
Uncertain Prospects

Suppose you have to eat at a restaurant and your choices
are:

• chicken

• quiche

Normally you prefer chicken to quiche, but . . .

Now you’re uncertain as to whether the chicken has salmonella.
You think it’s unlikely, but it’s possible.

• Key point: you no longer know the outcome of your
choice.

• This is the common situation!

How do you model this, so you can make a sensible choice?

1

States, Acts, and Outcomes

The standard formulation of decision problems involves:

• a set S of states of the world,

◦ state: the way that the world could be (the chicken
is infected or isn’t)

• a set O of outcomes

◦ outcome: what happens (you eat chicken and get
sick)

• a set A of acts

◦ act: function from states to outcomes

A decision problem with certainty can be viewed as the
special case where there is only one state.

• There is no uncertainty as to the true state.

2

One way of modeling the example:

• two states:

◦ s1: chicken is not infected

◦ s2: chicken is infected

• three outcomes:

◦ o1: you eat quiche

◦ o2: you eat chicken and don’t get sick

◦ o3: you eat chicken and get sick

• Two acts:

◦ a1: eat quiche

∗ a1(s1) = a1(s2) = o1

◦ a2: eat chicken

∗ a2(s1) = o2

∗ a2(s2) = o3

This is often easiest to represent using a matrix, where
the columns correspond to states, the rows correspond to
acts, and the entries correspond to outcomes:

s1 s2

a1 eat quiche eat quiche
a2 eat chicken; don’t get sick eat chicken; get sick

3

Specifying a Problem

Sometimes it’s pretty obvious what the states, acts, and
outcomes should be; sometimes it’s not.

Problem 1: the state might not be detailed enough to
make the act a function.

• Even if the chicken is infected, you might not get sick.

Solution 1: Acts can return a probability distribution over
outcomes:

• If you eat the chicken in state s1, with probability 60%
you might get infected

Solution 2: Put more detail into the state.

• state s11: the chicken is infected and you have a weak
stomach

• state s12: the chicken is infected and you have a strong
stomach

4

Problem 2: Treating the act as a function may force
you to identify two acts that should be different.

Example: Consider two possible acts:

• carrying a red umbrella

• carrying a blue umbrella

If the state just mentions what the weather will be (sunny,
rainy, . . .) and the outcome just involves whether you
stay dry, these acts are the same.

• An act is just a function from states to outcomes

Solution: If you think these acts are different, take a richer
state space and outcome space.

5

Problem 3: The choice of labels might matter.

Example: Suppose you’re a doctor and need to decide
between two treatments for 1000 people. Consider the
following outcomes:

• Treatment 1 results in 400 people being dead

• Treatment 2 results in 600 people being saved

Are they the same?

• Most people don’t think so!

6

Problem 4: The states must be independent of the acts.

Example: Should you bet on the American League or the
National League in the All-Star game?

AL wins NL wins
Bet AL +$5 -$2
Bet NL -$2 +$3

But suppose you use a different choice of states:

I win my bet I lose my bet
Bet AL +$5 -$2
Bet NL +$3 -$2

It looks like betting AL is at least as good as betting NL,
no matter what happens. So should you bet AL?

What is wrong with this representation?

Example: Should the US build up its arms, or disarm?

War No war
Arm Dead Status quo
Disarm Red Improved society

7

Problem 5: The actual outcome might not be among
the outcomes you list! Similarly for states.

• In 2002, the All-Star game was called before it ended,
so it was a tie.

• What are the states/outcomes if trying to decide whether
to attack Iraq?

8

Decision Rules

We want to be able to tell a computer what to do in all
circumstances.

• Assume the computer knows S, O, A

◦ This is reasonable in limited domains, perhaps not
in general.

◦ Remember that the choice of S, O, and A may
affect the possible decisions!

• Moreover, assume that there is a utility function u
mapping outcomes to real numbers.

◦ You have a total preference order on outcomes!

• There may or may not have a measure of likelihood
(probability or something else) on S.

