
Representations of Uncertainty

Goal: to find (and characterize) reasonable decision rule
that deal with the Ellsberg paradox.
We’ve already seen one: a set P of probabilities. Recall
that

EP(ua) = inf
Pr∈P
{EPr(ua) : Pr ∈ P}.

Thus, we get the rule MMEU (Maxmin Expected Utility):

a1 ≤ a2 if EP(ua1) ≤ EP(ua2).

MMEU generalizes maximin (if P consists of all proba-
bility measures) and expected utility (if P consists of just
one probability measure).
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Characterizing EU

Recall the Anscombe-Aumann framework:

• the objects of choice are horse lotteries.

◦ functions from state space S (assume finite) to
simple probability distributions (i.e. distributions
with finite support) over Z (prizes)

Here were the axioms that characterized expected utility
maximization:

A1. � is a preference relation on H (horse lotteries)

A2. (Continuity:) If f � g � h, then there exist α, β ∈
(0, 1) such that αf + (1−α)h � g � βf + (1− β)h.

A3. (Independence:) If f � g, then for all h and α ∈
(0, 1], αf + (1− α)h � αg + (1− α)h.

If X ⊆ S, let fXg be the act that agrees with f on X
and with g on Xc (the complement of X).
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A4. (Monotonicity:) If p and q are probabilities on prizes
and s and s′ are non-null states, then p{s}f � q{s}f
iff p{s′}f � q{s′}f .

A5. (Nondegeneracy:) There exist f and g such that f �
g.

Key result:

Theorem: (Anscombe-Aumann) If A1–A5 hold, then
there exist a utility u on prizes and a probability Pr on
states such that � can be represented by expected utility.

• Can associate with each horse lottery h a random vari-
able uh:

◦ uh(s) is the expected utility of the lottery h(s) on
prizes (i.e., uh(s) = ∑

z∈Z h(s)(z)u(z))

• f � g iff EPr(uf) > EPr(ug).

Moreover, Pr is unique and u is unique up to affine trans-
formations.
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Claim: A1 and A2 hold for MMEU, but A3 and A4 fail
(see homework).

A3. (Independence:) If f � g, then for all h and α ∈
(0, 1], αf + (1− α)h � αg + (1− α)h.

Example: Suppose that

• S = {s1, s2}
• P = {Pr1,Pr2}; Pr1(s1) = 1/3, Pr2(s1) = 2/3

• f = (4.2, 4.2) (i.e. f (s1) = 4.2; f (s2) = 4.2),
g = (6, 3), h = (3, 6).

• E(f ) = 4.2 and E(g) = 4, so f � g.

• f/2 + h/2 = (3.6, 5.1); g/2 + h/2 = (4.5, 4.5)

• E(f/2 + h/2) = 4.1 and E(g/2 + h/2) = 4.5, so
g/2 + h/2 � f/2 + h/2.
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Characterizing MMEU

[Gilboa and Schmeidler:] Independence doesn’t hold; we
replace it by:

A3′. (Certainty-Independence:) If f � g, h is a constant
function, and α ∈ (0, 1], then αf + (1− α)h � αg +
(1− α)h.

• A3 just says “if . . . then”; “iff” follows from other ax-
ioms.

Instead of A4, GS use:

A4′. (Monotonicity:) If f (s) � g(s) for all s ∈ S, then
f � g (where f � g if not(g � f )).

• This doesn’t quite mean that f beats g at every state.
Think of f (s) as the constant horse lottery that re-
turns f (s) at every state. It means the constant f (s)
beats the constant g(s).
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One more property is needed:

A6. (Uncertainty Aversion:) If α ∈ (0, 1) and f ≈ g, then
αf + (1− α)g � f .

• For EU, A6 holds with ≈ (follows from A1–A3).

• Can have αf + (1− αg) � f with MMEU

◦ Consider previous example: g = (6, 3), h = (3, 6).
Then g ≈ h, but g/2 + h/2 � g

• A6 models hedging.

Theorem: (Gilboa-Schmeidler) If A1, A2, A3′, A4′, A5,
and A6 hold, then there exist a utility u on prizes and
a closed convex set P of probability measures on states
such that � can be represented by MMEU.

• f � g iff EP(uf) > EP(ug)

Moreover, P is unique and u is unique up to affine trans-
formations.

• All you really need are the extreme points in P ; re-
quiring that P be closed and convex makes it unique.
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Other Representations of Uncertainty

Why is probability the “right” way to represent uncer-
tainty?

• It’s not so good at representing ignorance.

• or extremely unlikely events.

