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Our training consists of the set D = {(x1,¥1),- - -, (X, yn)} drawn from some
unknown distribution P(X,Y’). Because all pairs are sampled i.i.d., we obtain

P(D) = P((x1,Y1)s- -+, (Xn,yn)) = P(Xa,Ya)-

If we do have enough data, we could estimate P(X,Y") similar to the coin
example in the previous lecture, where we imagine a gigantic die that has one

side for each possible value of (x, y). We can estimate the probability that one
specific side comes up through counting;:

. i I(xi=x ANy =y)
P(x,y) = ! - ;

where I(x; = x A y; = y) = lifx; = x and y; = y and o otherwise.

Of course, if we are primarily interested in predicting the label y from the
features x, we may estimate P(Y'| X) directly instead of P(X,Y’). We can then

use the Bayes Optimal Classifier for a specific ﬁ(y|x) to make predictions.

So how can we estimate P(y|x)? Previously we have derived that
P(y) = =21 gimilarly, P(x) = 22152 ang

n

Py, x) = S ==y

n

. We can put these two together

A

P(y,x) _ Yo Ixi=xAy; =y)
P(x) > i I(xi = x)

P(ylx) =
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/ \

‘ Samples (x_i, y_i) withy_i=y ‘ ‘ Samples (x_i, y_i) with x_i=x ‘

The Venn diagram illustrates that the MLE method estimates P(y|x) as

C]

Py = 157

Problem: But there is a big problem with this method. The MLE estimate is only
good if there are many training vectors with the same identical features as x!
In high dimensional spaces (or with continuous x), this never happens! So
|B| — 0and |C| — 0.

Naive Bayes

We can approach this dilemma with a simple trick, and an additional
assumption. The trick part is to estimate P(y) and P(x|y) instead, since, by
Bayes rule,

P(x|y)P(y) .

P(ylx) = P

Recall from Estimating Probabilities from Data that estimating P(y) and P(x|y)

is called generative learning.

Estimating P(y) is easy. For example, if Y takes on discrete binary values
estimating P(y) reduces to coin tossing. We simply need to count how many
times we observe each outcome (in this case each class):

Y Ii=o)

n

= 7.

Estimating P(x|y), however, is not easy! The additional assumption that we
make is the Naive Bayes assumption.
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Naive Bayes Assumption:

d
P(x|y) = H (zaly), where o = [x]q is the value for feature o

i.e., feature values are independent given the label! This is a very bold
assumption.

For example, a setting where the Naive Bayes classifier is often used is spam
filtering. Here, the data is emails and the label is spam or not-spam. The Naive
Bayes assumption implies that the words in an email are conditionally
independent, given that you know that an email is spam or not. Clearly this is not
true. Neither the words of spam or not-spam emails are drawn independently at
random. However, the resulting classifiers can work well in practice even if this
assumption is violated.

Original data Estimation of first dimension Estimation of second dimension Resulting data distribution
Plzyly=2
' , J1 Paaly=2)
! m =2 ! [
a ¥
y=1

(z1ly = 2) |
3 P(raly =1) | Plaaly =2)
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HP(?'H‘U =1) 3

Illustration behind the Naive Bayes algorithm. We estimate P(z|y)
independently in each dimension (middle two images) and then obtain an
estimate of the full data distribution by assuming conditional independence

P(x|y) =1, P(za|y) (very right image).

So, for now, let's pretend the Naive Bayes assumption holds. Then the Bayes
Classifier can be defined as

h(x) = argmax P(y|x)

y
— aremay LEWPY)
PR
= argmax P(x|y)P(y) (P(x) does not depend on y)
y
= argmax H P(z,|y)P(y) (by the naive Bayes assumption)
Y a=1

= argmax Z log(P(z,|y)) + log(P(y)) (as log is a monotonic function)
y a=1

Estimating log(P(z|y)) is easy as we only need to consider one dimension. And
estimating P(y) is not affected by the assumption.
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Estimating P([x],|y)

Now that we know how we can use our assumption to make the estimation of
P(y|x) tractable. There are 3 notable cases in which we can use our naive Bayes
classifier.

