Representations of Uncertainty

Goal: to find (and characterize) reasonable decision rule that deal with the Ellsberg paradox.
We've already seen one: a set \mathcal{P} of probabilities. Recall that

$$
E_{\mathcal{P}}\left(u_{a}\right)=\inf _{\operatorname{Pr} \in \mathcal{P}}\left\{E_{\operatorname{Pr}}\left(u_{a}\right): \operatorname{Pr} \in \mathcal{P}\right\} .
$$

Thus, we get the rule MMEU (Maxmin Expected Utility):

$$
a_{1} \leq a_{2} \text { if } E_{\mathcal{P}}\left(u_{a_{1}}\right) \leq E_{\mathcal{P}}\left(u_{a_{2}}\right) .
$$

MMEU generalizes maximin (if \mathcal{P} consists of all probability measures) and expected utility (if \mathcal{P} consists of just one probability measure).

Characterizing EU

Recall the Anscombe-Aumann framework:

- the objects of choice are horse lotteries.
- functions from state space S (assume finite) to simple probability distributions (i.e. distributions with finite support) over Z (prizes)

Here were the axioms that characterized expected utility maximization:

A1. \succ is a preference relation on H (horse lotteries)
A2. (Continuity:) If $f \succ g \succ h$, then there exist $\alpha, \beta \in$ $(0,1)$ such that $\alpha f+(1-\alpha) h \succ g \succ \beta f+(1-\beta) h$.

A3. (Independence:) If $f \succ g$, then for all h and $\alpha \in$ $(0,1], \alpha f+(1-\alpha) h \succ \alpha g+(1-\alpha) h$.

If $X \subseteq S$, let $f_{X} g$ be the act that agrees with f on X and with g on X^{c} (the complement of X).

A4. (Monotonicity:) If p and q are probabilities on prizes and s and s^{\prime} are non-null states, then $p_{\{s\}} f \succ q_{\{s\}} f$ iff $p_{\left\{s^{\prime}\right\}} f \succ q_{\left\{s^{\prime}\right\}} f$.
A5. (Nondegeneracy:) There exist f and g such that $f \succ$ g.

Key result:
Theorem: (Anscombe-Aumann) If A1-A5 hold, then there exist a utility u on prizes and a probability Pr on states such that \succ can be represented by expected utility.

- Can associate with each horse lottery h a random variable u_{h} :
- $u_{h}(s)$ is the expected utility of the lottery $h(s)$ on prizes (i.e., $\left.u_{h}(s)=\Sigma_{z \in Z} h(s)(z) u(z)\right)$
- $f \succ g$ iff $E_{\operatorname{Pr}}\left(u_{f}\right)>E_{\operatorname{Pr}}\left(u_{g}\right)$.

Moreover, Pr is unique and u is unique up to affine transformations.

Claim: A1 and A2 hold for MMEU, but A3 and A4 fail (see homework).

A3. (Independence:) If $f \succ g$, then for all h and $\alpha \in$ $(0,1], \alpha f+(1-\alpha) h \succ \alpha g+(1-\alpha) h$.

Example: Suppose that

- $S=\left\{s_{1}, s_{2}\right\}$
- $\mathcal{P}=\left\{\operatorname{Pr}_{1}, \operatorname{Pr}_{2}\right\} ; \operatorname{Pr}_{1}\left(s_{1}\right)=1 / 3, \operatorname{Pr}_{2}\left(s_{1}\right)=2 / 3$
- $f=(4.2,4.2)\left(\right.$ i.e. $\left.f\left(s_{1}\right)=4.2 ; f\left(s_{2}\right)=4.2\right)$, $g=(6,3), h=(3,6)$.
- $\underline{E}(f)=4.2$ and $E(g)=4$, so $f \succ g$.
- $f / 2+h / 2=(3.6,5.1) ; g / 2+h / 2=(4.5,4.5)$
- $\underline{E}(f / 2+h / 2)=4.1$ and $\underline{E}(g / 2+h / 2)=4.5$, so $g / 2+h / 2 \succ f / 2+h / 2$.

Characterizing MMEU

[Gilboa and Schmeidler:] Independence doesn't hold; we replace it by:

A3'. (Certainty-Independence:) If $f \succ g, h$ is a constant function, and $\alpha \in(0,1]$, then $\alpha f+(1-\alpha) h \succ \alpha g+$ $(1-\alpha) h$.

- A3 just says "if . . . then"; "iff" follows from other axioms.