You want a decision rule: something that tells the com-
puter what to do in all circumstances, as a function of
these inputs.

There are lots of decision rules out there.

9

Maximin

This is a conservative rule:

• Pick the act with the best worst case.

◦ Maximize the minimum

Formally, given act a ∈ A, define

worstu(a) = min{ua(s) : s ∈ S}.

• worstu(a) is the worst-case outcome for act a

Maximin rule says a � a′ iff worstu(a) ≥ worstu(a
′).

s1 s2 s3 s4

a1 5 0∗ 0∗ 2
a2 −1∗ 4 3 7
a3 6 4 4 1∗

a4 5 6 4 3∗

Thus, get a4 � a3 � a1 � a2.

But what if you thought s4 was much likelier than the
other states?

10

Maximax

This is a rule for optimists:

• Choose the rule with the best case outcome:

◦ Maximize the maximum

Formally, given act a ∈ A, define

bestu(a) = max{ua(s) : s ∈ S}.

• bestu(a) is the best-case outcome for act a

Maximax rule says a � a′ iff bestu(a) ≥ bestu(a
′).

s1 s2 s3 s4

a1 5∗ 0 0 2
a2 -1 4 3 7∗

a3 6∗ 4 4 1
a4 5 6∗ 4 3

Thus, get a2 � a4 ∼ a3 � a1.

11

Optimism-Pessimism Rule

Idea: weight the best case and the worst case according
to how optimistic you are.

Define optαu(a) = αbestu(a) + (1− α)worstu(a).

• if α = 1, get maximax

• if α = 0, get maximin

• in general, α measures how optimistic you are.

Rule: a � a′ if optαu(a) ≥ optαu(a′)

This rule is strange if you think probabilistically:

• worstu(a) puts weight (probability) 1 on the state
where a has the worst outcome.

◦ This may be a different state for different acts!

• More generally, optαu puts weight α on the state where
a has the best outcome, and weight 1−α on the state
where it has the worst outcome.

12

Minimax Regret

Idea: minimize how much regret you would feel once you
discovered the true state of the world.

• The “I wish I would have done x” feeling

For each state s, let as be the act with the best outcome
in s.

regretu(a, s) = uas(s)− ua(s)
regretu(a) = maxs∈S regretu(a, s)

• regretu(a) is the maximum regret you could ever feel
if you performed act a

Minimax regret rule:

a � a′ iff regretu(a) ≤ regretu(a
′)

• minimize the maximum regret

13

Example:

s1 s2 s3 s4

a1 5 0 0 2
a2 −1 4 3 7∗

a3 6∗ 4 4∗ 1
a4 5 6∗ 4∗ 3

• as1 = a3; uas1
(s1) = 6

• as2 = a4; uas2
(s2) = 6

• as3 = a3 (and a4); uas3
(s3) = 4

• as4 = a2; uas4
(s4) = 7

• regretu(a1) = max(6− 5, 6− 0, 4− 0, 7− 2) = 6

• regretu(a2) = max(6− (−1), 6− 4, 4− 3, 7− 7) = 7

• regretu(a3) = max(6− 6, 6− 4, 4− 4, 7− 1) = 6

• regretu(a4) = max(6− 5, 6− 6, 4− 4, 7− 3) = 4

Get a4 � a1 ∼ a3 � a2.

14

Effect of Transformations

Proposition Let f be an ordinal transformation of util-
ities (i.e., f is an increasing function):

• maximin(u) = maximin(f (u))

◦ The preference order determined by maximin given
u is the same as that determined by maximin given
f (u).

◦ An ordinal transformation doesn’t change what is
the worst outcome

• maximax(u) = maximax(f (u))

• optα(u) may not be the same as optα((u))

• regret(u) may not be the same as regret(f (u)).

Proposition: Let f be a positive affine transformation

• f (x) = ax + b, where a > 0.