Case #1: Categorical features
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Illustration of categorical NB. For d dimensional data, there exist d
independent dice for each class. Each feature has one die per class. We
assume training samples were generated by rolling one die after another. The
value in dimension i corresponds to the outcome that was rolled with the it
die.

Features:

[X]a € {f17f27"'7fKa}

Each feature « falls into one of K, categories. (Note that the case with binary
features is just a specific case of this, where K, = 2.) An example of such a
setting may be medical data where one feature could be marital status (single /
married). Model P(z | y):

K,
P(zo = jly = ¢) = [0jc]a and Z[Ojc]a =1
=1

where [6,.], is the probability of feature o having the value j, given that the label
is c. And the constraint indicates that x, must have one of the categories
{1,..., K,}. Parameter estimation:

Yim Ly = )I(@ia = j) +1

é'c a — n 9
9sc] S I(yi =c) + 1K,
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where z;, = [x;], and [ is a smoothing parameter. By setting | = 0 we get an
MLE estimator, and [ > 0 leads to MAP. If we set [ = +1 we get Laplace
smoothing.

In words (without the / hallucinated samples) this means

# of samples with label ¢ that have feature a with value j

# of samples with label ¢

ssentially the categorical feature model associates a special coin with each feature
and label. The generative model that we are assuming is that the data was
generated by first choosing the label (e.g. "healthy person”). That label comes
with a set of d "dice", for each dimension one. The generator picks each die,
tosses it and fills in the feature value with the outcome of the coin toss. So if there
are C possible labels and d dimensions we are estimating d x C "dice" from the
data. However, per data point only d dice are tossed (one for each dimension).
Die « (for any label) has K, possible "sides". Of course this is not how the data is
generated in reality - but it is a modeling assumption that we make. We then
learn these models from the data and during test time see which model is more

likely given the sample.
Prediction:
d A
argmax P(y = c | x) « argmax 7, H[Hjc]a
Y Y a=1

Case #2: Multinomial features

BRENEEIRNEEINE

Illustration of multinomial NB. There are only as many dice as classes. Each
die has d sides. The value of the it" feature shows how many times this
particular side was rolled.
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If feature values don't represent categories (e.g. single/married) but counts we
need to use a different model. E.g. in the text document categorization, feature
value £, = j means that in this particular document x the a** word in my
dictionary appears j times. Let us consider the example of spam filtering.
Imagine the a* word is indicative of being "spam". Then if £, = 10 means that
this email is likely spam (as word « appears 10 times in it). And another email
with z!, = 20 should be even more likely to be spam (as the spammy word
appears twice as often). With categorical features this is not guaranteed. It could
be that the training set does not contain any email that contain word « exactly 20
times. In this case you would simply get the hallucinated smoothing values for
both spam and not-spam - and the signal is lost. We need a model that
incorporates our knowledge that features are counts - this will help us during
estimation (you don't have to see a training email with exactly the same number
of word occurrences) and during inference/testing (as you will obtain these
monotonicities that one might expect). The multinomial distribution does exactly
that.

Features:
d
zo € {0,1,2,...,m}and m = Za:a
a=1

Each feature a represents a count and m is the length of the sequence. An
example of this could be the count of a specific word a in a document of length m
and d is the size of the vocabulary. Model P(x | y): Use the multinomial
distribution

Plx [my =) = —— [ (60"

x1!-xa! oo xq!

where 6, is the probability of selecting ., and 22:1 0.. = 1. So, we can use this
to generate a spam email, i.e., a document x of class y = spam by picking m
words independently at random from the vocabulary of d words using

