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Assumptions

1. Binary classification (i.e. y; € {—1,+1})
2. Data is linearly separable

Classifier

h(x;) = sign(w ' x; + b)

Positive Examples

O o

On this side:
dot(x, w)+b>0

@& Weight vector
\_ ¥ that defines

Negative example the hyperplane

On this side:

dot(x, w) + b <0 Hyperplane perpendicular to w

\> H={x:dot(x, w) + b = 0}

b is the bias term (without the bias term, the hyperplane that w defines would
always have to go through the origin). Dealing with b can be a pain, so we 'absorb’
it into the feature vector w by adding one additional constant dimension. Under

this convention,

X; becomes [};l]w becomes [W}

b

We can verify that

-
X; W _ Te.
{1] {b}—w x;+b

Using this, we can simplify the above formulation of h(x;) to

T

h(x;) = sign(w ' x)
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(Left:) The original data is 1-dimensional (top row) or 2-dimensional (bottom

row). There is no hyper-plane that passes through the origin and separates
the red and blue points. (Right:) After a constant dimension was added to all
data points such a hyperplane exists.

Observation: Note that

yz‘(WT

x;) > 0 <= x; is classified correctly

where 'classified correctly' means that z; is on the correct side of the hyperplane
defined by w. Also, note that the left side depends on y; € {—1,+1} (it wouldn't

work if, for example y; € {0, +1}).

Perceptron Algorithm

Now that we know what the w is supposed to do (defining a hyperplane the

separates the data), let's look at how we can get such w. Perceptron

Algorithm

Initialize @ = 0
while TRUE do
m =10
for (z;,1;) € D do
if y;(w? - #7) < 0 then
W W+ yT
mé«—m+1
end if
end for
if m = 0 then
break
end if
end while

Geometric Intuition

// Initialize @. & = ( misclassifies everything.

// Keep looping

// Count the number of misclassifications, m

// Loop over each (data, label) pair in the dataset, D
// If the pair (2}, ;) is misclassified

// Update the weight vector o

// Counter the number of misclassification

// If the most recent & gave 0 misclassifications
// Break out of the while-loop

// Otherwise, keep looping!
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Illustration of a Perceptron update. (Left:) The hyperplane defined by w;
misclassifies one red (-1) and one blue (+1) point. (Middle:) The red point x is
chosen and used for an update. Because its label is -1 we need to subtract x
from w. (Right:) The udpated hyperplane w; . | = w; — X separates the two
classes and the Perceptron algorithm has converged.

Quiz: Assume a data set consists only of a single data point {(x, +1)}. How often
can a Perceptron misclassify this point x repeatedly? What if the initial weight
vector w was initialized randomly and not as the all-zero vector?

Perceptron Convergence

The Perceptron was arguably the first algorithm with a strong formal guarantee.
If a data set is linearly separable, the Perceptron will find a separating hyperplane
in a finite number of updates. (If the data is not linearly separable, it will loop
forever.)

The argument goes as follows: Suppose Iw* such that y;(x " w*) > 0
V(x;,y;) € D. Now, suppose that we rescale each data point and the w* such
that

[w*]]=1 and ||xi||<1Vx;€D

Let us define the Margin vy of the hyperplane w* as y = miny, y,)ep \xiTw* |.

A little observation (which will come in very handy): For all x we must have
T
y(x
data points (x, y) lie on the "correct" side of the hyper-plane and therefore
Tw*). The second inequality follows directly from the definition of

w*) = |x"w*| > 7. Why? Because w* is a perfect classifier, so all training

y = sign(x
the margin ~.

Unit circle

To summarize our setup:
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e All inputs x; live within the unit sphere

* There exists a separating hyperplane defined by w*, with ||w||* = 1 (i.e. w*
lies exactly on the unit sphere).

¢ ~isthe distance from this hyperplane (blue) to the closest data point.

Theorem: If all of the above holds, then the Perceptron algorithm makes at
most 1/?2 mistakes. Proof:
Keeping what we defined above, consider the effect of an update (w becomes

T

w + yx) on the two terms w ' w* and w ' w. We will use two facts:

e y(x"w) < 0: This holds because x is misclassified by w - otherwise we
wouldn't make the update.

e y(x"w*) > 0: This holds because w* is a separating hyper-plane and
classifies all points correctly.

1. Consider the effect of an update on w ' w*:

(wHyx) w=w'w" +yx'w)>w w4+~

The inequality follows from the fact that, for w*, the distance from the
hyperplane defined by w* to x must be at least v (i.e.
y(x'
by at least .

2. Consider the effect of an update on w ' w:

w*) = |x "w*| > ). This means that for each update, w ' w* grows

(WHyx) (wHyx) =w' w+2y(w x)+°(x ' x) <w w+1
<0 0< <1

The inequality follows from the fact that
. Zy(wa) < 0 as we had to make an update, meaning x was
misclassified
= 0<y’(x'x)<lasy®=1landallx'x <1 (because|x| < 1).
This means that for each update, w ' w grows by at most 1.

3. Now remember from the Perceptron algorithm that we initialize w = 0.
Hence, initially w 'w = 0 and w ' w* = 0 and after M updates the
following two inequalities must hold:

LOw' w* > My
(@w'w < M.
We can then complete the proof:

My<w'w* By (1)
= ||w|| cos(0) by definition of inner-product, where 6 is the angle between w and
< ||w]| by definition of cos, we must have cos(d) < 1.
=vVwlw by definition of ||w||

<VM By (2)

= My<vM
= M?*y2 <M

1
=M< — And hence, the number of updates M is bounded from above by a
Y
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Quiz: Given the theorem above, what can you say about the margin of a
classifier (what is more desirable, a large margin or a small margin?) Can you
characterize data sets for which the Perceptron algorithm will converge
quickly? Draw an example.

History

o Initially, huge wave of excitement ("Digital brains")
(See The New Yorker December 1958)

o Then, contributed to the A.I. Winter. Famous
example of a simple non-linearly separable data set,
the XOR problem (Minsky 1969):
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