
1/30/23, 11:03 AM Supervised Learning

file:///Users/kilianweinberger/Documents/teaching/CS4780/CS4780MasterCornell/2023Spring/WebSite/lectures/lecturenote01_MLsetup.html 1/7

Supervised Learning
Cornell CS 4/5780

Spring 2023

Intro

The goal in supervised learning is to make predictions from data. For example,
one popular application of supervised learning is email spam filtering. Here, an
email (the data instance) needs to be classified as spam or not-spam. Following
the approach of traditional computer science, one might be tempted to write a
carefully designed program that follows some rules to decide if an email is spam
or not. Although such a program might work reasonably well for a while, it has
significant drawbacks. As email spam changes it would have to be rewritten.
Spammers could attempt to reverse engineer the software and design messages
that circumvent it. And even if it is successful, it could probably not easily be
applied to different languages. Machine Learning uses a different approach to
generate a program that can make predictions from data. Instead of
programming it by hand it is learned from past data. This process works if we
have data instances for which we know exactly what the right prediction would
have been. For example past data might be user-annotated as spam or not-spam.
A machine learning algorithm can utilize such data to learn a program, a
classifier, to predict the correct label of each annotated data instance. Other
successful applications of machine learning include web-search ranking (predict
which web-page the user will click on based on his/her search query), placing of
online advertisements (predict the expected revenue of an ad, when placed on a
homepage, which is seen by a specific user), visual object recognition (predict
which object is in an image - e.g. a camera mounted on a self-driving car), face-
detection (predict if an image patch contains a human face or not).

Setup

Let us formalize the supervised machine learning setup. Our training data comes
in pairs of inputs , where is the input instance and its label. The
entire training data is denoted as

(x, y) x ∈ Rd y

1/30/23, 11:03 AM Supervised Learning

file:///Users/kilianweinberger/Documents/teaching/CS4780/CS4780MasterCornell/2023Spring/WebSite/lectures/lecturenote01_MLsetup.html 2/7

where:

 is the d-dimensional feature space
 is the input vector of the sample
 is the label of the sample

 is the label space

The data points are drawn from some (unknown) distribution .
Ultimately we would like to learn a function such that for a new pair
, we have with high probability (or). We will get to this later.
For now let us go through some examples of and .

Examples of Label Spaces

There are multiple scenarios for the label space :

Binary
classification

 or
.

Eg. spam filtering. An email is either
spam (), or not ().

Multi-class
classification .

Eg. face classification. A person can
be exactly one of identities (e.g.,
1="Barack Obama", 2="George W.
Bush", etc.).

Regression .
Eg. predict future temperature or the
height of a person.

Examples of feature vectors

We call a feature vector. Each one of its dimensions is a features describing
the th sample. Let us look at some examples:

Patient Data in a hospital. , where or , may refer
to the patient 's gender, could be the height of patient in , and may be
his/her in years, etc. In this case, and the feature vector is dense, i.e., the
number of nonzero coordinates in is large relative to .

Text document in bag-of-words format. , where is
the number of occurrences of the word in a dictionary in document
(often referred to as term frequencies). In this case, and
the feature vector is sparse, i.e., consists of mostly zeros. A common way to
avoid the use of a dictionary is to use feature hashing instead to directly hash

D = {(x1, y1), … , (xn, yn)} ⊆ R
d × C

R
d

xi ith

yi ith

C

(xi, yi) P(X,Y)

h (x, y) ∼ P

h(x) = y h(x) ≈ y

X Y

C

C = {0, 1}

C = {−1, +1} +1 −1

C = {1, 2, ⋯ ,K}

(K ≥ 2)

K

C = R

xi d

i−

xi = (x1
i ,x

2
i , ⋯ ,xd

i) x1
i = 0 1

i x2
i i cm x3

i

d ≤ 100

xi d

xi = (x1
i ,x

2
i , ⋯ ,xd

i) xα
i

αth i

d ∼ 100, 000 − 10M

xi

https://en.wikipedia.org/wiki/Bag-of-words_model
https://en.wikipedia.org/wiki/Feature_hashing

1/30/23, 11:03 AM Supervised Learning

file:///Users/kilianweinberger/Documents/teaching/CS4780/CS4780MasterCornell/2023Spring/WebSite/lectures/lecturenote01_MLsetup.html 3/7

any string to a dimension index (the advantage is that no dictionary is
needed, but a minor disadvantage can be that multiple words are hashed into
the same dimension.) A popular improvement over bag-of-words features is
TF-IDF, which down-scales common words and highlights rare words.
Images. Here, the features typically represent pixel values.

