
4/11/23, 11:36 AM Lecture 14: Kernels continued

file:///Users/kilianweinberger/Documents/teaching/CS4780/CS4780MasterCornell/2023Spring/WebSite/lectures/temp.html 1/5

Kernels continued
Cornell CS 4/5780 (Spring 2023)

Well-defined kernels

Here are the most common kernels:

Linear:

RBF:
Polynomial:

New kernels can be constructed by recursively combining one or more of
the following rules:

1.
2.
3.
4.
5.
6.
7.
8.

where are well-defined kernels, , is a polynomial function
with positive coefficients, is any function and is positive semi-
definite. Kernel being well-defined is equivalent to the corresponding
kernel matrix, , being positive semidefinite (not proved here), which is
equivalent to any of the following statement:

1. All eigenvalues of are non-negative.
2.
3.

It is trivial to prove that linear kernel and polynomial kernel with integer
 are both well-defined kernel.

The RBF kernel is a well-defined kernel matrix.

You can even define kernels of sets, or strings or molecules.

The following kernel is defined on any two sets ,

k(x, z) = x⊤z

k(x, z) = e−
(x−z)2

σ2

k(x, z) = (1 + x⊤z)d

k(x, z) = x⊤z

k(x, z) = ck1(x, z)

k(x, z) = k1(x, z) + k2(x, z)

k(x, z) = g(k(x, z))

k(x, z) = k1(x, z)k2(x, z)

k(x, z) = f(x)k1(x, z)f(z)

k(x, z) = ek1(x,z)

k(x, z) = x⊤Az

k1, k2 c ≥ 0 g

f A ⪰ 0

K

K

∃ real matrix P s.t. K = P ⊤P .

∀ real vector x, x⊤Kx ≥ 0.

d

k(x, z) = e
−(x−z)2

σ2

S1,S2 ⊆ Ω

| |

4/11/23, 11:36 AM Lecture 14: Kernels continued

file:///Users/kilianweinberger/Documents/teaching/CS4780/CS4780MasterCornell/2023Spring/WebSite/lectures/temp.html 2/5

Quiz2: Prove it!

List out all possible samples and arrange them into a sorted list. We
define a vector , where each of its element indicates
whether a corresponding sample is included in the set . It is easy to
prove that

which is a well-defined kernel by rules 1 and 7.

Kernel Machines

(In practice) an algorithm can be kernelized in 2 steps:

1. Prove that the solution lies in the span of the training points (i.e.
 for some)

2. Rewrite the algorithm and the classifier so that all training or testing
inputs are only accessed in inner-products with other inputs, e.g.

.
3. Define a kernel function and substitute for .

Kernelized Linear Regression

Recap

Vanilla Ordinary Least Squares Regression (OLS) [also referred to as
linear regression] minimizes the following squared loss regression loss
function,

to find the hyper-plane . The prediction at a test-point is simply
.

If we let and , the solution of OLS can
be written in closed form:

Kernelization

We begin by expressing the solution as a linear combination of the
training inputs

k(S1,S2) = e|S1∩S2|.

Ω

xS ∈ {0, 1}|Ω|

S

k(S1,S2) = ex
⊤
S1
xS2 ,

w = ∑n
i=1 αixi αi

xi

x⊤
i xj

k(xi, xj) x⊤
i xj

min
w

n

∑
i=1

(w⊤xi − yi)
2,

w

h(x) = w⊤x

X = [x1, … , xn] y = [y1, … , yn]⊤

w = (XX⊤)−1Xy (5)

w

w =
n

∑
i=1

αixi = X→α.

file:///Users/kilianweinberger/Documents/teaching/CS4780/CS4780MasterCornell/2023Spring/WebSite/lectures/lecturenote08.html

4/11/23, 11:36 AM Lecture 14: Kernels continued

file:///Users/kilianweinberger/Documents/teaching/CS4780/CS4780MasterCornell/2023Spring/WebSite/lectures/temp.html 3/5

We derived in the previous lecture that such a vector must always exist
by observing the gradient updates that occur if (5) is minimized with
gradient descent and the initial vector is set to (because the
squared loss is convex the solution is independent of its initialization.)

Similarly, during testing a test point is only accessed through inner-
products with training inputs:

We can now immediately kernelize the algorithm by substituting
for any inner-product . It remains to show that we can also solve for
the values of in closed form. As it turns out, this is straight-forward.

Kernelized ordinary least squares has the solution .

Kernel regression can be extended to the kernelized version of ridge
regression. The solution then becomes

In practice a small value of increases stability, especially if is
not invertible. If kernel ridge regression, becomes kernelized
ordinary least squares. Typically kernel ridge regression is also referred
to as kernel regression.

