Von Neumann - Morgenstern Expected Utility

I. Introduction, Definitions, and Applications

Decision Theory
Spring 2014

Origins

Blaise Pascal, 1623 - 1662

- Early inventor of the mechanical calculator
- Invented Pascal's Triangle
- Invented expected utility, hedging strategies, and a cynic's argument for faith in God all at once.

Pascal's Wager
God exists God does not exist
live as if he does
live for yourself

$-C+\infty$	$-C$
$U-\infty$	U

Origins

Daniel Bernoulli

- Mechanics
- Hydrodynamics - Kinetic Theory of Gases
- Bernoulli's Principle

The St. Petersburg Paradox
A coin is tossed until a tails comes up. How much would you pay for a lottery ticket that paid off 2^{n} dollars if the first tails appears on the n 'th flip?

The St. Petersburg Paradox

Average payoff from paying c :

$$
\begin{aligned}
E & =\frac{1}{2} \cdot(w-c)+\frac{1}{4} \cdot(w+2-c)+\frac{1}{8} \cdot(w+4-c)+\cdots \\
& =\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\cdots+w-c \\
& =\infty
\end{aligned}
$$

Bernoulli's solution:
$E=\frac{1}{2} \cdot \log ^{+}(w-c)+\frac{1}{4} \cdot \log ^{+}(w+2-c)+\frac{1}{8} \cdot \log ^{+}(w+4-c)+\cdots$
This is finite for all w and c. $\left(\log ^{+}(x)=\log \max \{x, 1\}\right.$.)

The St. Petersburg Paradox

This doesn't solve the problem. Average payoff from paying c :

$$
\begin{aligned}
E= & \frac{1}{2} \cdot \log ^{+}\left(w+\exp 2^{0}-c\right)+\frac{1}{4} \cdot \log ^{+}\left(w+\exp 2^{1}-c\right) \\
& +\frac{1}{8} \cdot \log ^{+}\left(w+\exp 2^{2}-c\right)+\cdots \\
= & \infty
\end{aligned}
$$

Solution:

- Utility bounded from above.
- Restrict the set of gambles.

Preferences on Lotteries

$$
\begin{aligned}
& X=\left\{x_{1}, \ldots, x_{N}\right\}-\mathrm{A} \text { finite set of prizes. } \\
& P=\left\{p_{1}, \ldots, p_{N}\right\}-\mathrm{A} \text { probability distribution. } \\
& p_{i} \text { is the probability of } x_{i} .
\end{aligned}
$$

Preferences on Lotteries

For fixed prizes, indifference curves are linear in probabilities.

Lotteries on \mathbf{R}

A simple lottery is $p=\left(p_{1}: x_{1}, \ldots, p_{K}: x_{K}\right)$ where x_{1}, \ldots, x_{K} are prizes in \mathbf{R} and p_{1}, \ldots, p_{K} are probabilities. Let \mathcal{L} denote the set of simple lotteries. Let

$$
\begin{gathered}
u: X \rightarrow \mathbf{R} \\
\text { and } V(p)=\sum_{k} u\left(x_{k}\right) p\left(x_{k}\right) .
\end{gathered}
$$

This is the expectation of the random variable $u(x)$ when the the random variable x is described by the probability distribution p.

Lotteries on \mathbf{R}

How do we see that this is "linear" in lotteries? For $0<\alpha<1$ and lotteries $p=\left(p_{1}: x_{1}, \ldots, p_{K}: x_{K}\right)$ and $q=\left(q_{1}: y_{1}, \ldots, q_{L}: y_{L}\right)$, define

$$
z_{m}= \begin{cases}x_{m} & \text { for } m \leq K \\ y_{m-K} & \text { for } K<m \leq K+L\end{cases}
$$

and

$$
\alpha p \oplus(1-\alpha) q=\left(r_{1}: z_{1}, \ldots, r_{K+L}: z_{K+L}\right)
$$

where

$$
r_{m}= \begin{cases}\alpha p_{m} & \text { for } m \leq K \\ (1-\alpha) q_{m-K} & \text { for } K<m \leq K+L\end{cases}
$$

Lotteries on \mathbf{R}

$$
\begin{aligned}
V(\alpha p \oplus(1-\alpha) q) & =\sum_{m=1}^{M} r_{m} u\left(z_{m}\right) \\
& =\sum_{m=1}^{K} \alpha p_{m} u\left(x_{m}\right)+\sum_{m=K+1}^{K+L}(1-\alpha) q_{m-K} u\left(y_{m-K}\right) \\
& =\alpha \sum_{k=1}^{K} p_{k} u\left(x_{k}\right)+(1-\alpha) \sum_{l=1}^{L} q_{l} u\left(y_{l}\right) \\
& =\alpha V(p)+(1-\alpha) V(q) .
\end{aligned}
$$

Attitudes Towards Risk

$$
V(p)=E_{p}\{u\}=\sum_{x \in \operatorname{supp} p} u(x) p(x) \quad \mathcal{P}=\{p \in \mathcal{L}: V(p)<\infty\} .
$$

Definition: An individual is risk averse iff for all $p \in \mathcal{P}$, $E_{p}\{u\} \leq U\left(E_{p}\{x\}\right)$. He is risk-loving iff $E_{p}\{u\} \geq u\left(E_{p}\{x\}\right)$.

