
1/30/23, 11:02 AM k-nearest neighbors / Curse of Dimensionality

file:///Users/kilianweinberger/Documents/teaching/CS4780/CS4780MasterCornell/2023Spring/WebSite/lectures/lecturenote02_kNN.html 1/8

A binary classification example with .
The green point in the center is the test

sample . The labels of the 3 neighbors are
(+1) and (-1) resulting in majority

predicting (+1).

k-nearest neighbors
Cornell CS 4/5780

Spring 2023

The k-NN algorithm

Assumption: Similar Inputs have similar outputs Classification rule: For a test
input , assign the most common label amongst its k most similar training inputs

Formal (and borderline incomprehensible) definition of k-NN:
Test point:
Denote the set of the nearest neighbors of as . Formally is defined as

 s.t. and ,

(i.e. every point in but not in is at least as far away from as the furthest
point in). We can then define the classifier as a function returning the
most common label in :

x

k = 3

x

2× 1×

x

k x Sx Sx

Sx ⊆ D |Sx| = k ∀(x
′, y′) ∈ D∖Sx

dist(x, x
′) ≥ max

(x
′′,y′′)∈Sx

dist(x, x
′′),

D Sx x

Sx h()

Sx

h(x) = mode({y′′ : (x
′′, y′′) ∈ Sx}),

1/30/23, 11:02 AM k-nearest neighbors / Curse of Dimensionality

file:///Users/kilianweinberger/Documents/teaching/CS4780/CS4780MasterCornell/2023Spring/WebSite/lectures/lecturenote02_kNN.html 2/8

where means to select the label of the highest occurrence.
(Hint: In case of a draw, a good solution is to return the result of -NN with
smaller .)

Quiz#1: How does affect the classifier? What happens if ? What if ?

What distance function should we use?

The k-nearest neighbor classifier fundamentally relies on a distance metric. The
better that metric reflects label similarity, the better the classified will be. The
most common choice is the Minkowski distance

Quiz#2: This distance definition is pretty general and contains many well-
known distances as special cases. Can you identify the following candidates?

1. :
2. :
3. :

The NN classifier is still widely used today, but often with learned metrics. For
more information on metric learning check out the Large Margin Nearest
Neighbors (LMNN) algorithm to learn a pseudo-metric (nowadays also known as
the triplet loss) or FaceNet for face verification.

Brief digression (Bayes optimal classifier)

Example: Assume (and this is almost never the case) you knew , then you
would simply predict the most likely label.

Although the Bayes optimal classifier is as good as it gets, it still can make
mistakes. It is always wrong if a sample does not have the most likely label. We
can compute the probability of that happening precisely (which is exactly the
error rate):

mode(⋅)

k

k

k k = n k = 1

dist(x, z) = (
d

∑
r=1

|xr − zr|
p)

1/p

.

p = 1

p = 2

p → ∞

k

P(y|x)

The Bayes optimal classifier predicts: y∗ = hopt(x) = argmax
y

P(y|x)

ϵBayesOpt = 1 − P(hopt(x)|x) = 1 − P(y∗|x)

https://proceedings.neurips.cc/paper/2005/file/a7f592cef8b130a6967a90617db5681b-Paper.pdf
https://arxiv.org/pdf/1503.03832.pdf

1/30/23, 11:02 AM k-nearest neighbors / Curse of Dimensionality

file:///Users/kilianweinberger/Documents/teaching/CS4780/CS4780MasterCornell/2023Spring/WebSite/lectures/lecturenote02_kNN.html 3/8

Assume for example an email can either be classified as spam or ham
. For the same email the conditional class probabilities are:

In this case the Bayes optimal classifier would predict the label as it is
most likely, and its error rate would be .

Why is the Bayes optimal classifier interesting, if it cannot be used in practice?
The reason is that it provides a highly informative lower bound of the error rate.
With the same feature representation no classifier can obtain a lower error. We
will use this fact to analyze the error rate of the NN classifier.

Briefer digression: Best constant predictor

While we are on the topic, let us also introduce an upper bound on the error ---
i.e. a classifier that we will (hopefully) always beat. That is the constant classifier,
which essentially predicts always the same constant independent of any feature
vectors. The best constant in classification is the most common label in the
training set. Incidentally, that is also what the -NN classifier becomes if .
In regression settings, or more generally, the best constant is the constant that
minimizes the loss on the training set (e.g. for the squared loss it is the average
label in the training set, for the absolute loss the median label). The best constant
classifier is important for debugging purposes -- you should always be able to
show that your classifier performs significantly better on the test set than the best
constant.