Then

• maximin(u) = maximin(f (u))

• maximax(u) = maximax(f (u))

• optα(u) = optα(f (u))

• regret(u) = regret(f (u))

15

“Irrelevant” Acts

Suppose that A = {a1, . . . , an} and, according to some
decision rule, a1 � a2.

Can adding another possible act change things?

That is, suppose A′ = A ∪ {a}.
• Can it now be the case that a2 � a1?

No, in the case of maximin, maximax, and optα. But . . .

Possibly yes in the case of minimax regret!

• The new act may change what is the best act in a
given state, so may change all the calculations.

16

Example: start with

s1 s2

a1 8 1
a2 2 5

regretu(a1) = 4 < regretu(a2) = 6

a1 � a2

But now suppose we add a3:

s1 s2

a1 8 1
a2 2 5
a3 0 8

Now

regretu(a2) = 6 < regretu(a1) = 7 < regretu(a3) = 8

a2 � a1 � a3

Is this reasonable?

17

Multiplicative Regret

The notion of regret is additive; we want an act that such
that the difference between what you get and what you
could have gotten is not too large.
There is a multiplicative version:

• find an act such that the ratio of what you get and
what you could have gotten is not too large.

• usual formulation:

your cost/what your cost could have been

is low.

This notion of regret has been extensively studied in the
CS literature, under the name online algorithms or com-
petitive ratio.

Given a problem P with optimal algorithm OPT .

• The optimal algorithm is given the true state

Algorithm A for P has competitive ratio c if there exists
a constant k such that, for all inputs x

running time(A(x)) ≤ c(running time(OPT (x))) + k

18

The Object Location Problem

Typical goal in CS literature:

• find optimal competitive ratio for problems of interest

This approach has been applied to lots of problems,

• caching, scheduling, portfolio selection, . . .

Example: Suppose you have a robot located at point 0
on a line, trying to find an object located somewhere on
the line.

• What’s a good algorithm for the robot to use?

The optimal algorithm is trivial:

• Go straight to the object

Here’s one algorithm:

• Go to +1, then −2, then +4, then −8, until you find
the object

Homework: this algorithm has a competitive ratio of 9

• I believe this is optimal

19

The Ski Rental Problem

Example:

• It costs $p to purchase skis

• it costs $r to rent skis

• You will ski for at most N days (but maybe less)

How long should you rent before you buy?

• It depends (in part) on the ratio of p to r

◦ If the purchase price is high relative to rental, you
should rent longer, to see if you like skiing

We’ll come back to this problem in a future homework.

20

The Principle of Insufficient Reason

Consider the following example:

s1 s2 s3 s4 s5 s6 s7 s8 s9

a1 9 9 9 9 9 9 9 9 0
a2 9 0 0 0 0 0 0 0 9

None of the previous decision rules can distinguish a1 and
a2. But a lot of people would find a1 better.

• it’s more “likely” to produce a better result

Formalization:

• ua(s) = u(a(s)): the utility of act a in state s

◦ ua is a random variable

• Let Pr be the uniform distribution on S

◦ All states are equiprobable

◦ No reason to assume that one is more likely than
others.

• Let EPr(ua) be the expected value of ua

Rule: a � a′ if EPr(ua) > EPr(u
′
a).

21

Problem: this approach is sensitive to the choice of states.

• What happens if we split s9 into 20 states?

Related problem: why is it reasonable to assume that all
states are equally likely?

• Sometimes it’s reasonable (we do it all the time when
analyzing card games); often it’s not

22

Maximizing Expected Utility

If there is a probability distribution Pr on states, can
compute the expected probability of each act a:

EPr(ua) = Σs∈S Pr(s)ua(s).

Maximizing expected utility (MEU) rule:

a � a′ iff EPr(ua) > EPr(ua′).

Obvious question:

• Where is the probability coming from?

In computer systems:

• Computer can gather statistics

◦ Unlikely to be complete

When dealing with people:

• Subjective probabilities

◦ These can be hard to elicit

◦ What do they even mean?