Theorem A: A Decision-Maker is risk averse iff u is concave, and risk-loving iff u is convex.

Definition: The certainty equivalent of a lottery p is the sure-thing amount which is indifferent to $p: C E\{p\}=u^{-1}(V(p))$.

Theorem B: A DM is risk-averse iff for all $p \in \mathcal{P}, C E\{p\} \leq E_{p}\{u\}$. Proofs are here.

Certainty Equivalents

Measuring Risk Aversion

Definition: The Arrow-Pratt coefficient of absolute risk aversion at x is $r_{A}(x)=-u^{\prime \prime}(x) / u^{\prime}(x)$. The coefficient of relative risk aversion is $r_{R}(x)=x r_{A}(x)$.

CARA utility: $u(x)=-\exp \{-\alpha x\}$.
CRRA utility: $u(x)= \begin{cases}\frac{1}{\gamma} x^{\gamma}, & \gamma \leq 1, \gamma \neq 0 \\ \log x .\end{cases}$
When utility is CARA and \mathcal{P} is the set of normal distributions,

$$
C E(F)=\mu-\frac{1}{2} \alpha \sigma^{2}
$$

Comparing Attitudes to Risk

Theorem C: The following are equivalent for two utility functions u_{1} and u_{2} when $p \in \mathcal{P}$:

1. $u_{1}=g \circ u_{2}$ for some concave g;
2. $C E_{1}(p) \leq C E_{2}(p)$ for all $p \in \mathcal{P}$;
3. $r_{A, 1}(x) \geq r_{A, 2}(x)$ for all $x \in \mathbf{R}$.

How should risk aversion vary with wealth?

$$
r_{A}(x \mid w)=-u^{\prime \prime}(x+w) / u^{\prime}(x+w)
$$

How would you expect this to behave as a function of w ?
Click for the Proof of Theorem C.

Applications

A risk-averse DM has wealth $w>1$ and may lose 1 with probability p. He can buy any amount of insurance he wants sat q per unit. His expected utility from buying d dollars of insurance is

$$
E U(d)=(1-p) u(w-q d)+p u(w-q d-(1-d))
$$

Under what conditions will he insure, and for how much of the loss?
Definition: Insurance is actuarially fair, sub-fair, or super-fair if the expected net payout per unit, $p-q$, is $=0,<0$, or >0, respectively.

Definition: Full insurance is $d=1$.

Sub-Fair Insurance

Use derivatives to locate the optimal amount of insurance.

$$
E U^{\prime}(d)=-(1-p) u^{\prime}(w-q d) q+p u^{\prime}(w-q d-(1-d))(1-q)
$$

Suppose $q>p$.
$E U^{\prime}(1)=u^{\prime}(w-q)(-(1-p) q+p(1-q))=u^{\prime}(w-q)(p-q)<0$
$E U^{\prime}(0)=-(1-p) u^{\prime}(w) q+p u^{\prime}(w-1)(1-q)$

$$
\begin{aligned}
& =p u^{\prime}(w-1)-\left((1-p) u^{\prime}(w)+p u^{\prime}(w-1)\right) q>\cdots p \\
& =p(1-p)\left(u^{\prime}(w-1)-u^{\prime}(w)\right)>0
\end{aligned}
$$

Why is $u^{\prime}(w-1)-u^{\prime}(w)>0$?

Fair Insurance

Suppose $q=p$.

$$
E U^{\prime}(1)=u^{\prime}(w-q)(p-q)=u^{\prime}(w-q)(p-p) 0
$$

Full insurance is optimal.

Optimal Portfolio Choice

A risk-averse DM has initial wealth w. There is a risky asset that pays off z for each dollar invested. z is drawn from a distribution with a probability function p. If he invests in α units of the asset, he gets

$$
U(\alpha)=E_{p} u(w+\alpha(z-1))
$$

Which is concave in α. The optimal investment α^{*} solves

$$
U^{\prime}\left(\alpha^{*}\right)=E_{p} u^{\prime}(w+\alpha(z-1))(z-1)=0 .
$$

Optimal Portfolio Choice

He will invest nothing if $E_{p}\{z\} \leq 1$.

$$
U^{\prime}(0)=E_{p} u^{\prime}(w)(z-1)=u^{\prime}(w)\left(E_{p}\{z\}-1\right) \leq 0
$$

If $E_{p}\{z\}>1$, then

$$
U^{\prime}(0)=E_{p} u^{\prime}(w)(z-1)=u^{\prime}(w)\left(E_{p}\{z\}-1\right)>0 .
$$

and so he will hold some positive amount of the asset.

Optimal Portfolio Choice

Theorem: More risk individuals hold less of the risky asset, other things being equal.