Instead of A4, GS use:
A4'. (Monotonicity:) If $f(s) \succeq g(s)$ for all $s \in S$, then $f \succeq g($ where $f \succeq g$ if $\operatorname{not}(g \succ f))$.

- This doesn't quite mean that f beats g at every state. Think of $f(s)$ as the constant horse lottery that returns $f(s)$ at every state. It means the constant $f(s)$ beats the constant $g(s)$.

One more property is needed:
A6. (Uncertainty Aversion:) If $\alpha \in(0,1)$ and $f \approx g$, then $\alpha f+(1-\alpha) g \succeq f$.

- For EU, A6 holds with \approx (follows from A1-A3).
- Can have $\alpha f+(1-\alpha g) \succ f$ with MMEU
- Consider previous example: $g=(6,3), h=(3,6)$. Then $g \approx h$, but $g / 2+h / 2 \succ g$
- A6 models hedging.

Theorem: (Gilboa-Schmeidler) If A1, A2, $\mathrm{A} 3^{\prime}, \mathrm{A} 4^{\prime}$, A 5 , and A6 hold, then there exist a utility u on prizes and a closed convex set \mathcal{P} of probability measures on states such that \succ can be represented by MMEU.

- $f \succ g$ iff $\underline{E}_{\mathcal{P}}\left(u_{f}\right)>\underline{E}_{\mathcal{P}}\left(u_{g}\right)$

Moreover, \mathcal{P} is unique and u is unique up to affine transformations.

- All you really need are the extreme points in \mathcal{P}; requiring that \mathcal{P} be closed and convex makes it unique.

Other Representations of Uncertainty

Why is probability the "right" way to represent uncertainty?

- It's not so good at representing ignorance.
- or extremely unlikely events.

Many alternatives considered in the literature:

- sets of probabilities
- non-additive probabilities
- belief functions
- lexicographic probabilities
- possibility measures
- ranking functions
- plausibility measures
- . .

Some of these approaches are closely related. We'll focus on sets of probabilities, non-additive probabilities, and belief functions.

- If want more, take CS 6766!

Non-additive probabilities

A non-additive probability [Choquet, Schmeidler] ν on S is a function mapping subsets of S to $[0,1]$ such that

N1. $\nu(\emptyset)=0$
N2. $\nu(S)=1$
N3. If $E \subseteq F$, then $\nu(E) \leq \nu(F)$.
These constraints are pretty minimal. For example, suppose $S=\left\{s_{1}, s_{2}\right\}$ and

- $\nu_{\alpha}(\emptyset)=0$
- $\nu_{\alpha}\left(s_{1}\right)=\nu_{\alpha}\left(s_{2}\right)=\alpha$
- $\nu(S)=1$.

Then ν_{α} is a nonadditive probability for each $\alpha \in[0,1]$.
We may want more constraints ...

Expectation with respect to a nonadditive probability

Suppose that f is a random variable with finite range.

- Suppose that the values of f are $x_{1}<\ldots<x_{n}$.

Then the expectation of f with respect to ν is defined as follows [Choquet]:
$E_{\nu}(f)=x_{1}+\left(x_{2}-x_{1}\right) \nu\left(f>x_{1}\right)+\cdots+\left(x_{n}-x_{n-1}\right) \nu\left(f>x_{n-1}\right)$.
Why is this the right definition of expectation?

- Some good news: it coincides with the standard definition if ν is a probability measure.

But why not use the more obvious generalization of probabilistic expectation?

$$
E_{\nu}^{\prime}(f)=\sum_{s \in S} \nu(s) f(s)
$$

Stay tuned ...

Nonadditive Expected Utility

Nonadditive expected utility rule:

- Given a utility function u on prizes and a nonadditive probability ν on states, then

$$
f \succ g \text { iff } E_{\nu}\left(u_{f}\right)>E_{\nu}\left(u_{g}\right)
$$

Comonotonic Independence

Acts f and g are comonotonic if there do not exist states s and t such that

$$
f(s) \succ f(t) \text { and } g(t) \succ g(s)
$$

- f and g are comonotonic if you can't be happier to be in state s than state t when doing f and be happier to be in state t than state s when doing g.
- If h is a constant act, then f and h are comonotonic for all acts f (since we never have $h(s) \succ h(t)$).

A3'. (Comonotonic Independence:) If f and h and g and h are both comonotonic and $f \succ g$, then for all $\alpha \in$ $(0,1], \alpha f+(1-\alpha) h \succ \alpha g+(1-\alpha) h$.

