
 











Convolutional Neural Networks GNN)

Assume Input is an image
.

Site : VxHx3
n n
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width height 30104

X red, green ,
the

( these are called channels )
=

CNN, restrict the linear transformations X→wx to be convolutions
=

These :  a) share weights

b) ensure that hidden layers are also images (with
many channels )
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1st hidden layer

Convolution operation :

Convolution
kernel Typically you

have

input image d output activation ,
one kernel per input channel

.
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I u Convolution can be interpreted
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7 I 2 7 as a pattern detector .

Patches that
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look similar to the kernel will yield2527 .O large activations
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The Conn . operator
'

scans
'

the input for such
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Pooling : Like convolution
,

but you reduce a patch to its mormeoinrah.ae .
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Pooling is locally translation invariant
.

← These tho images yield
§o§ o%kJ similar activations

.

14④ l4④

Batch - Norm : Re - normalize activations based on current
= mini - batch

.
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parameters that are learned

Residual Connection :

→
Add input to output

,

activations

after each layer .
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Concatenate input toDense Connection ' :

µ→¥, output activation, after

I)
each layer
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