1-NN Convergence Proof

Cover and Hart 1967[1]: As , the -NN error is no more than
twice the error of the Bayes Optimal classifier. (Similar guarantees hold
for .)

 small large

x (+1)

(−1) x

P(+1|x) = 0.8P(−1|x) = 0.2

y∗ = +1

ϵBayesOpt = 0.2

k

k k = n

n → ∞ 1

k > 1

n n n → ∞

https://en.wikipedia.org/wiki/Statistical_significance

1/30/23, 11:02 AM k-nearest neighbors / Curse of Dimensionality

file:///Users/kilianweinberger/Documents/teaching/CS4780/CS4780MasterCornell/2023Spring/WebSite/lectures/lecturenote02_kNN.html 4/8

Let be the nearest neighbor of our test point . As ,
, i.e. . (This means the nearest neighbor is identical

to .) You return the label of . What is the probability that this is not the
label of ? (This is the probability of drawing two different label of)

where the inequality follows from and . We also
used that .

In the limit case, the test point and its nearest neighbor are identical. There
are exactly two cases when a misclassification can occur: when the test
point and its nearest neighbor have different labels. The probability of this
happening is the probability of the two red events:

Good news: As , the -NN classifier is only a factor 2 worse than the best
possible classifier. Bad news: We are cursed!!

Curse of Dimensionality

Distances between points

The NN classifier makes the assumption that
similar points share similar labels.
Unfortunately, in high dimensional spaces,
points that are drawn from a probability
distribution, tend to never be close together.
We can illustrate this on a simple example.
We will draw points uniformly at random
within the unit cube (illustrated in the figure)

xNN xt n → ∞

dist(xNN, xt) → 0 xNN → xt

xt xNN

xt x

ϵNN = P(y∗|xt)(1 − P(y∗|xNN)) + P(y∗|xNN)(1 − P(y∗|xt))

≤ (1 − P(y∗|xNN)) + (1 − P(y∗|xt)) = 2(1 − P(y∗|xt) = 2ϵBayesOpt,

P(y∗|xt) ≤ 1 P(y∗|xNN) ≤ 1

P(y∗|xt) = P(y∗|xNN)

(1−p(s|x))p(s|x) + p(s|x)(1−p(s|x)) = 2p(s|x)(1 − p(s|x))

n → ∞ 1

k

1/30/23, 11:02 AM k-nearest neighbors / Curse of Dimensionality

file:///Users/kilianweinberger/Documents/teaching/CS4780/CS4780MasterCornell/2023Spring/WebSite/lectures/lecturenote02_kNN.html 5/8

2 0.1

10 0.63

100 0.955

1000 0.9954

and we will investigate how much space the nearest neighbors of a test point
inside this cube will take up.

Formally, imagine the unit cube . All training data is sampled uniformly
within this cube, i.e. , and we are considering the nearest
neighbors of such a test point.

Let be the edge length of the smallest hyper-cube that contains all -nearest

neighbor of a test point. Then and . If , how big is ?

So as almost the entire space is needed to find the -NN. This breaks
down the -NN assumptions, because the -NN are not particularly closer (and
therefore more similar) than any other data points in the training set. Why would
the test point share the label with those -nearest neighbors, if they are not
actually similar to it?

k

[0, 1]d

∀i,xi ∈ [0, 1]d k = 10

d ℓ

ℓ k

ℓd ≈ k
n

ℓ ≈ (k
n
)

1/d
n = 1000 ℓ

d ≫ 0 10

k k

k

1/30/23, 11:02 AM k-nearest neighbors / Curse of Dimensionality

file:///Users/kilianweinberger/Documents/teaching/CS4780/CS4780MasterCornell/2023Spring/WebSite/lectures/lecturenote02_kNN.html 6/8

Figure demonstrating ``the curse of dimensionality''. The histogram plots
show the distributions of all pairwise distances between randomly

distributed points within -dimensional unit squares. As the number of
dimensions grows, all distances concentrate within a very small range.

One might think that one rescue could be to increase the number of training
samples, , until the nearest neighbors are truly close to the test point. How
many data points would we need such that becomes truly small? Fix

 , which grows exponentially! For we
would need far more data points than there are electrons in the universe...

