Representations of Uncertainty

Goal: to find (and characterize) reasonable decision rule
that deal with the Ellsberg paradox.
We've already seen one: a set P of probabilities. Recall
that

Ep(ua) = PiIQ%{EPr(ua) . Pr e 7)}

Thus, we get the rule MMEU (Maxmin Expected Utility):

a1 S ao if Ep<ua1) S Ep<ua2)-

MMEU generalizes maximin (if P consists of all proba-
bility measures) and expected utility (if P consists of just
one probability measure).



Characterizing EU

Recall the Anscombe-Aumann framework:
e the objects of choice are horse lotteries.

o functions from state space S (assume finite) to
simple probability distributions (i.e. distributions
with finite support) over Z (prizes)

Here were the axioms that characterized expected utility
maximization:

Al. > is a preference relation on H (horse lotteries)

A2. (Continuity:) If f = g > h, then there exist a, 8 €
(0,1) such that af + (1 —a)h = g = Bf + (1 — 5)h.

A3. (Independence:) If f > g, then for all h and o €
(0,1], af + (1 — a)h = ag + (1 — a)h.

If X C S5, let fxg be the act that agrees with f on X
and with g on X¢ (the complement of X).



A4. (Monotonicity:) If p and g are probabilities on prizes
and s and s’ are non-null states, then pgoy f > qqo1f

it peoyf = quan S

A5. (Nondegeneracy:) There exist f and g such that f >
qg.

Key result:

Theorem: (Anscombe-Aumann) If A1-A5 hold, then
there exist a utility u on prizes and a probability Pr on
states such that > can be represented by expected utility.

e Can associate with each horse lottery h a random vari-
able uy,:

o uy(s) is the expected utility of the lottery h(s) on
prizes (i.e., up(s) = T.ez h(s)(2)u(z))
o > giff Ep,(us)> Ep(uy).

Moreover, Pr is unique and u is unique up to affine trans-
formations.



Claim: Al and A2 hold for MMEU, but A3 and A4 fail
(see homework).

A3. (Independence:) If f = g, then for all A and a €
(0,1], af + (1 — a)h = ag + (1 — a)h.

Example: Suppose that
oS = {81, 82}
o P = {Pl‘l, Pl"g}; Pr1(81> — 1/3, PI‘2<81> = 2/3

o [ =(42,4.2) (ie. f(s1) =4.2; f(sy) = 4.2),
g=1(6,3), h=(3,6).

o £(f)=4.2and E(g) =4,50 f > g.
o /24 h/2=(3.6,5.1); g/2+ h/2 = (4.5,4.5)

o E(f/2+ h/2) = 4.1 and E(g/2 + h/2) = 4.5, so
g/2+h/2 = f/2+ h/2.



Characterizing MMEU

|Gilboa and Schmeidler:] Independence doesn’t hold; we
replace it by:

A3'. (Certainty-Independence:) If f = g, h is a constant
function, and o € (0, 1], then af + (1 — a)h = ag+
(1 —a)h.

e A3 just says “if ...then”; “ift” follows from other ax-
101MS.

Instead of A4, GS use:

A4'. (Monotonicity:) If f(s) = g(s) for all s € S, then
f = g (where f = g if not(g = f)).

e This doesn’t quite mean that f beats g at every state.
Think of f(s) as the constant horse lottery that re-
turns f(s) at every state. It means the constant f(s)
beats the constant g(s).



One more property is needed:

AG6. (Uncertainty Aversion:) If o € (0,1) and f =~ g, then
af+(1—a)g= [

e For EU, A6 holds with = (follows from A1-A3).
e Can have af + (1 — ag) > f with MMEU

o Consider previous example: g = (6,3), h = (3,6).
Then g =~ h, but g/24+ h/2 > g

e A6 models hedging.

Theorem: (Gilboa-Schmeidler) If A1, A2, A3’ A4’ A5,
and A6 hold, then there exist a utility « on prizes and
a closed convex set P of probability measures on states
such that > can be represented by MMEU.

o f = ygiff Ep(uy) > Ep(u,)

Moreover, P is unique and u is unique up to affine trans-
formations.

e All you really need are the extreme points in P; re-
quiring that P be closed and convex makes it unique.
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Other Representations of Uncertainty

Why is probability the “right” way to represent uncer-
tainty”?

e [t’s not so good at representing ignorance.
e or extremely unlikely events.
Many alternatives considered in the literature:
e sets of probabilities
e non-additive probabilities
e belief functions
e lexicographic probabilities
e possibility measures
e ranking functions

e plausibility measures



Some of these approaches are closely related. We'll focus
on sets of probabilities, non-additive probabilities, and
belief functions.

e If want more, take CS 6766!



