An Anscombe-Aumann Model

April 24, 2014

1 Introduction

X Finite set of prizes.
S, \mathcal{H} Set of states, set of horse race events $H \subset S$. If $H \in \mathcal{H}$, so is H^{c}. If H and J are in \mathcal{H}, so is $H \cup J . S$ (and therefore \emptyset) is in \mathcal{H}.
\mathcal{A} Set of acts. An act is a map from states to prizes. That is, $a: S \rightarrow X$. Furthermore, prizes depend on which horse-race event occurs. That is, for all $x \in X, a^{-1}(x) \in \mathcal{H}$. This requirement is called \mathcal{H}-measurability. Acts are simple.
\mathcal{R} Set of roulette events. \mathcal{R} contains all sub-intervals of $[0,1$, and the probability $P(r)$ of a sub-interval $R \in \mathcal{R}$ is given by the uniform distribution.
\mathcal{L} Set of all roulette lotteries. A roulette lottery is a map from $r:[0,1)$ to X which is \mathcal{R}-measurable. That is, $r^{-1}(x) \in \mathbf{R}$ for all $x \in X$. Lotteries are simple.
\mathcal{G} The set of all gambles. $\mathcal{G}=\mathcal{A} \cup \mathcal{L}$.

Notice how this version of Anscombe-Aumann differs from that in Kreps. For Kreps (and in the original paper) a horse race is an \mathcal{H}-measurable function on S which maps states into lotteries rather than prizes.

A convenient way to write acts and lotteries is to list the prizes and the sets on which they are received. An act can be represented as a tuple $x_{1} H_{1} \cdots x_{n} H_{n} x_{n+1}$ where the $H_{i} \in \mathcal{H}$ are disjoint. The act pays off x_{1} on H_{1}, etc., and x_{n+1} on $N_{n+1}=\left(\cup_{i=1}^{n} H_{i}\right)^{c}$. Similarly, a lottery can be represented as a tuple $x_{1} R_{1} \cdots x_{n} R_{n} x_{n+1}$ where the $R_{i} \in \mathcal{R}$ are disjoint elements of \mathcal{R}. A gamble $G \in \mathcal{G}$ is a tuple $x_{1} E_{1} \cdots x_{n} E_{n} x_{n+1}$ where the E_{i} are either all roulette events or all horse race events.

The constant acts can be identified with prizes. The
The decision maker has preferences on \mathcal{G}. The preference order satisfies the following properties.
Axiom 1 (Weak order). \succeq on \mathcal{G} is complete and transitive.
Axiom 2 (Domain). There are prizes x^{*} and y^{*} such that $x^{*} \succ y^{*}$ and such that for all $H \in \mathcal{H}$, the act $x^{*} H y^{*}$ is in \mathcal{A}.
Axiom 3 (Monotonicity). $x^{*} \succeq x^{*} H y^{*} \succ y^{*}$
Axiom 4 (Independence for lotteries). For lotteries $L, L^{\prime}, Q \in \mathcal{L}$, if $L \succ L^{\prime}$ and $0<\lambda \leq 1, \lambda L+(1-\lambda) Q \succ \lambda L^{\prime}+(1-\lambda) Q$.
Axiom 5 (Archimedean for lotteries). For lotteries $L, L^{\prime}, L^{\prime \prime} \in \mathcal{L}$, if $L \succ$ $L^{\prime} \succ L^{\prime \prime}$ there are $0<\lambda, \mu<1$ such that $\lambda L+(1-\lambda) L^{\prime \prime} \succ L^{\prime} \succ \mu L+(1-\mu) L^{\prime \prime}$.

Axiom 6 (Additivity). For all disjoint horse events H, H^{\prime} there are disjoint roulette events R, R^{\prime} such that $x^{*} H y^{*} \sim x^{*} R y^{*}, x^{*} H^{\prime} y^{*} \sim x^{*} R^{\prime} y^{*}$ and $x^{*} H \cup$ $H^{\prime} y^{*} \sim x^{*} R \cup R^{\prime} y^{*}$.
Axiom 7 (Probabilistic Beliefs). If $x^{*} H_{i} y^{*} \sim x^{*} R_{i} y^{*}$ for all i, then for all prizes x_{1}, \ldots, x_{n} and $y, x_{1} H_{1} \cdots x_{n} H_{n} x_{n+1} \sim x_{1} R_{1} \cdots x_{n} R_{n} x_{n+1}$.

The representation theorem is:
Theorem 1. Under the domain Axiom 2, the following two statements are equivalent:

1. There is a probability distribution Q on \mathcal{H} and a utility function $U: X \rightarrow \mathbf{R}$ such that

$$
\begin{aligned}
& V\left(x_{1} E_{1} \cdots x_{n} E_{n} x_{n+1}\right)= \begin{cases}\sum_{i=1}^{n+1} P\left(E_{i}\right) U\left(x_{i}\right) & \text { for a roulette lottery, } \\
\sum_{i=1}^{n+1} Q\left(E_{i}\right) U\left(x_{i}\right) & \text { for a horse lottery. }\end{cases} \\
& \text { represents } \succeq \text { on } \mathcal{G} \text {. }
\end{aligned}
$$

2. \succeq on \mathcal{G} satisfies Axioms 1, 3, 4, 5, 6 and 7 .

Proof. That 1 implies 2 is obvious. I will show that the first claim is implied by the second. Axioms 1, 4 and 5 imply that \succeq restricted to \mathcal{L} has an expected utility representation with von-Neumann utility $U: X \rightarrow \mathbf{R}$. The Domain Axiom 2 implies that U is not constant, and, in particular, that $U\left(x^{*}\right)>U\left(y^{*}\right)$.

Define $Q(H)=P(R)$ for any R such that $x^{*} H y^{*} \sim x^{*} R y^{*}$. The existence of such an R is guaranteed by the additivity Axiom 6. If $P\left(R^{\prime}\right)>$ $P(R)$, then from the EU representation for \succeq on \mathcal{L} we see that $x^{*} R^{\prime} y^{*} \succ$ $x^{*} R y^{*}$. Similarly for $P\left(R^{\prime}\right)<P(R)$. Thus $Q(H)$ is well-defined. Additivity also implies that Q is additive. Suppose that H and H^{\prime} are disjoint, and R and R^{\prime} are such that the additivity axiom is satisfied. Then $x^{*} H \cup H^{\prime} y^{*} \sim$ $x^{*} R \cup R^{\prime} y^{*}$, and so

$$
Q\left(H \cup H^{\prime}\right)=P\left(R \cup R^{\prime}\right)=P(R)+P\left(R^{\prime}\right)=Q(H)+Q\left(H^{\prime}\right)
$$