P(x | y = spam). Parameter estimation:

s Sor o I(yi = ¢)Tia + 1
= S Ty = i 1

where m; = Zgzl z;g denotes the number of words in document ¢. The
numerator sums up all counts for feature x, and the denominator sums up all
counts of all features across all data points. E.g.,
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# of times word « appears in all spam emails

# of words in all spam emails combined

Again, [ is the smoothing parameter. Prediction:

d
argmax P(y = c | x)  argmax 7 H 6o

C C a=1

Case #3: Continuous features (Gaussian Naive Bayes)

[y Hy=1
=2 : 1 |
E ;O-'q 1
Illustration of Gaussian NB. Each class conditional feature distribution

P(z,|y) is assumed to originate from an independent Gaussian distribution

2

with its own mean p,, and variance o, .

Features:
zo € R (each feature takes on a real value)

Model P(z | y): Use Gaussian distribution

9 ]_ _% ( Za—Hac )
P(il?a ‘ Y= C) =N (#ac,O'aC) = ——¢€ Tac
\/27"'0' ac
Note that the model specified above is based on our assumption about the data -
that each feature o comes from a class-conditional Gaussian distribution. The full
distribution P(x|y) ~ N (uy, Xy), where 3, is a diagonal covariance matrix with

(Zylaa =05,

Parameter estimation: As always, we estimate the parameters of the distributions
for each dimension and class independently. Gaussian distributions only have
two parameters, the mean and variance. The mean p. 4 is estimated by the
average feature value of dimension « from all samples with label y. The (squared)
standard deviation is simply the variance of this estimate.

1 n
Hac < n_ ZI(yz = C)xia where n, = ;I(yi = C)

1
O-ic — — ZI(Z/Z - C)(xia - :u'ac)2
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Naive Bayes is a linear classifier

P(Tz|f—2} I

H‘Dh“ y = l}

Naive Bayes leads to a linear decision boundary in many common cases.
Illustrated here is the case where P(z,|y) is Gaussian and where o, . is
identical for all c (but can differ across dimensions o). The boundary of the
ellipsoids indicate regions of equal probabilities P(x|y). The red decision line
indicates the decision boundary where P(y = 1|x) = P(y = 2|x).

1. Suppose that y; € {—1, +1} and features are multinomial We can show that

d
h(x) = argmax P(y) H P(z, | y) = sign(w 'x +b)
Y a—1
That is,
w' x+b>0<+= h(x)=+1.
As before, we define P(zo|y = +1) o 05 and P(y = +1) =

(W]a = log(0ar) — log(fa-)
b =log(m) — log(m_)

If we use the above to do classification, we can compute forw ' - x + b
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Simplifying this further leads to

Wa b
d
W x+b>0= Z[x]a(log(90+) —log(0,_)) + log(m,) —log(w_) >0 (Plugging in definition of w, b.)

a=1

d
<~ exp 0g(0a+) —log(a-)) + log(m+) —log(mr-) | >1 exponentiating both sides
«(log(6 — log(6 1 It iating both sid

1
d_exp (logG + +log 7r+))
H >1 Because alog(b) = log(b®) and exp (a — b) =
a=1 exp (10g9 * + log(m ))
d 0[ o T,
ﬁc] >1 Because exp(log(a)) = a and e** = ¢
a= 16 iy
Y =+1)m
([ lal s >1 Because P([x],|Y = —1) = QZ]f
P(xo|Y = —1)m_
Y 1
M 1 By the naive Bayes assumption.
Px|Y =-1)r_
PO = 1)y By B le (the denominator P Is out, and 7. = P(Y = +1
m y Bayes rule (the denominator P(x) cancels out, and 7 = P(Y = +1).)

< P(Y = +1]x) > P(Y = —1|x)
< argmax P(Y = y|x) = +1
y

2. In the case of continuous features (Gaussian Naive Bayes), we can show that

1

Pyl = 1

This model is also known as logistic regression. NB and LR produce
asymptotically the same model if the Naive Bayes assumption holds.
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