Proof: Suppose DM 1 has concave utility u_{1}, and individual 2 is more risk-averse. Then $u_{2}=g \circ u_{1}$. There is no loss of generality in assuming $g^{\prime}\left(u_{1}\right)=1$ at $u_{1}=u_{1}(w)$. For every α,

$$
U_{2}^{\prime}(\alpha)-U_{1}^{\prime}(\alpha)=E_{p}\left(g^{\prime}\left(u_{1}\right)-1\right) u_{1}^{\prime}(w+\alpha(z-1))(z-1)
$$

Now $z<1$ iff $w+\alpha(z-1)<w$ iff $u_{1}\left(w+\alpha(z-1)<u_{1}(w)\right.$ iff $g^{\prime}\left(u_{1}(w+\alpha(z-1))>g^{\prime}\left(u_{1}(w)\right.\right.$, so the expression inside the integral is always negative, and so $U_{2}^{\prime}(\alpha)<U_{1}^{\prime}(\alpha)$ for all α. In particular, when α is optimal for DM $1, U_{2}^{\prime}(\alpha)<0$, so the optimal α for DM 2 is less.

Comparative Statics

Utility over portfolios depends upon the DM's initial wealth.

$$
U(\alpha ; w)=E_{p} u(w+\alpha(z-1))
$$

The DM's preferences have decreasing absolute risk aversion if whenever $w^{\prime}>w, U\left(\cdot ; w^{\prime}\right)$ is less risk-averse then $U(\cdot ; w)$.

Theorem: If the DM has decreasing absolute risk aversion, then α^{*} increasing in w.

Risk Aversion

PROOFS

Concavity and Risk Aversion

Definition: A set $C \subset \mathbf{R}^{\mathbf{k}}$ is convex if it contains the line segment connecting any two of its members. function: If $x, y \in C$ and $0 \leq \alpha \leq 1, \alpha x+(1-\alpha) y \in C$.

Definition: A function $f: \mathbf{R}^{\mathbf{k}} \rightarrow \mathbf{R}$ is concave iff $\left\{(x, y) \in \mathbf{R}^{\mathbf{k}+\mathbf{1}}: y \leq f(x)\right\}$ is convex.
Jensen's Inequality: A function $f: \mathbf{R}^{\mathbf{k}} \rightarrow \mathbf{R}$ is concave if and only if for every N-tuple of numbers $\lambda_{1}, \ldots, \lambda_{N}$ that are non-negative numbers and sum to 1 , and corresponding x_{1}, \ldots, x_{N} are vectors in $\mathbf{R}^{\mathbf{k}}$,

$$
\sum_{n=1}^{N} \lambda_{n} f\left(x_{n}\right) \leq f\left(\sum_{n=1}^{N} \lambda_{n} x_{n}\right)
$$

Proof: The definition of concavity is Jensen's inequality for $N=2$. The result for arbitrary N follows from induction.

Concavity and Risk Aversion

Proof of Theorem A: For concave functions this is Jensen's inequality. A function f is convex iff $-f$ is concave. Suppose u is convex. From Jensen's inequality, u is convex iff

$$
\sum_{n} \lambda_{n}\left(-u\left(x_{n}\right)\right) \leq-u\left(\sum_{n} \lambda_{n} x_{n}\right)
$$

iff

$$
\sum_{n} \lambda_{n}\left(u\left(x_{n}\right)\right) \geq u\left(\sum_{n} \lambda_{n} x_{n}\right)
$$

iff the DM is risk-loving.

Concavity and Risk Aversion

Proof of Theorem B: From Theorem A, if the DM is risk-averse, then $E_{p} u(x) \leq u\left(E_{p} x\right)$. By definition, $u\left(C E_{p}\right)=E_{p} u(x) \leq u\left(E_{p} x\right)$, and since u is increasing, $C E(p) \leq E_{p} x$.

Back

Comparing Attitudes to Risk

1 iff 2: $u_{2}=g \circ u_{1}$ if and only if for all p,
$E_{p} u_{2}=E_{p} g \circ u_{1} \leq g\left(E u_{1}\right)$. Then

$$
\begin{aligned}
u_{2}\left(C E_{2}(p)\right)=E_{p} u_{2} & =E_{p} g \circ u_{1} \\
& \leq g\left(E_{p} u_{1}\right)=g \circ u_{1}\left(C E_{1}(p)\right)=u_{2}\left(C E_{1}(p)\right)
\end{aligned}
$$

Since u_{2} is increasing, $C E_{2}(p) \leq C E_{1}(p)$.
1 iff 3 : Since u_{1} and u_{2} are increasing functions, there is an increasing function g such that $u_{2}=g \circ u_{1}$. The chain rule implies that $r_{2}=r_{1}-g^{\prime \prime} / g^{\prime}$, so $g^{\prime \prime}=\left(r_{1}-r_{2}\right) g^{\prime}$. Since $g^{\prime}>0, g^{\prime \prime} \leq 0$ iff $r_{2} \geq r_{1}$.

Back