Many alternatives considered in the literature:

• sets of probabilities

• non-additive probabilities

• belief functions

• lexicographic probabilities

• possibility measures

• ranking functions

• plausibility measures

• . . .
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Some of these approaches are closely related. We’ll focus
on sets of probabilities, non-additive probabilities, and
belief functions.

• If want more, take CS 6766!
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Non-additive probabilities

A non-additive probability [Choquet, Schmeidler] ν on
S is a function mapping subsets of S to [0, 1] such that

N1. ν(∅) = 0

N2. ν(S) = 1

N3. If E ⊆ F , then ν(E) ≤ ν(F ).

These constraints are pretty minimal. For example, sup-
pose S = {s1, s2} and

• να(∅) = 0

• να(s1) = να(s2) = α

• ν(S) = 1.

Then να is a nonadditive probability for each α ∈ [0, 1].

We may want more constraints . . .
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Expectation with respect to a
nonadditive probability

Suppose that f is a random variable with finite range.

• Suppose that the values of f are x1 < . . . < xn.

Then the expectation of f with respect to ν is defined as
follows [Choquet]:

Eν(f ) = x1+(x2−x1)ν(f > x1)+· · ·+(xn−xn−1)ν(f > xn−1).

Why is this the right definition of expectation?

• Some good news: it coincides with the standard defi-
nition if ν is a probability measure.

But why not use the more obvious generalization of prob-
abilistic expectation?

E ′ν(f ) =
∑
s∈S

ν(s)f (s)

Stay tuned . . .
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Nonadditive Expected Utility

Nonadditive expected utility rule:

• Given a utility function u on prizes and a nonadditive
probability ν on states, then

f � g iff Eν(uf) > Eν(ug)
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Comonotonic Independence

Acts f and g are comonotonic if there do not exist states
s and t such that

f (s) � f (t) and g(t) � g(s)

• f and g are comonotonic if you can’t be happier to be
in state s than state t when doing f and be happier
to be in state t than state s when doing g.

• If h is a constant act, then f and h are comonotonic
for all acts f (since we never have h(s) � h(t)).

A3′′. (Comonotonic Independence:) If f and h and g and
h are both comonotonic and f � g, then for all α ∈
(0, 1], αf + (1− α)h � αg + (1− α)h.

Idea: comonotonic independence tries to avoid the kind of
application of independence that gives Ellsberg’s paradox.

• Note: A3′′ is stronger than A3′.

12



Representation Theorem

Theorem: (Schmeidler) If A1, A2, A3′′, A4′, and A5
hold, then there exist a utility u on prizes and a nonad-
ditive probability ν on states such that � can be repre-
sented by NEU.

• f � g iff Eν(uf) > Eν(ug)

Moreover, ν is unique and u is unique up to affine trans-
formations.

• Moving from additive probability to nonadditive prob-
ability results in weakening independence to comono-
tonic independence.
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Nonadditive Probability and Sets of
Probabilities

Where might a nonadditive probability come from? One
case:

• Given a set P of probabilities, define P∗ to be the
lower probability of P and P∗ to be the upper prob-
ability:

P∗(X) = infPr∈P Pr(X)
P∗(X) = supPr∈P Pr(X).

• P∗ and P∗ are both nonadditive probabilities; more-
over

P∗(A) = 1− P∗(Ac)

Is every nonadditive probability P∗ (or P∗) for some set
P of probabilities?

• Simple counterexample: Let S = {s1, s2}.
If ν1(s1) = 2/3, ν1(s2) = 2/3, then ν1 6= P∗.
If ν2(s1) = 1/3, ν2(s2) = 1/3, then ν2 6= P∗.
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Some properties of P∗ and P∗:
P∗(A) + P∗(B) ≥ P∗(A ∪B) if A ∩B = ∅
P∗(A) + P∗(B) ≤ P∗(A ∪B) if A ∩B = ∅
P∗(A) + P∗(B) ≤ P∗(A ∩B) + P∗(A ∪B)

≤ P∗(A) + P∗(B)

(There are other properties too.)
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Motivating the funny notion of
expectation

Suppose that

• S = {s1, s2}
• P = {Pr1,Pr2},
• Pr1(s1) = 1, Pr2(s2) = 1.

Thus,“

• P∗(s1) = P∗(s2) = 0, P∗(s1) = P∗(s2) = 1.

Let f be the constant function 2.

• Using the “obvious” definition of expectation,

◦ E ′P∗(f ) = 2 Pr∗(s1) + 2 Pr∗(s2) = 0.

◦ E ′P∗(f ) = 2 Pr∗(s1) + 2 Pr∗(s2) = 4.

• The good news: EP∗(f ) = EP∗(f ) = 2.

E ′ given “wrong” answer; E gives the right answer.

• The expected value of the constant function 2 should
be 2!
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