, where , , and refer to the red, green,
and blue values of the th pixel in the image. In this case,

 and the feature vector is dense. A camera results
in features.

Hypothesis classes and No Free Lunch

Before we can find a function , we must specify what type of function it is that
we are looking for. It could be an artificial neural network, a decision tree or
many other types of classifiers. We call the set of possible functions the
hypothesis class. By specifying the hypothesis class, we are encoding important
assumptions about the type of problem we are trying to learn. The No Free Lunch
Theorem states that every successful ML algorithm must make assumptions. This
also means that there is no single ML algorithm that works for every setting.

Loss Functions

There are typically two steps involved in learning a hypothesis function . First,
we select the type of machine learning algorithm that we think is appropriate for
this particular learning problem. This defines the hypothesis class , i.e. the set
of functions we can possibly learn. The second step is to find the best function
within this class, . This second step is the actual learning process and
often, but not always, involves an optimization problem. Essentially, we try to
find a function h within the hypothesis class that makes the fewest mistakes
within our training data. (If there is not a single function we typically try to
choose the "simplest" by some notion of simplicity - but we will cover this in
more detail in a later class.) How can we find the best function? For this we need
some way to evaluate what it means for one function to be better than another.
This is where the loss function (aka risk function) comes in. A loss function
evaluates a hypothesis on our training data and tells us how bad it is. The
higher the loss, the worse it is - a loss of zero means it makes perfect predictions.
It is common practice to normalize the loss by the total number of training
samples, n, so that the output can be interpreted as the average loss per sample
(and is independent of n).

xi = (x1
i ,x

2
i , ⋯ ,x3k

i) x
3j−2
i x

3j−1
i x

3j
i

j

d ∼ 100, 000 − 10M 7MP

7M × 3 = 21M

h

h()

H

h ∈ H

h ∈ H

https://en.wikipedia.org/wiki/Tf%E2%80%93idf
https://en.wikipedia.org/wiki/No_free_lunch_theorem

1/30/23, 11:03 AM Supervised Learning

file:///Users/kilianweinberger/Documents/teaching/CS4780/CS4780MasterCornell/2023Spring/WebSite/lectures/lecturenote01_MLsetup.html 4/7

Examples:

Zero-one loss:

The simplest loss function is the zero-one loss. It literally counts how many
mistakes an hypothesis function h makes on the training set. For every single
example it suffers a loss of 1 if it is mispredicted, and 0 otherwise. The
normalized zero-one loss returns the fraction of misclassified training samples,
also often referred to as the training error. The zero-one loss is often used to
evaluate classifiers in multi-class/binary classification settings but rarely useful
to guide optimization procedures because the function is non-differentiable
and non-continuous. Formally, the zero-one loss can be stated has:

This loss function returns the error rate on this data set . For every example
that the classifier misclassifies (i.e. gets wrong) a loss of 1 is suffered, whereas
correctly classified samples lead to 0 loss.

Squared loss:

The squared loss function is typically used in regression settings. It iterates
over all training samples and suffers the loss . The squaring has
two effects: 1., the loss suffered is always nonnegative; 2., the loss suffered
grows quadratically with the absolute mispredicted amount. The latter
property encourages no predictions to be really far off (or the penalty would be
so large that a different hypothesis function is likely better suited). On the
flipside, if a prediction is very close to be correct, the square will be tiny and
little attention will be given to that example to obtain zero error. For example,
if the squared loss will be even smaller, , and
will likely never be fully corrected. If, given an input , the label is
probabilistic according to some distribution then the optimal
prediction to minimize the squared loss is to predict the expected value, i.e.

. Formally the squared loss is:

Absolute loss:

L0/1(h) =
1

n

n

∑
i=1

δh(xi)≠yi , where δh(xi)≠yi = {
1, if h(xi) ≠ yi
0, o.w.

D

(h(xi) − yi)
2

|h(xi) − yi| = 0.001 0.000001

x y

P(y|x)

h(x) = EP(y|x)[y]

Lsq(h) =
1

n

n

∑
i=1

(h(xi) − yi)
2.

1/30/23, 11:03 AM Supervised Learning

file:///Users/kilianweinberger/Documents/teaching/CS4780/CS4780MasterCornell/2023Spring/WebSite/lectures/lecturenote01_MLsetup.html 5/7

Similar to the squared loss, the absolute loss function is also typically used in
regression settings. It suffers the penalties . Because the suffered
loss grows linearly with the mispredictions it is more suitable for noisy data
(when some mispredictions are unavoidable and shouldn't dominate the loss).
If, given an input , the label is probabilistic according to some distribution

 then the optimal prediction to minimize the absolute loss is to predict
the median value, i.e. . Formally, the absolute loss
can be stated as:

Generalization:

Given a loss function, we can then attempt to find the function that minimizes
the loss:

A big part of machine learning focuses on the question, how to do this
minimization efficiently.

