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Kernels continued

Cornell CS 4/5780 (Spring 2023)

Well-defined kernels

Here are the most common kernels:

e Linear: k(x,z) =x 'z
2

(x—2)

* RBF:k(x,z) =e¢ &
e Polynomial: k(x,z) = (1 + xz)?

New kernels can be constructed by recursively combining one or more of
the following rules:

1L k(x,z) =x"z

2. k(x,z) = cki(x,2)

3. k(x,2) = ki(x,2) + ko(x,2)
4.k(x,2) = g(k(x,2))

5. k(x,2z) = kyi(x,z)ka(x, 2)
6.k(x,2) = F(x)ky 7)1
7.k(x,2z) = ek1 x,2)

8.k(x,z) =

where k1, k9 are well-defined kernels, ¢ > 0, g is a polynomial function
with positive coefficients, f is any function and A > 0 is positive semi-
definite. Kernel being well-defined is equivalent to the corresponding
kernel matrix, K, being positive semidefinite (not proved here), which is
equivalent to any of the following statement:

1. All eigenvalues of K are non-negative.
2. Jreal matrix Ps.t. K = P'P.
3.V real vector x,x' Kx > 0.

It is trivial to prove that linear kernel and polynomial kernel with integer
d are both well-defined kernel.

—(x—2)2
The RBF kernel k(x,2z) = e~ > is a well-defined kernel matrix.

You can even define kernels of sets, or strings or molecules.

The following kernel is defined on any two sets S1, S5 C (Q,
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k(Sl, Sg) = e\SmSZ\.
Quiz2: Prove it!

List out all possible samples €2 and arrange them into a sorted list. We
define a vector xg € {0, 1}/, where each of its element indicates
whether a corresponding sample is included in the set S. It is easy to
prove that

k(S1,82) = em;m",

which is a well-defined kernel by rules 1 and 7.

Kernel Machines

(In practice) an algorithm can be kernelized in 2 steps:

1. Prove that the solution lies in the span of the training points (i.e.
w = > ", a;x; for some ;)
2. Rewrite the algorithm and the classifier so that all training or testing
inputs x; are only accessed in inner-products with other inputs, e.g.
T
X; Xj.
3. Define a kernel function and substitute k(x;, x;) for x, x;.

Kernelized Linear Regression

Recap

Vanilla Ordinary Least Squares Regression (OLS) [also referred to as
linear regression] minimizes the following squared loss regression loss

function,
n
. T 2
min E :(W X; — ¥i)%
i=1

to find the hyper-plane w. The prediction at a test-point is simply

h(x) = w'x.

If welet X = [xy,...,x,]andy = [y1,...,yn] ', the solution of OLS can
be written in closed form:

w=XX")"1Xy (5

Kernelization

We begin by expressing the solution w as a linear combination of the
training inputs

n
w = E a;x; = Xa.
i=1
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We derived in the previous lecture that such a vector & must always exist
by observing the gradient updates that occur if (5) is minimized with

gradient descent and the initial vector is set to wo = 0 (because the
squared loss is convex the solution is independent of its initialization.)

Similarly, during testing a test point is only accessed through inner-
products with training inputs:

n
h(z) =w'z = Z a;x; z.
=1

We can now immediately kernelize the algorithm by substituting k(x, z)
for any inner-product x ' z. It remains to show that we can also solve for
the values of « in closed form. As it turns out, this is straight-forward.

Kernelized ordinary least squares has the solution & = K~ ly.

Xa =w=(XX")"'Xy | multiply from left by X " XX "
X'X)(X'X)a=X"(XX"(XX") )Xy |substitute K =X'X
K?a = Ky |multiply from left by (K ')?
a=Kly

Kernel regression can be extended to the kernelized version of ridge
regression. The solution then becomes

a=(K+7I)y.

In practice a small value of 72 > 0 increases stability, especially if K is
not invertible. If 7 = 0 kernel ridge regression, becomes kernelized
ordinary least squares. Typically kernel ridge regression is also referred
to as kernel regression.

Testing

Remember that we defined w = Xa. The prediction of a test point z then
becomes

T Txex 21\ —1 ~
h(z) =z w=z Xa (K+7I1) 'y a

or, if everything is in closed form:
h(z) = k(K +7°I) 'y,

where k, is the kernel (vector) of the test point with the training points,
i.e. the i*" dimension corresponds to [k,]; = ¢(z) " #(x;), the inner-
product between the test point z with the training point x; after the
mapping into feature space through ¢.
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Nearest Neighbors

Quiz 3: Let D = {(x1,¥1),- - -, (X, Yn) }- How can you kernelize nearest
neighbors (with Euclidean distances)?

Kernel SVM
The original, primal SVM is a quadratic programming problem:
n
mipwiw O 6

st. Vi, y(wix;+b)>1-¢
§& >0

has the dual form

n
.1
mim — E aiajyiyjKij— E a;
Q1,0 2 4= —
1,J =1

st. 0<a; <C

Zn: a;y; =0
i=1

where w = > | a;yi$(x;) (although this is never computed) and

h(x) = sign (i aiyik(xi, x) + b).

Support Vectors

There is a very nice interpretation of the dual problem in terms of support
vectors. For the primal formulation we know (from a previous lecture)

that only support vectors satisfy the constraint with equality:
yi(w' ¢(z;) +b) = 1.

In the dual, these same training inputs can be identified as their
corresponding dual values satisfy o; > 0 (all other training inputs have
a; = 0). For test-time you only need to compute the sum in h(x) over the
support vectors and all inputs x; with a; = 0 can be discarded after
training.

Recovering b
One apparent problem with the dual version is that b is no longer part of

the optimization. However, we need it to perform classification. Luckily,
we know that the primal solution and the dual solution are identical. In
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the duel, support vectors are those with a; > 0. We can then solve the
following equation for b

yi(w' ¢(z:) +b) =1

J
vi — > yjok(xj,%;) = b
j

This allows us to solve for b from the support vectors (in practice it is best
to average the b from several support vectors, as there may be numerical
precision problems).

Quiz: What is the dual form of the hard-margin SVM?
Kernel SVM - the smart nearest neighbor

Do you remember the k-nearest neighbor algorithm? For binary
classification problems (y; € {41, —1}), we can write the decision
function for a test point z as

n

h(z) = sign (Z Y 0™ (%, z)),
i=1

where §""(z,x;) € {0, 1} with §"*(z,x;) = 1 only if x; is one of the k

nearest neighbors of test point z. The SVM decision function

h(z) = sign (i yiouk(x;,2) + b)

is very similar, but instead of limiting the decision to the k nearest
neighbors, it considers all training points but the kernel function assigns
more weight to those that are closer (large k(z, x;)). In some sense you
can view the RBF kernel as a soft nearest neighbor assignment, as the
exponential decay with distance will assign almost no weight to all but the
neighboring points of z. The Kernel SVM algorithm also learns a weight
a; > 0 for each training point and a bias b and it essentially "removes"
useless training points by setting many a; = 0.

file:///Users/kilianweinberger/Documents/teaching/CS4780/CS4780MasterCornell/2023Spring/WebSite/lectures/temp.html