Non-additive probabilities

A non-additive probability [Choquet, Schmeidler] v on
S is a function mapping subsets of S to [0, 1] such that

N1.v(@) =0
N2. v(S) =1
N3.If E C F, then v(F) < v(F).

These constraints are pretty minimal. For example, sup-
pose S = {s1, s2} and

o v, (0) =0
o U,(51) = vu(s2) =
o (5)=1

Then v, is a nonadditive probability for each a € [0, 1].

We may want more constraints . . .



Expectation with respect to a
nonadditive probability

Suppose that f is a random variable with finite range.
e Suppose that the values of f are x1 < ... < x,,.

Then the expectation of f with respect to v is defined as
follows [Choquet)]:

E,(f) =x1+(xo—x)v(f > z1)+ -+ (2p—2p_1)V(f > 2pno1).
Why is this the right definition of expectation?

e Some good news: it coincides with the standard defi-
nition if v is a probability measure.

But why not use the more obvious generalization of prob-
abilistic expectation?

E,(f)= ¥ v(s)f(s)

sesS

Stay tuned . ..
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Nonadditive Expected Utility

Nonadditive expected utility rule:

e Given a utility function u on prizes and a nonadditive
probability v on states, then

f=gift E,(us) > E,(uy,)
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Comonotonic Independence

Acts f and g are comonotonic if there do not exist states
s and t such that

f(s) = f(t) and g(t) = g(s)

e f and g are comonotonic if you can’t be happier to be
in state s than state ¢ when doing f and be happier
to be in state ¢t than state s when doing g.

e If h is a constant act, then f and A are comonotonic
for all acts f (since we never have h(s) = h(t)).

A3". (Comonotonic Independence:) If f and h and g and
h are both comonotonic and f > g, then for all a €
0,1], af + (1 — a)h = ag + (1 — a)h.

Idea: comonotonic independence tries to avoid the kind of
application of independence that gives Ellsberg’s paradox.

e Note: A3” is stronger than A3’
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Representation Theorem

Theorem: (Schmeidler) If A1, A2, A3" A4’ and A5
hold, then there exist a utility w on prizes and a nonad-
ditive probability v on states such that > can be repre-

sented by NEU.
o > giff E,(uf) > E,(u,)

Moreover, v is unique and u is unique up to affine trans-
formations.

e Moving from additive probability to nonadditive prob-
ability results in weakening independence to comono-
tonic independence.
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Nonadditive Probability and Sets of
Probabilities

Where might a nonadditive probability come from? One
case:

e Given a set P of probabilities, define P, to be the
lower probability of P and P* to be the upper prob-
ability:

P*(X) = suppep Pr(X).
e P, and P* are both nonadditive probabilities; more-
over

P (A) =1—P.(A9)
[s every nonadditive probability P, (or P*) for some set

P of probabilities?

e Simple counterexample: Let S = {s1, s2}.
If V1(81> — 2/3, V1<82) = 2/3, then 4 7é P*
If 15(s1) = 1/3, 1u(s9) = 1/3, then vy # P*.
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Some properties of P, and P*:

P*(A)+P*B)>P*(AUB)if ANB =10

P.(A)+P.(B) <P(AUB)if AnNB =10

P.(A)+P.(B) <P.ANB)+P(AUB)
< P*(A) +P*(B)

(There are other properties too.)
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Motivating the funny notion of
expectation

Suppose that
e S ={s1,59}
o P = {Pry, Pry},
e Pri(s1) =1, Pro(sg) = 1.
Thus, “
o Pi(s1) = Pi(s2) =0, P*(s1) = P*(s2) = L.
Let f be the constant function 2.
e Using the “obvious” definition of expectation,
o Ep (f) = 2Pr.(s1) + 2Pry(s2) = 0.
o Fp.(f)=2Pr*(s1) +2Pr*(sq9) = 4.
e The good news: Ep (f) = Ep«(f) = 2.
E' given “wrong” answer; E gives the right answer.

e The expected value of the constant function 2 should
be 2!
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