ML Setup, Recap:

1. Data: $D=\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$.
X^{\prime} 's: Input instances $x \in \mathbb{R}^{d}$
$y^{\prime} \mathrm{s}$: Corresponding output $y \in C$
Binary $C=\{0,1\}, \quad C=\{1,2, \ldots, k\}, \quad C=\mathbb{R}$ classification or $\{-1,1\}$, multiclasss regression
2. It: Set of models or hypotheses each model $h \in J t$, given an input instance x, outputs $h(x)$
3. L loss function measures performance of a model Eg: $0-1$ loss: $\ell(h(x), y)=f\{h(x) \neq y\}$

Squared loss: $\quad l(h(x), y)=(h(x)-y)$
a Resolute loss: $\quad l(h(x), y)=|h(x)-y|$
Goal of supervised learning:
Given data D find model h such that loss $l(h(x), g)$ on future instances (x, y) is small.

Asking for model that minimizes loss $l(h(x), y)$ for all possithe future (x, y) is too much.

Why?

Future instances generated from some mechanism (often represented by some) distribution P written as

$$
(x, y) \sim P
$$

Formal Goal of supervised learning:
Given Data D find model h that minimizes

Learning Algo. is the procedure that tries to attain atove goal.

What is a good proxy for

$$
E_{(x, y) \sim p}[l(h(x), y)] \text { ? (and why y) }
$$

Test loss: For evaluation $\frac{1}{\left|D_{\text {Test }}\right|} \sum_{(x, y) \in D_{\text {Test }}} l(h(x), y)$
Split Data :

$$
\begin{aligned}
& D=\underbrace{\left[D_{\text {Train }}\right.}_{\text {Training }}, \underbrace{D_{\text {test }}}_{\text {validation }}
\end{aligned}
$$

No free Lunch theorem:
"Every ML Algorithm makes assumptions.
$\operatorname{cs} 4 / 5780$
K-Nearest Neighbors classifier
Assumption: Similar points are likely to share same label
classification Rule: For a test point x, assign the most common label amongst the k most $\underbrace{\text { cost }}_{\text {similar }}$ training instances

Formally: Given $D=\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{1}, y_{n}\right)\right\}$ and test point x Find $S_{x} \subseteq D$ st. $\left|S_{A}\right|=k$ and $\forall\left(x^{\prime}, y^{\prime}\right) \in D \backslash S_{x}$,

$$
\operatorname{dis} H\left(x^{\prime}, x\right) \geqslant \max _{\left(x^{\prime \prime}, y^{\prime \prime}\right) \in S_{x}} \operatorname{dist}\left(x^{\prime \prime}, x\right) \quad h(x)=\operatorname{MODE}\left(y^{\prime}:\left(x^{\prime}, y^{\prime}\right) \in S_{x}\right)
$$

Pro-tip: In case of a tie, reduce k by 1 and repeat common distances: Minkowski distance or l_{p} distances

$$
\operatorname{dist}\left(x, x^{\prime}\right)=\left(\sum_{i=1}^{d}\left|x[i]-x^{\prime}[i]\right|^{b}\right)^{2 / p}
$$

$p=2$ is Euclidean distance
Quiz: What distances do $p=1, p \rightarrow \infty$ at $p \rightarrow 0$ correspond to.
Bayes optimal classifier
If we knew P how well could we do?
Bayes Error: $\min _{\text {All possible } h} E_{(x, y \sim D} \ell(h(x), y)$

If you knew $P(y \mid x)$, Given point $x \in \mathbb{R}$, optimal classifier:

$$
\operatorname{hopt}(x)=\underset{\substack{\operatorname{argmax}}}{y \in C} P(y=y) x=x)
$$

Bayes Error $(x)=1-\max _{y \in C} P(y=y \mid x=x)$
This is the Best we can do I

Quiz: Coin has protafility p of heads.

1. If tossed twice, what is the probability q, of two different outcomes?
2. Conclude that $q \leq 2(1-p)$

1 - NN classifier: Simplest case $k=1$
Risk of $1-N N \leqslant 2$ Bayes ERROR
Formal proof is involved, see Cover \& Hart'67 intuition:

1. Say P was a discrete distribution on a finite set of points. Then, as $n \rightarrow \infty$ every test point has already occurred in $D_{\text {train. }}$ (say we pick any one of previous ocurrances as the nearest neightra)
2. Risk of I-NN Classifier is now given by the quiz Question. Why?

We are asking the question, what is the probability that, label y of a new test instance x matches that of a randomly chosen training point $x_{i} \in D_{\text {train }}$ such that, $x_{i}=x$. Its label y_{i} is drawn independently from $P(y \mid x=x)$

Hence, Risk of $1-N N \leqslant 2\left(1-\max _{y \in\{0,1\}} P(y=y \mid X=x)\right)$
claim: Given x, let $\hat{x} \in D_{\text {teat in }}$ be the $1-N N$ of x in D_{T} as $n \rightarrow \infty, \quad \operatorname{dist}(x, \hat{x}) \rightarrow 0, \quad \hat{x} \rightarrow x$
Risk of $1-N N \leqslant 2$ Bayes ERROR
$k-N N$ For general $k>1$
a. Larger k, as $n \rightarrow \infty$,

Intuition: For point x, we predict as majority of k draws from $P(y \mid x=x)$
F. But, it k grows too fast, the more we rely on farther points to predict Patel for x
The curse of Dimensionality:

						-

1. Each sut-cute has same area

2 . if we randomly pick a sew we will pick more cures near surface!
1 Assume points are drawn uniformly at random from a unit hypercube $[0,1]^{\alpha}$
2 Hypercute of volume k/n within unit hypercube is expected to contain k out of n pants
3 length l of such cute is given ty $l^{d}=\mathrm{k} / \mathrm{n}$
What does this mean?

$$
\left.\begin{array}{lc|c|c|c|c}
k=10 \\
n=1000
\end{array} \rightarrow \begin{array}{c}
d \\
l
\end{array}\right)
$$

