . . ,RK 〉 is a set X of objects together
with K relations. These relations may be binary, ternary, etc.

If, for example, R = 〈X,R1,R2,R3〉 is a relational system, and if R1

and R3 are binary while R2 is ternary, we say that the type of R is
2,3,2.

A function F is a numerical representation of the relational system
R iff there is a real relational system (on the object set of real
numbers) of the same type, 〈R,S1, . . . ,SK 〉 and a function F : X→ R

such that for all k, (x1, . . . ,xmk ) ∈ Rk iff ((F(x1), . . . ,F(xmk )) ∈ Sk.
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Cardinal Utility?

It is often said that the “utility” u is a cardinal measure of utility on
X, because any other “utility” v is related to u by a positive affine
transformation.

u(w)− u(x) > u(y)− u(z) iff v(w)− v(x) > v(y)− v(z).

Since relations between utility differences are invariant under all
“utilities” that appear in vn-M representations of �, it must be they
are significant, that there is an implicit quaternary relationship R′

on X, to wit, (w,x,y, z) ∈ R′ iff the decision maker prefers w over x
more than she prefers y over z. It is claimed that this is meaningful.

If this were true, then we would have derived the quaternary
relationship "more better than" from the binary relationship “better
than”.

What’s wrong with this?
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The Allais Paradox
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Calling Out BS

Consider the following mixture space:

É O is a finite set of outcomes.

É X0 is the set of sure prizes.

É Xn consists of all binary lotteries on Xn−1, (λ,x; (1− λ),y)

where 0 ≤ λ ≤ 1 and x,y ∈ Xn−1.

É X = ∪nXn.

Identify the elements (1,x; 0,y) and x. Then Xn−1 ⊂ Xn. This lets us
define on X a mixture operator: For x ∈ Xm and y ∈ Xn define

xλy = (λ,x; (1− λ),y) ∈ Xmax{m,n}+1.

If � on X satisfies A.1–3 then it has a mixture-preserving
representation.
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Calling Out BS

For distinct outcomes o1,o2,o3, o1λ(o2γo3) ∈ X2.

U
�

o1λ(o2γo3)
�

= λU(o1) + (1− λ)U(o2γo3)

= λU(o1) + (1− λ)
�

γU(o2) + (1− γ)U(o3)

= λU(o1) + (1− λ)γU(o2) + (1− λ)(1− γ)U(o3)

but although
�

λ,o1; (1− γ)(γ,o2; (1− γ),o3
�

exists in X2, the lottery
(λ,o1; (1− λ)γ,o2; (1− λ)(1− γ)o3

�

does not exist in X.
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EU With Monetary Prizes

Definition. A decision maker is risk averse if for any gamble
l = (p1,x1; . . . ,pN,xN), (1,

∑

n pnxn) ¼ l.

In expected utility terms,

U(E{X}) ≥ E
�

U(X)
	

This will be true for all gambles iff U is concave.
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Concave Functions

A concave function’s graph is on or above any of its secant lines.

A BA/2+B/2

U(A)

U(B)

U(A)/2+U(B)/2

U(A/2+B/2)
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Concave Functions

The lottery L = (1/2,A; 1/2,B).

A BA/2+B/2

U(A)

U(B)

E
�

U(L)
	

U(E{L})

cert. equiv.
x

u(x)

risk premium
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Curvature and Risk Aversion

A BCECE x

u(x)
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Measuring Curvature

Curvatures are measured by coefficients of risk aversion.

É The coefficient of absolute risk aversion is

ρA(x) = −
u′′(x)

u′(x)
=

d

dx
logu′(x)

É The coefficient of relative risk aversion is

ρR(x) = −
xu′′(x)

u′(x)
=

d

d logx
logu′(x)
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Constant Risk Aversion

Proposition A utility function u has Constant Absolute Risk Aversion
κ > 0 iff

u(x) = −e−κx

Proposition A utility function u has Constant Relative Risk Aversion
γ > 0. Iff

u(x) =
1

1− γ
x1−γ

or, for γ = 1,
u(x) = logx.

The coefficients are preserved by positive affine transformations.
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Risk Aversion

Homework problem: Show that if u is CARA and F is a gamble whose
payoff is normally distributed with mean μ and variance σ2, then

CE(F) = μ − κσ2

Proposition. If u is any increasing, concave and C2 payoff function,
and Fσ is a family of gambles with fixed mean μ and variance σ2,
then if σ2 is sufficiently small,

CE(Fσ) ≈ μ − ρA(μ)σ2
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Comparisons of Risk Aversion

What does it mean to say that individual Y is at least as risk averse
than is individual Z?

É For any gamble F, CEY(F) ≥ CEZ(F),

É For all x, ρY
A

(x) > ρZ(x).

É There is a concave function g : R→ R such that uY = g ◦ uZ.

These are all equivalent.
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An Application

An individual has an initial wealth w and may lose 1 unit with
probability p. She can buy insurance. To insure x dollars of the loss
costs q · x. Under what circumstances will she buy insurance, and
when she buys, how much?

If she buys x dollars of insurance, her expected utility is

U(x) = (1− p)u(w− qx) + pu(w− qx− 1 + x).

Actuarially fair insurance requires q = p.
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Unfair Insurance

Suppose q > p. Will she choose x = 1?

U′(1) =
�

p(1− q)− q(1− p)
�

u′(w− q) = (p− q)u′(w− q) < 0

so NO!

Suppose q = p. Will she choose x = 1?

U′(1) =
�

p(1− q)− q(1− p)
�

u′(w− q) = (p− q)u′(w− q) = 0

so YES! For any x, E{w̃} = w− p. For x < 1,

CE(x) < E{w̃} = w− q = CE(1)

so x = 1 has a higher certainty equivalence than x < 1, hence is
optimal.
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