23

Eliciting Utilities

MEU is unaffected by positive affine transformation, but
may be affected by ordinal transformations:

• if f is a positive affine transformation, then MEU(u)
= MEU(f (u))

• if f is an ordinal transformation, then MEU(u) 6=
MEU(f (u)).

So where are the utilities coming from?

• People are prepared to say “good”, “better”, “terri-
ble”

• This can be converted to an ordinal utility

• Can people necessarily give differences?

We’ll talk more about utility elicitation later in the course

• This is a significant problem in practice, and the sub-
ject of lots of research.

24

Minimizing Expected Regret

Recall that as is the act with te best outcome in state s.

regretu(a, s) = uas(s)− ua(s)
regretu(a) = maxs∈S regretu(a, s)

Given Pr, the expected regret of a is

EPr(regretu(a, ·)) = Σs∈S Pr(s)regretu(a, s)

Minimizing expected regret (MER) rule:

a � a′ iff EPr(regretu(a, ·)) < EPr(regretu(a
′, ·))

Theorem: MEU and MER are equivalent rules!

a �MEU a′ iff a �MER a′

Proof:

1. Let u′ = −u

• Maximizing EPr(ua) is the same as minimizing EPr(u
′
a).

2. Let uv(a, s) = u′(a, s) + v(s), where v : S → IR is
arbitrary.

• Minimizing EPr(u
′
a) is the same as minimizing EPr(u

v
a).

• You’ve just added the same constant (EPr(v)) to
the expected value of u′a, for each a

3. Taking v(s) = u(as), then EPr(u
v
a) is the expected

regret of a!

25

Representing Uncertainty by a Set of
Probabilities

Why is probability even the right way to represent uncer-
tainty??

Consider tossing a fair coin. A reasonable way to rep-
resent your uncertainty is with the probability measure
Pr1/2:

Pr1/2(heads) = Pr1/2(tails) = 1/2.

Now suppose the bias of the coin is unknown. How do
you represent your uncertainty about heads?

• Could still use Pr1/2

• Perhaps better: use the set

{Pra : a ∈ [0, 1]}, where Pra(heads) = a.

26

Decision Rules with Sets of
Probabilities

Given set P of probabilities, define

EP(ua) = inf
Pr∈P

{EPr(ua) : Pr ∈ P}

This is like maximin:

• Optimizing the worst-case expectation

In fact, if PS consists of all probability measures on S,
then EPS

(ua) = worstu(a).

Decision rule 1: a >1
P a′ iff EP(ua) > EP(ua′)

• maximin order agrees with >1
PS

.

• >1
P can take advantage of extra information

Define EP(ua) = supPr∈P{EPr(ua) : Pr ∈ P}.

• Rule 2: a >1
P a′ iff EP(ua) > EP(ua′)

◦ This is like maximax

• Rule 3: a >3
P a′ iff EP(ua) > EP(ua′)

◦ This is an extremely conservative rule

• Rule 4: a >4
P a′ iff EPr(ua) > EPr(ua′) for all Pr ∈ P

For homework: a ≥3
P a′ implies a ≥4

P a′

27

What’s the “right” rule?

One way to determine the right rule is to characterize the
rules axiomatically:

• What properties of a preference order on acts guar-
antees that it can be represented by MEU? maximin?
. . .

• We’ll do this soon for MEU

Can also look at examples.

28

Rawls vs. Harsanyi

Which of two societies (each with 1000 people) is better:

• Society 1: 900 people get utility 90, 100 get 1

• Society 2: everybody gets utility 35.

To make this a decision problem:

• two acts:

1. live in Society 1

2. live in Society 2

• 1000 states: in state i, you get to be person i

Rawls says: use maximin to decide
Harsanyi says: use principle of insufficient reason

• If you like maximin, consider Society 1′, where 999
people get utility 100, 1 gets utility 34.

• If you like the principle of insufficient reason, consider
society 1′′, where 1 person gets utility 100,000, 999 get
utility 1.

