CS 5/4780

Probabilistic modeling, MLE and MAP Estimates

Recall the ML Setup; (Xy) ~ P If we knew P(X,Y) or even just P(Y|X), we could compute Bayes optimal classifier For classification more generally $h(x) = \underset{Q}{\operatorname{argmax}} P(y = y \mid X = x) \xrightarrow{h(x)} \underset{Q}{\operatorname{argmin}} E_{y|x} [\ell(q, y)]$ Generative: P(XIX) P(Y) y C Probabilistic modeling: Estimate P(X,y) Discriminative (or P(Y|X) directly) and use it instead Estimating Bernoilli R.V.: Yearly rain/no Rain Data 8=15 D = {R, N,N, N, R, N, N3 C= & R, N3 R = Rain N = No Rain What would your estimate to P(x) be? Can we derive this formally 7 Assume events are "Independent and Identically distributed" Parameter: p = P(Y=R) nR = # Rainy days NN = # no rain days



Eg Rain, No Rain
Say we had prior into that at similar locations typically we have seen Rain on 30 out of 100 days, how do we use this?
Heuristic: $p = P(Y=Rain) = \frac{n_R + 3D}{n_{R} + n_N + 100}$
Maximum Aposteriori Estimator: MAP Model 13 an abstraction that captures our belief, we update our belief based on Data.
0 15 a Rankom variable
$ \frac{\partial}{\partial t} = \frac{\partial}{\partial t} P(\partial D) = \frac{\partial}{\partial t} P(D) P(D) $ $ \frac{\partial}{\partial t} = \frac{\partial}{\partial t} P(D) P(D) P(D) $
= argmax log (PLD10)) + log Plo) log likelihod log prior
Eg: For Bernoulli distritution we can use Beta poin
$P(\theta) = \frac{\theta^{d-1}(1-\theta)^{\beta-1}}{\beta(d,\beta)}$
PMAP = arymax log P(D) #) + log P(D)
= arymax no loyo + no loy (1-0) +
$(\lambda - 1) \log \theta + (\beta - 1) \log (1 - \theta) - \log k, \beta$
$\frac{\partial}{\partial n_{AP}} = \frac{n_{P} + \lambda - 1}{n_{R} + n_{R} + \lambda + \beta - 2} \frac{\lambda - 1}{\beta - 1} \text{Rains}$

Othen MAP is referred to as Bygesian view
There is Bayesian and there is BAYESTAN
True Bayessan: "There is no model, all you are estimating is y"
$P(Y X, Data) = \int_{\partial} P(Y, \partial X, Data) dt$ $= \int_{\partial} P(Y \theta, X, Data) P(\theta) Data$
$= \int_{\theta} P(Y) \theta_{j} X_{j} D_{n} h_{j} P(\theta) \mathcal{D}_{n} h_{j}$