Distances to hyperplanes

So the distance between two randomly drawn data points increases drastically
with their dimensionality. How about the distance to a hyperplane? Consider the
following figure. There are two blue points and a red hyperplane. The left plot
shows the scenario in 2d and the right plot in 3d. As long as , the distance

between the two points is . When a third dimension is added, this

extends to , which must be at least as large (and is probably
larger). This confirms again that pairwise distances grow in high dimensions. On
the other hand, the distance to the red hyperplane remains unchanged as the
third dimension is added. The reason is that the normal of the hyper-plane is
orthogonal to the new dimension. This is a crucial observation. In dimensions,

 dimensions will be orthogonal to the normal of any given hyper-plane.
Movement in those dimensions cannot increase or decrease the distance to the
hyperplane --- the points just shift around and remain at the same distance. As
distances between pairwise points become very large in high dimensional spaces,
distances to hyperplanes become comparatively tiny. For machine learning
algorithms, this is highly relevant. As we will see later on, many classifiers (e.g.
the Perceptron or SVMs) place hyper planes between concentrations of different
classes. One consequence of the curse of dimensionality is that most data points
tend to be very close to these hyperplanes and it is often possible to perturb input
slightly (and often imperceptibly) in order to change a classification outcome.
This practice has recently become known as the creation of adversarial samples,
whose existents is often falsely attributed to the complexity of neural networks.

d

d

n

ℓ

ℓ = 1
10 = 0.1 ⇒ n = k

ℓd
= k ⋅ 10d d > 100

d = 2

√Δx
2 + Δy

2

√Δx2 + Δy2 + Δz2

d

d − 1

file:///Users/kilianweinberger/Documents/teaching/CS4780/CS4780MasterCornell/2023Spring/WebSite/lectures/lecturenote03.html
file:///Users/kilianweinberger/Documents/teaching/CS4780/CS4780MasterCornell/2023Spring/WebSite/lectures/lecturenote09.html
https://arxiv.org/pdf/1312.6199.pdf

1/30/23, 11:02 AM k-nearest neighbors / Curse of Dimensionality

file:///Users/kilianweinberger/Documents/teaching/CS4780/CS4780MasterCornell/2023Spring/WebSite/lectures/lecturenote02_kNN.html 7/8

The curse of dimensionality has different effects on distances between two
points and distances between points and hyperplanes.

An animation illustrating the effect on randomly sampled data points in
2D, as a 3rd dimension is added (with random coordinates). As the points

expand along the 3rd dimension they spread out and their pairwise
distances increase. However, their distance to the hyper-plane (z=0.5)
remains unchanged --- so in relative terms the distance from the data
points to the hyper-plane shrinks compared to their respective nearest

neighbors.

Data with low dimensional structure

However, not all is lost. Data may lie in low dimensional subspace or on sub-
manifolds. Example: natural images (digits, faces). Here, the true dimensionality
of the data can be much lower than its ambient space. The next figure shows an
example of a data set sampled from a 2-dimensional manifold (i.e. a surface in

1/30/23, 11:02 AM k-nearest neighbors / Curse of Dimensionality

file:///Users/kilianweinberger/Documents/teaching/CS4780/CS4780MasterCornell/2023Spring/WebSite/lectures/lecturenote02_kNN.html 8/8

space), that is embedded within 3d. Human faces are a typical example of an
intrinsically low dimensional data set. Although an image of a face may require
18M pixels, a person may be able to describe this person with less than 50
attributes (e.g. male/female, blond/dark hair, ...) along which faces vary.

An example of a data set in 3d that is drawn from an underlying 2-
dimensional manifold. The blue points are confined to the pink surface

area, which is embedded in a 3-dimensional ambient space.

k-NN summary

-NN is a simple and effective classifier if distances reliably reflect a
semantically meaningful notion of the dissimilarity. (It becomes truly
competitive through metric learning)
As , -NN becomes provably very accurate, but also very slow.
As , points drawn from a probability distribution stop being similar to
each other, and the NN assumption breaks down.

Reference

[1]Cover, Thomas, and, Hart, Peter. Nearest neighbor pattern classification[J].
Information Theory, IEEE Transactions on, 1967, 13(1): 21-27

k

n → ∞ k

d ≫ 0

k