29

Example: The Paging Problem

Consider a two-level virtual memory system:

• Each level can store a number of fixed-size memory
units called pages

• Slow memory can store N pages

• Fast memory (aka cache) can store k < N of these

• Given a request for a page p, the system must make
p available in fast memory.

• If p is already in fast memory (a hit) then there’s
nothing to do

• otherwise (on a miss) the system incurs a page fault
and must copy p from slow memory to fast memory

◦ But then a page must be deleted from fast memory

◦ Which one?

Cost models:

1. charge 0 for a hit, charge 1 for a miss

2. charge 1 for a hit, charge s > 1 for a miss

The results I state are for the first cost model.

30

Algorithms Used in Practice

Paging has been studied since the 1960s. Many algo-
rithms used:

• LRU (Least Recently Used): replace page whose most
recent request was earliest

• FIFO (First In/ First out): replace page which has
been in fast memory longest

• LIFO (Last In/ First out): replace page most recently
moved to fast memory

• LFU (Least Frequently Used): Replace page requested
the least since entering fast memory

• . . .

These are all online algorithms; they don’t depend on
knowing the full sequence of future requests. What you’d
love to implement is:

• LFD (longest-forward distance): replace page whose
next request is latest

But this requires knowing the request sequence.

31

Paging as a Decision Problem

This is a dynamic problem. What are the states/outcomes/acts?

• States: sequence of requests

• Acts: strategy for initially placing pages in fast mem-
ory + replacement strategy

• Outcomes: a sequence of hits + misses

Typically, no distribution over request sequences is as-
sumed.

• If a distribution were assumed, you could try to com-
pute the strategy that minimized expected cost

◦ utility = −cost

• But this might be difficult to do in practice

• Characterizing the distribution of request sequences
is also difficult

◦ A set of distributions may be more reasonable

∗ There has been some work on this

◦ Each distribution characterizes a class of “requestors”

32

Paging: Competitive Ratio

Maximin is clearly not a useful decision rule for paging

• Whatever the strategy, can always find a request se-
quence that results in all misses

There’s been a lot of work on the competitive ratio of
various algorithms:

Theorem: [Belady] LFD is an optimal offline algorithm.

• replacing page whose next request comes latest seems
like the obvious thing to do, but proving optimality is
not completely trivial.

• The theorem says that we should thus compare the
performance of an online algorithm to that of LFD.

Theorem: If fast memory has size k, LRU and FIFO
are k-competitive:

• For all request sequences, they have at most k times
as many misses as LFD

• There is a matching lower bound.

LIFO and LFU are not competitive

• For all `, there exists a request sequence for which
LIFO (LRU) has at least ` times as many misses as
LFD

33

• For LIFO, consider request sequence

p1, . . . , pk, pk+1, pk, pk+1, pk, pk+1, . . .

◦ Whatever the initial fast memory, LFD has at most
k + 1 misses

◦ LIFO has a miss at every step after the first k

• For LFU, consider request sequence

p`
1, . . . , p

`
k−1, (pk, pk+1)

`−1

◦ Whatever the initial fast memory, LFD has at most
k + 1 misses

◦ LFU has a miss at every step after the first (k−1)`
⇒ 2(`− 1) misses

∗ Thus, (k − 1) + 2(`− 1) misses altogether.

∗ This makes the competitive ratio

[(k − 1) + 2(`− 1)]/(k − 1)

∗ Since ` can be arbitrarily large, the competitive
ratio can be made arbitrarily large.

• Note both examples require that there be only k + 1
pages altogether.

34

Paging: Theory vs. Practice

• the “empirical” competitive ratio of LRU is < 2, in-
dependent of fast memory size

• the “empirical” competitive ratio of FIFO is ∼ 3, in-
dependent of fast memory size

Why do they do well in practice?

