1. Exercises on null sets:
 (a) Show that \emptyset is null.
 (b) Show that if $B \subseteq A$ and A is null, then B is null.
 (c) Show that if A and B are disjoint and null, then $A \cup B$ is null.

2. GRAD: Let S denote a set of states, O a set of outcomes, L the set of all Savage acts from S to O, and \succ a preference order on L. Suppose that \succ has an expected utility representation with payoff function u and probability distribution p. Show that if A is not a null event, then $f \succ_A g$ iff the conditional expected utility of f given A exceeds that of g given A.

3. Show exactly where the standard choices made fail the Independence Postulate in (a) the Allais Paradox and (b) Ellsberg’s paradox. (Note that different versions of the Independence Postulate are involved; the first is one is for von Neumann-Morgenstern, the second is for Savage.)

4. Let A_4^w be the following weakening of A_4:

 A_4^w. If p and q are probabilities on prizes and s and s' are non-null, then $p_{\{s\}} f \succ q_{\{s\}} f$ implies $p_{\{s'\}} f \succeq q_{\{s'\}} f$.

 The key difference between A_4 and A_4^w is that in A_4^w, the conclusion has “\succeq”, not \succ.

 Show that MMEU satisfies A_2 and A_4^w. More precisely, given a set P of probability measure and a utility function u, consider the preference order \succ_P^u induced by MMEU: $f \succ_P^u g$ iff $\inf_{P \in P} E_P(u \circ f) > \inf_{P \in P} E_P(u \circ g)$ Show that \succ_P^u satisfies A_2 and A_4^w. For extra credit, show that by means of a counterexample that MMEU does not in general satisfy A_4 (i.e., A_4^w with \succeq replaced by \succ).
5. Prove that, for a probability measure μ and a random variable mapping a finite state space S to the real numbers, the definition of expectation given by Choquet coincides with the standard definition; that is, if the values of the function f are $x_1 < x_2 < \ldots < x_n$ and μ is a probability on S, then

$$\sum_{s \in S} f(s)\mu(s) = x_1 + (x_2 - x_1)\mu(f > x_1) + \cdots + (x_n - x_{n-1})\mu(f > x_{n-1}).$$

(As usual, $f > x_i$ is the set $\{s \in S : f(s) > x_i\}$.)

6. **GRAD:** This exercise shows that A1 and A4 imply A4'. So assume that \succ is an order on acts (horse lotteries) for which A1 and A4 hold. If p is a lottery over prizes, let \overline{p} denote the constant function on states that always gives p. Recall that f_Xg is the act that agrees with f on X and with g on X^c.

(a) Show that if $\overline{p}(s)^{f} \succ \overline{q}(s)^{f}$ and s is non-null, then $\overline{p} \succ \overline{q}$. (Hint: Start by showing that if $\overline{p}(s)^{f} \succ \overline{q}(s)^{f}$ and s and s' are non-null, then $\overline{p}(s')^{f'} \succ \overline{q}(s')^{f'}$ for an arbitrary act f'. The case that $f = f'$ is just A4. Proceed by induction on $|D(f, f')|$, where $D(f, f')$ is the number of states where f and f' differ. Then show that for all sets S' such that S' is non-null, $\overline{p}_{S'}^{f} \succ \overline{q}_{S'}^{f'}$. This can be done easily by induction on S'. Finally, observe that $\overline{p}_S f = \overline{p}$ and $\overline{q}_S f = \overline{q}$.)

(b) Prove A4': show that if $\overline{f}(s) \succeq \overline{g}(s)$ for all $s \in S$, then $f \succeq g$. (Hint: Show by induction on $|S'|$ that if $\overline{f}(s) \succeq \overline{g}(s)$ for all $s \in S$, then $f_{S'} g \succeq g$.)