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1 Introduction

X Finite set of prizes.

S, H Set of states, set of horse race events H ⊂ S. If H ∈ H, so is Hc. If
H and J are in H, so is H ∪ J . S (and therefore ∅) is in H.

A Set of acts. An act is a map from states to prizes. That is, a : S → X .
Furthermore, prizes depend on which horse-race event occurs. That is,
for all x ∈ X , a−1(x) ∈ H. This requirement is called H-measurability.
Acts are simple.

R Set of roulette events. R contains all sub-intervals of [0, 1), and the proba-
bility P (r) of a sub-interval R ∈ R is given by the uniform distribution.

L Set of all roulette lotteries. A roulette lottery is a map from r : [0, 1) to X

which is R-measurable. That is, r−1(x) ∈ R for all x ∈ X . Lotteries
are simple.

G The set of all gambles. G = A ∪ L.

Notice how this version of Anscombe-Aumann differs from that in
Kreps. For Kreps (and in the original paper) a horse race is an H-measurable
function on S which maps states into lotteries rather than prizes.
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A convenient way to write acts and lotteries is to list the prizes and
the sets on which they are received. An act can be represented as a tuple
x1H1 · · ·xnHnxn+1 where the Hi ∈ H are disjoint. The act pays off x1 on H1,
etc., and xn+1 on Nn+1 =

(

∪n

i=1Hi

)

c

. Similarly, a lottery can be represented
as a tuple x1R1 · · ·xnRnxn+1 where the Ri ∈ R are disjoint elements of R.
A gamble G ∈ G is a tuple x1E1 · · ·xnEnxn+1 where the Ei are either all
roulette events or all horse race events.

The constant acts can be identified with prizes. The

The decision maker has preferences on G. The preference order satis-
fies the following properties.

Axiom 1 (Weak order). � on G is complete and transitive.

Axiom 2 (Domain). There are prizes x∗ and y∗ such that x∗ ≻ y∗ and such

that for all H ∈ H, the act x∗Hy∗ is in A.

Axiom 3 (Monotonicity). x∗ � x∗Hy∗ ≻ y∗

Axiom 4 (Independence for lotteries). For lotteries L, L′, Q ∈ L, if L ≻ L′

and 0 < λ ≤ 1, λL+ (1− λ)Q ≻ λL′ + (1− λ)Q.

Axiom 5 (Archimedean for lotteries). For lotteries L, L′, L′′ ∈ L, if L ≻

L′ ≻ L′′ there are 0 < λ, µ < 1 such that λL+(1−λ)L′′ ≻ L′ ≻ µL+(1−µ)L′′.

Axiom 6 (Additivity). For all disjoint horse events H,H ′ there are disjoint

roulette events R,R′ such that x∗Hy∗ ∼ x∗Ry∗, x∗H ′y∗ ∼ x∗R′y∗ and x∗H ∪

H ′y∗ ∼ x∗R ∪ R′y∗.

Axiom 7 (Probabilistic Beliefs). If x∗Hiy
∗ ∼ x∗Riy

∗ for all i, then for all

prizes x1, . . . , xn and y, x1H1 · · ·xnHnxn+1 ∼ x1R1 · · ·xnRnxn+1.

The representation theorem is:

Theorem 1. Under the domain Axiom 2, the following two statements are

equivalent:

1. There is a probability distribution Q on H and a utility function

U : X → R such that

V (x1E1 · · ·xnEnxn+1) =

{

∑

n+1

i=1
P (Ei)U(xi) for a roulette lottery,

∑

n+1

i=1
Q(Ei)U(xi) for a horse lottery.

represents � on G.
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2. � on G satisfies Axioms 1, 3, 4, 5, 6 and 7.

Proof. That 1 implies 2 is obvious. I will show that the first claim is implied
by the second. Axioms 1, 4 and 5 imply that � restricted to L has an
expected utility representation with von-Neumann utility U : X → R. The
Domain Axiom 2 implies that U is not constant, and, in particular, that
U(x∗) > U(y∗).

Define Q(H) = P (R) for any R such that x∗Hy∗ ∼ x∗Ry∗. The
existence of such an R is guaranteed by the additivity Axiom 6. If P (R′) >
P (R), then from the EU representation for � on L we see that x∗R′y∗ ≻

x∗Ry∗. Similarly for P (R′) < P (R). Thus Q(H) is well-defined. Additivity
also implies that Q is additive. Suppose that H and H ′ are disjoint, and R

and R′ are such that the additivity axiom is satisfied. Then x∗H ∪ H ′y∗ ∼

x∗R ∪R′y∗, and so

Q(H ∪H ′) = P (R ∪ R′) = P (R) + P (R′) = Q(H) +Q(H ′)
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