Decision Theory Prelim

October 16,2008

There are three questions. Please answer each question in a separate blue book. The test is out of 100; you have 75 minutes. Good luck!

I (30 points) Provide a brief answer for each of the following.
(a) Let $X=\{1,2, \cdots, N\}, N \geq 3$, and suppose that $x \succ y$ if and only if $x>y+1$. As usual, define \succeq by $x \succeq y$ if $\operatorname{not}[y \succ x]$. Is this binary relation complete?
(b) Let $X=\{a, b, c\}$ and suppose we have a choice function such that $c(\{a, c\})=\{c\}, c(\{a, b\})=\{a\}, c(\{b, c\})=\{c\}, c(\{a, b, c\})=$ $\{a, c\}$. Is there a preference relation \succ such that $C(\cdot)=C(\cdot, \succ)$?
(c) Suppose someone is deciding whether to quit smoking, having heard that smoking might shorten his life span. Of course, he'd prefer to live to a ripe old age, but he enjoys smoking, and if he does make it to old age, he'd prefer to have smoked to not having smoked; likewise if he's going to die early in any case. Thus, he constructs the following decision table, where Q represents quit, C represents continue smoking, L represents live to an old age, and D represents die early.

	L	D
Q	95	-5
C	100	0

He notices that continuing to smoke dominates quitting (no matter whether he lives to a ripe old age or dies early he is better off smoking).
Under what circumstances is this an appropriate representation of the problem; under what circumstances is it not?

II (30 Points) Consider the following decision matrix:

	s_{1}	s_{2}	s_{3}	s_{4}
a_{1}	6	8	9	4
a_{2}	2	9	9	11
a_{3}	4	4	4	4
a_{4}	0	5	15	6

(a) Order the acts according to each of the following decision rules:
(i) maximin;
(ii) optimism-pessimism, with index $\alpha=1 / 3$;
(iii) minimax regret;
(iv) principle of insufficient reason.
(b) Suppose that we multiplied all the utilities by 2 and added 5 (so that, for example, the first row in the matrix would become 17, $21,23,13$). Which, if any, of the orders in part (a) would change.
(c) [GRAD: for those taking CS5846 or ECON6760 only:] Suppose that we replaced each utility n by 10^{n} (so that, for example, the first row in the matrix would become $10^{6}, 10^{8}, 10^{9}, 10^{4}$). Now which of the orders in part (a) would change?

III (40 points)
Let $X=\{(i, j): i$ and j are non-negative integers. $\}$. Suppose that $x \succ y$ if and only if $x_{1}+x_{2}>y_{1}+y_{2}+2$.
(a) Show that \succ is transitive.
(b) Find a weak representation for \succ, i.e. a function $u: X \rightarrow R$ such that if $x \succ y$ then $u(x)>u(y)$.
(c) Show that there does not exist a utility representation for \succ.
(d) Let $A=\left\{x \in X: x_{1}+2 x_{2} \leq 10\right\}$. What is $c(A, \succ)$? $[c(A, \succ)$ is the set of undominated elements of A according to \succ.]