Testing

Remember that we defined The prediction of a test point then
becomes

or, if everything is in closed form:

where is the kernel (vector) of the test point with the training points,
i.e. the dimension corresponds to , the inner-
product between the test point with the training point after the
mapping into feature space through .

→α

w0 = →0

h(z) = w⊤z =
n

∑
i=1

αix
⊤
i z.

k(x, z)

x⊤z

α

→α = K−1y

X→α = w = (XX⊤)−1Xy | multiply from left by X⊤XX⊤

(X⊤X)(X⊤X)→α = X⊤(XX⊤(XX⊤)−1)Xy |substitute K = X⊤X

K2
→α = Ky |multiply from left by (K−1)2

→α = K−1y

→α = (K + τ 2I)−1y.

τ 2 > 0 K

τ = 0

w = X→α. z

h(z) = z
⊤

w = z
⊤

X→α

w

= k∗

z⊤X

(K + τ 2
I)−1

y

→α

= k∗→α, 

h(z) = k∗(K + τ 2I)−1y,

k∗

ith [k∗]i = ϕ(z)⊤ϕ(xi)

z xi

ϕ

file:///Users/kilianweinberger/Documents/teaching/CS4780/CS4780MasterCornell/2023Spring/WebSite/lectures/lecturenote13.html

4/11/23, 11:36 AM Lecture 14: Kernels continued

file:///Users/kilianweinberger/Documents/teaching/CS4780/CS4780MasterCornell/2023Spring/WebSite/lectures/temp.html 4/5

Nearest Neighbors

Quiz 3: Let How can you kernelize nearest
neighbors (with Euclidean distances)?

Kernel SVM

The original, primal SVM is a quadratic programming problem:

has the dual form

where (although this is never computed) and

Support Vectors

There is a very nice interpretation of the dual problem in terms of support
vectors. For the primal formulation we know (from a previous lecture)
that only support vectors satisfy the constraint with equality:

In the dual, these same training inputs can be identified as their
corresponding dual values satisfy (all other training inputs have

). For test-time you only need to compute the sum in over the
support vectors and all inputs with can be discarded after
training.

Recovering

One apparent problem with the dual version is that is no longer part of
the optimization. However, we need it to perform classification. Luckily,
we know that the primal solution and the dual solution are identical. In

D = {(x1, y1), … , (xn, yn)}.

min
w,b

w⊤w + C
n

∑
i=1

ξi

s.t. ∀i, yi(w⊤xi + b) ≥ 1 − ξi
ξi ≥ 0

min
α1,⋯,αn

1

2
∑
i,j

αiαjyiyjKij −
n

∑
i=1

αi

s.t. 0 ≤ αi ≤ C
n

∑
i=1

αiyi = 0

w = ∑
n
i=1 αiyiϕ(xi)

h(x) = sign (
n

∑
i=1

αiyik(xi, x) + b).

yi(w⊤ϕ(xi) + b) = 1.

αi > 0

αi = 0 h(x)

xi αi = 0

b

b

https://en.wikipedia.org/wiki/Duality_(optimization)
file:///Users/kilianweinberger/Documents/teaching/CS4780/CS4780MasterCornell/2023Spring/WebSite/lectures/lecturenote09.html

4/11/23, 11:36 AM Lecture 14: Kernels continued

file:///Users/kilianweinberger/Documents/teaching/CS4780/CS4780MasterCornell/2023Spring/WebSite/lectures/temp.html 5/5

the duel, support vectors are those with . We can then solve the
following equation for

This allows us to solve for from the support vectors (in practice it is best
to average the from several support vectors, as there may be numerical
precision problems).

Quiz: What is the dual form of the hard-margin SVM?

Kernel SVM - the smart nearest neighbor

Do you remember the k-nearest neighbor algorithm? For binary
classification problems (), we can write the decision
function for a test point as

where with only if is one of the
nearest neighbors of test point . The SVM decision function

is very similar, but instead of limiting the decision to the nearest
neighbors, it considers all training points but the kernel function assigns
more weight to those that are closer (large . In some sense you
can view the RBF kernel as a soft nearest neighbor assignment, as the
exponential decay with distance will assign almost no weight to all but the
neighboring points of . The Kernel SVM algorithm also learns a weight

 for each training point and a bias and it essentially "removes"
useless training points by setting many .

αi > 0

b

yi(w⊤ϕ(xi) + b) = 1

yi (∑
j

yjαjk(xj, xi) + b) = 1

yi −∑
j

yjαjk(xj, xi) = b

b

b

yi ∈ {+1, −1}

z

h(z) = sign (
n

∑
i=1

yiδ
nn(xi, z)),

δnn(z, xi) ∈ {0, 1} δnn(z, xi) = 1 xi k

z

h(z) = sign (
n

∑
i=1

yiαik(xi, z) + b)

k

k(z, xi))

z

αi > 0 b

αi = 0