• One intution: in practice, request sequences obey some
locality of reference

◦ Consecutive requests are related

35

Modeling Locality of Reference

One way to model locality of reference: use an access
graph G

• the nodes in G are requests

• require that successive requests in a sequence have an
edge between them in G

• if G is completely connected, arbitrary sequences of
requests are possible

• FIFO does not adequately exploit locality of reference

◦ For any access graph G, the competitive ratio of
FIFO is > k/2

• LRU can exploit locality of reference

◦ E.g.: if G is a line, the competitive ration of LRU
is 1

∗ LRU does as well as the optimal algorithm in
this case!

◦ E.g.: if G is a grid, the competitive ration of LRU
is ∼ 3/2

Key point: you can model knowledge of the access pattern
without necessarily using probability.

36

Example: Query Optimization

A decision theory problem from databases: query opti-
mization.

• Joint work with Francis Chu and Praveen Seshadri.

Given a database query, the DBMS must choose an ap-
propriate evaluation plan.

• Different plans produce the same result, but may have
wildly different costs.

Queries are optimized once and evaluated frequently.

• A great deal of effort goes into optimization!

37

Why is Query Optimization Hard?

Query optimization is simple in principle:

• Evaluate the cost of each plan

• Choose the plan with minimum cost

Difficult in practice:

1. There are too many plans for an optimizer to evaluate

2. Accurate cost estimation depends on accurate esti-
mation of various parameters, about which there is
uncertainty:

• amount of memory available

• number of tuples in a relation with certain proper-
ties

• . . .

• Solution to problem 1: use dynamic programming
(System R approach)

• Solution to problem 2: assume expected value of each
relevant parameter is the actual value to get LSC
(Least Specific Cost) plan.

38

A Motivating Example

Claim: Assuming the expected value is the actual value
can be a bad idea . . .

Consider a query that requires a join between tables A
and B, where the result needs to be ordered by the join
column.

• A has 1,000,000 pages

• B has 400,000 pages

• the result has 3000 pages.

• Plan 1: Apply a sort-merge join to A and B.

◦ If available buffer size > 1000 pages (√ of larger re-

lation), join requires two passes over the relations;
otherwise it requires at least three.

◦ Each pass requires that 1,400,000 pages be read
and written.

• Plan 2: Apply a Grace hash-join to A and B and
then sort their result.

◦ if available buffer size is > 633 pages (√ of smaller

relation), the hash join requires two passes over the
input relations.

39

◦ Also some additional overhead in sorting.

If the available buffer memory is accurately known, it is
trivial to choose between the two plans

• Plan 1 if > 1000 pages available, else Plan 2

Assume that available memory is estimated to be 2000
pages 80% of the time and 700 pages 20% of the time

• Plan A is best under the assumption that the expected
value of memory (1740) is the actual value

• But Plan B has the least expected cost!

If utility = −running time, then LEC plan is the plan
that maximizes expected utility.

• Is this the right plan to choose?

• If so, how hard is it to compute?

40

Computing Joins: The Standard
Approach

Suppose we want to compute A1 .// An:

• Joins are commutative and associative

• How should do we order the joins?

• System R simplification: to join k sets, first join k−1
and then add the last one.

◦ Don’t join A1 . . . A4, A5 . . . A9, and then join the
results

◦ Order the relations, and then join from left.

A left-deep plan has the form

(. . . ((Aπ(1) ./ Aπ(2)) ./ Aπ(3))/ Aπ(n))

for some permutation π.

• How do we find the best permutation?

41

The System R Approach

Idea:

• Assume a fixed setting for parameters

• Construct a dag with nodes labeled by subsets of
{1, . . . , n}.

• Compute the optimal plan (for that setting) for com-
puting the join over S ⊆ {1, . . . , n} by working down
the dag

Theorem: The System R optimizer computes the LSC
left-deep plan for the specific setting of the parameters.

42

Computing the LEC Plan

We can modify the standard System R optimizer to com-
pute the LEC plan with relatively little overhead.

Key observation: can instead compute the LEC plan
for the join over S if we have a distribution over the
relevant parameters.