If you find a function with low loss on your data , how do you know
whether it will still get examples right that are not in ?

Bad example: "memorizer"

For this , we get error on the training data , but does horribly with
samples not in , i.e., there's the overfitting issue with this function.

Train / Test splits

To resolve the overfitting issue, we usually split into three subsets: as the
training data, , as the validation data, and , as the test data. Usually,
they are split into a proportion of , , and . Then, we choose
based on , and evaluate on .

|h(xi) − yi|

x y

P(y|x)

h(x) = MEDIANP(y|x)[y]

Labs(h) =
1

n

n

∑
i=1

|h(xi) − yi|.

h

h = argminh∈HL(h)

h(⋅) D

D

h(⋅)

h(x) = {yi, if ∃(xi, yi) ∈ D, s.t., x = xi,
0, o.w.

h(⋅) 0% D

D

D DTR

DVA DTE

80% 10% 10% h(⋅)

DTR h(⋅) DTE

1/30/23, 11:03 AM Supervised Learning

file:///Users/kilianweinberger/Documents/teaching/CS4780/CS4780MasterCornell/2023Spring/WebSite/lectures/lecturenote01_MLsetup.html 6/7

Quiz: Why do we need ?
 is used to check whether the obtained from suffers from the

overfitting issue. will need to be validated on , if the loss is too large,
 will get revised based on , and validated again on . This process will

keep going back and forth until it gives low loss on . Here's a trade-off
between the sizes of and : the training results will be better for a larger

, but the validation will be more reliable (less noisy) if is larger.

How to Split the Data?

You have to be very careful when you split the data in Train,Validation,Test. The
test set must simulate a real test scenario, i.e. you want to simulate the setting
that you will encounter in real life. For example, if you want to train an email
spam filter, you train a system on past data to predict if future email is spam.
Here it is important to split train / test temporally - so that you strictly predict
the future from the past. If there is no such thing as a temporal component, it is
often best to split uniformly at random. Definitely never split alphabetically, or by
feature values.

By time, if the data is temporally collected.
In general, if the data has a temporal component, we must split it by time.

Uniformly at random, if (and, in general, only if) the data is .

The test error (or testing loss) approximates the true generalization error/loss.

Putting everything together:

We train our classifier by minimizing the training loss:

where is the hypothetical class (i.e., the set of all possible classifiers). In
other words, we are trying to find a hypothesis which would have performed
well on the past/known data.

We evaluate our classifier on the testing loss:

DVA

DVA h(⋅) DTR

h(⋅) DVA

h(⋅) DTR DVA

DVA

DTR DVA

DTR DVA

i. i. d.

Learning: h∗(⋅) = argminh(⋅)∈H

1

|DTR|
∑

(x,y)∈DTR

ℓ(x, y|h(⋅)),

H h(⋅)

h

Evaluation: ϵTE =
1

|DTE|
∑

(x,y)∈DTE

ℓ(x, y|h∗(⋅)).

1/30/23, 11:03 AM Supervised Learning

file:///Users/kilianweinberger/Documents/teaching/CS4780/CS4780MasterCornell/2023Spring/WebSite/lectures/lecturenote01_MLsetup.html 7/7

If the samples are drawn i.i.d. from the same distribution , then the testing loss
is an unbiased estimator of the true generalization loss:

Quiz: Why does as ? This is due to the weak law of large
numbers, which says that the empirical average of data drawn from a distribution
converges to its mean.

No free lunch. Every ML algorithm has to make assumptions on which
hypothesis class should you choose? This choice depends on the data, and
encodes your assumptions about the data set/distribution . Clearly, there's no
one perfect for all problems.

Example. Assume that , , ,
, and .

Question: what is the value of if ? Well, it is utterly impossible to know
the answer without assumptions. The most common assumption of ML
algorithms is that the function to be approximated is locally smooth.

P

Generalization: ϵ = E(x,y)∼P[ℓ(x, y|h∗(⋅))].

ϵTE → ϵ |DTE| → +∞

H

P

H

(x1, y1) = (1, 1) (x2, y2) = (2, 2) (x3, y3) = (3, 3)

(x4, y4) = (4, 4) (x5, y5) = (5, 5)

y x = 2.5

https://en.wikipedia.org/wiki/Law_of_large_numbers