Idea: comonotonic independence tries to avoid the kind of application of independence that gives Ellsberg's paradox.

- Note: $A 3^{\prime \prime}$ is stronger than $A 3^{\prime}$.

Representation Theorem

Theorem: (Schmeidler) If A1, A2, A3" ${ }^{\prime \prime}$, 4^{\prime}, and A 5 hold, then there exist a utility u on prizes and a nonadditive probability ν on states such that \succ can be represented by NEU.

- $f \succ g$ iff $E_{\nu}\left(u_{f}\right)>E_{\nu}\left(u_{g}\right)$

Moreover, ν is unique and u is unique up to affine transformations.

- Moving from additive probability to nonadditive probability results in weakening independence to comonotonic independence.

Nonadditive Probability and Sets of Probabilities

Where might a nonadditive probability come from? One case:

- Given a set \mathcal{P} of probabilities, define \mathcal{P}_{*} to be the lower probability of \mathcal{P} and \mathcal{P}^{*} to be the upper probability:

$$
\begin{gathered}
\mathcal{P}_{*}(X)=\inf _{\operatorname{Pr} \in \mathcal{P}} \operatorname{Pr}(X) \\
\mathcal{P}^{*}(X)=\sup _{\operatorname{Pr} \in \mathcal{P}} \operatorname{Pr}(X) .
\end{gathered}
$$

- \mathcal{P}_{*} and \mathcal{P}^{*} are both nonadditive probabilities; moreover

$$
\mathcal{P}^{*}(A)=1-\mathcal{P}_{*}\left(A^{c}\right)
$$

Is every nonadditive probability $\mathcal{P}_{*}\left(\right.$ or $\left.\mathcal{P}^{*}\right)$ for some set \mathcal{P} of probabilities?

- Simple counterexample: Let $S=\left\{s_{1}, s_{2}\right\}$. If $\nu_{1}\left(s_{1}\right)=2 / 3, \nu_{1}\left(s_{2}\right)=2 / 3$, then $\nu_{1} \neq \mathcal{P}_{*}$. If $\nu_{2}\left(s_{1}\right)=1 / 3, \nu_{2}\left(s_{2}\right)=1 / 3$, then $\nu_{2} \neq \mathcal{P}^{*}$.

Some properties of \mathcal{P}_{*} and \mathcal{P}^{*} :

$$
\begin{gathered}
\mathcal{P}^{*}(A)+\mathcal{P}^{*}(B) \geq \mathcal{P}^{*}(A \cup B) \text { if } A \cap B=\emptyset \\
\mathcal{P}_{*}(A)+\mathcal{P}_{*}(B) \leq \mathcal{P}_{*}(A \cup B) \text { if } A \cap B=\emptyset \\
\mathcal{P}_{*}(A)+\mathcal{P}_{*}(B) \leq \mathcal{P}_{*}(A \cap B)+\mathcal{P}^{*}(A \cup B) \\
\leq \mathcal{P}^{*}(A)+\mathcal{P}^{*}(B)
\end{gathered}
$$

(There are other properties too.)

Motivating the funny notion of expectation

Suppose that

- $S=\left\{s_{1}, s_{2}\right\}$
- $\mathcal{P}=\left\{\operatorname{Pr}_{1}, \operatorname{Pr}_{2}\right\}$,
- $\operatorname{Pr}_{1}\left(s_{1}\right)=1, \operatorname{Pr}_{2}\left(s_{2}\right)=1$.

Thus,"

- $\mathcal{P}_{*}\left(s_{1}\right)=\mathcal{P}_{*}\left(s_{2}\right)=0, \mathcal{P}^{*}\left(s_{1}\right)=\mathcal{P}^{*}\left(s_{2}\right)=1$.

Let f be the constant function 2 .

- Using the "obvious" definition of expectation,

$$
\begin{aligned}
& \circ E_{\mathcal{P}_{*}}^{\prime}(f)=2 \operatorname{Pr}_{*}\left(s_{1}\right)+2 \operatorname{Pr}_{*}\left(s_{2}\right)=0 . \\
& \circ E_{\mathcal{P}^{*}}^{\prime}(f)=2 \operatorname{Pr}^{*}\left(s_{1}\right)+2 \operatorname{Pr}^{*}\left(s_{2}\right)=4 .
\end{aligned}
$$

- The good news: $E_{\mathcal{P}_{*}}(f)=E_{\mathcal{P}^{*}}(f)=2$.
E^{\prime} given "wrong" answer; E gives the right answer.
- The expected value of the constant function 2 should be 2 !