• Divide the parameter space into “buckets”

◦ Doing this well is an interesting research issue

• Assume a probability distribution on the buckets.

• Can apply the System R approach to compute the
LEC plan at every node in the tree.

Theorem: This approach gives us the LEC left-deep
plan.

• This approach works even if the parameters change
dynamically (under some simplifying assumptions)

43

Is the LEC Plan the Right Plan?

The LEC plan is the right plan if the query is being run re-
peatedly, care only about minimizing total running time.

• The running time of N queries → N× expected cost
of single query.

But what if the query is only being used once?

• Your manager might be happier with a plan that min-
imizes regret.

Other problems:

• What if you have only incomplete information about
probabilities?

• What if utility 6= −running time?

◦ Consider time-critical data.

• Our algorithms work only in the case that utility =
−running time

44

Some Morals and Observations

1. Complexity matters

• Even if you want to be “rational” and maximize
expected utility, finding the act that maximizes ex-
pected utility may be hard.

2. It may be useful to approximate the solution:

If you want to compute

Σn
i=1 Pr(X = i)f (i)

and f is “continuous” (f (i) is close to f (i + 1) for all
i), then you can approximate it by

• partitioning the interval [1, . . . , n] into contingu-
ous sets A1, . . . , Am,

• taking g(j) to be some intermediate value of f in
Aj

• computing Σm
j=1 Pr(X ∈ Aj)g(j)

This is what happens in computing expected running
time if there are i units of memory.

• Computing a reasonable approximation may be
much easier than computing the actual value

45

3. Sometimes variance is relevant

• Managers don’t like to be surprised

• If the same query takes vastly different amounts of
time, they won’t be happy

• Apparently, ATMs are slowed down at 3 AM for
that reason

Problem: what utility function captures variance??

• Variance is a property of a whole distribution, not
a single state

• Need a more complex state space

46

Complexity Theory and Decision
Theory

Let T (A(x)) denote the running time of algorithm A on
input x.
Intuitively, larger input → longer running time.

• Sorting 1000 items takes longer than sorting 100 items

Typical CS goal: characterize complexity of a problem in
terms of the running time of algorithms that solve it.

CS tends to focus on the worst-case running time and
order of magnitude.

• E.g., running time of A is O(n2) if there exist con-
stants c and k such that T (A(x)) ≤ c|x|2 + k for all
inputs x.

• It could be the case that T (A(x)) ≤ 2|x| for “almost
all” x

47

The complexity of a problem is the complexity of the best
algorithm for that problem.

• How hard is sorting?

• The naive sorting algorithm is O(n2)

• Are there algorithms that do better?

• Yes, there is an O(n log n) algorithm, and this is best
possible.

◦ Every algorithm that does sorting must take at
least O(n log n) steps on some inputs.

Key point: choosing an algorithm with best worst-case
complexity means making the maximin choice.

• Choices are algorithms

• States are inputs

• Outcome is running time

48

Why is the maximin choice the “right” choice?

• In practice, algorithms with good worst-case running
time typically do well.

But this is not always true.

• The simplex algorithm for linear programming has
worst-case exponential-time complexity, and often works
better in practice than polynomial-time algorithms.

• There has been a great deal of work trying to explain
why.

• The focus has been on considering average-case com-
plexity, for some appropriate probability distribution.

Choosing the algorithm with the best average-case com-
plexity amounts to maximizing expected utility.

Problem with average-case complexity:

• It’s rarely clear what probability distribution to use.

• A probability distribution that’s appropriate for one
application may be inappropriate for another.

49

It may make sense to consider maximin expected com-
plexity with respect to a set of distributions:

• If we consider all distributions, this gives worst-case
complexity

• If we consider one distribution, this gives average-case
complexity.

If we can find a well-motivated set of distributions for a
particular application, this can be a reasonable interpo-
lation between worst-case and average-case complexity.

As we have seen, considering the competitive ratio is an-
other alternative, that seems reasonable in some applica-
tions.

50

