Decision Theory Prelim October 16,2008

There are three questions. Please answer each question in a separate blue book. The test is out of 100; you have 75 minutes. Good luck!

- I (30 points) Provide a brief answer for each of the following.
 - (a) Let $X = \{1, 2, \dots, N\}$, $N \ge 3$, and suppose that $x \succ y$ if and only if x > y + 1. As usual, define \succeq by $x \succeq y$ if $not[y \succ x]$. Is this binary relation complete?
 - (b) Let $X = \{a, b, c\}$ and suppose we have a choice function such that $c(\{a, c\}) = \{c\}, c(\{a, b\}) = \{a\}, c(\{b, c\}) = \{c\}, c(\{a, b, c\}) = \{a, c\}$. Is there a preference relation \succ such that $C(\cdot) = C(\cdot, \succ)$?
 - (c) Suppose someone is deciding whether to quit smoking, having heard that smoking might shorten his life span. Of course, he'd prefer to live to a ripe old age, but he enjoys smoking, and if he does make it to old age, he'd prefer to have smoked to not having smoked; likewise if he's going to die early in any case. Thus, he constructs the following decision table, where Q represents quit, C represents continue smoking, L represents live to an old age, and D represents die early.

	L	D
Q	95	-5
С	100	0

He notices that continuing to smoke dominates quitting (no matter whether he lives to a ripe old age or dies early he is better off smoking).

Under what circumstances is this an appropriate representation of the problem; under what circumstances is it not? II (30 Points) Consider the following decision matrix:

	s_1	s_2	s_3	s_4
a_1	6	8	9	4
a_2	2	9	9	11
a_3	4	4	4	4
a_4	0	5	15	6

- (a) Order the acts according to each of the following decision rules:
 - (i) maximin;
 - (ii) optimism-pessimism, with index $\alpha = 1/3$;
 - (iii) minimax regret;
 - (iv) principle of insufficient reason.
- (b) Suppose that we multiplied all the utilities by 2 and added 5 (so that, for example, the first row in the matrix would become 17, 21, 23, 13). Which, if any, of the orders in part (a) would change.
- (c) [GRAD: for those taking CS5846 or ECON6760 only:] Suppose that we replaced each utility n by 10^n (so that, for example, the first row in the matrix would become 10^6 , 10^8 , 10^9 , 10^4). Now which of the orders in part (a) would change?
- III (40 points)

Let $X = \{(i, j) : i \text{ and } j \text{ are non-negative integers.}\}$. Suppose that $x \succ y$ if and only if $x_1 + x_2 > y_1 + y_2 + 2$.

- (a) Show that \succ is transitive.
- (b) Find a weak representation for \succ , i.e. a function $u: X \to R$ such that if $x \succ y$ then u(x) > u(y).
- (c) Show that there does not exist a utility representation for \succ .
- (d) Let $A = \{x \in X : x_1 + 2x_2 \le 10\}$. What is $c(A, \succ)$? $[c(A, \succ)$ is the set of undominated elements of A according to \succ .]