Bias variance Decomposition
Consider the regression problem where given x we want to predict a real valued outcome $y . \quad l(h(x), y)=(h(x)-y)^{2}$

Eg $\quad x=$ (\#bedroums, sq footage of house, \# bathrooms,...)
$y=$ house price

$$
\text { Test } \operatorname{error}(h)=E_{(x y) \sim p}\left[(h(x)-y)^{2}\right]
$$

Bayes optimal Predictor $=$ hypothesis with smallest possible test loss

$$
\bar{y}(x)=E[y \mid x]
$$ is the Bayes optimal predictor

$$
\underset{(x, y) \sim p}{E}\left[(\bar{y}(x)-y)^{2}\right]=\text { inherent (unavoidable) noise }
$$

No method with any amount of data can beat the above test loss
say we have an Algorithm that takes as input dataset D and outputs hypothesis h. But ho depends on sample D which is a random draw. We are interested in understanding the expected test error

$$
\text { Expected Test Error }=\quad E_{D \sim p^{n}}\left[E_{(x, y) \sim p}\left[\left(h_{D}(x)-y\right)^{2}\right]\right]
$$

since his a random let us consider its expected behavior:

$$
\bar{h}:=E_{D \sim p^{n}}\left[h_{D}\right] \text { ie } \bar{h}(x)=E_{D \sim p^{n}}\left[h_{D}(x)\right]
$$

Bias: $\underset{x v p}{E}\left[(\bar{h}(x)-\bar{y}(x))^{2}\right]$
Expected sq. distance between expected model of our Algorithm and the best possible model

Variance: $E_{D^{\sim} p^{n}}\left[E_{\cdot x \sim p}\left[\left(\bar{h}(x)-h_{D}(x)\right)^{2}\right]\right]$
Fluctuation of Algorithm's random model around its mean
We will see that:
Expected test error $=$ Bias + variance + inherent noise

$$
\begin{aligned}
& \text { Expected Test Error }=E_{D \wedge p n}\left[\begin{array}{c}
E_{(x, y) \sim p}
\end{array}\left[\left(h_{D}(x)-y\right)^{2}\right]\right] \\
& =E_{D \sim p n}[{\underset{(x, y)}{ }}_{\left[\left(h_{D}(x)-\bar{y}(x)\right.\right.}^{A}+\underbrace{\bar{y}(x)-y)^{2}}_{B}]] \\
& =E_{D \sim p \eta}[E_{(x, y)}[\underbrace{\left[(h D(x)-\bar{y}(x))^{2}\right.}_{A^{2}}+\underbrace{2\left(h_{D}(x)-\bar{y}(x)\right)(\bar{y}(x)-y)}_{2 A B}+\underbrace{(\bar{y}(x)-y)^{2}}_{B^{2}}]] \\
& \left.\left.=E_{D \sim p^{\eta}} E_{x, y}\left[\left(h_{D}(x)-\bar{y}(x)\right)^{2}\right]\right]+2 \underset{D \sim p^{n}(x, y)}{E}\left[\left(h_{D}(x)-\bar{y}(x)\right)(\bar{y}(x)-y)\right)\right] \\
& +E_{(x, y)}\left[(\bar{y}(x)-y)^{2}\right] \\
& =E_{D^{\prime} p^{n}} E_{(x, y)}\left[\left(h_{D}(x)-\bar{y}(x)\right)^{2}\right]+E\left[(\bar{y}(x)-y)^{2}\right] \\
& =\underset{D \sim P^{n}(x, y)}{E}[\underbrace{\left(h_{f}(x)-\bar{h}(x)\right.}_{A}+\underbrace{\left.\bar{h}(x)-\bar{y}(x))^{2}\right]+E\left[(\bar{y}(x)-y)^{2}\right]}_{B}
\end{aligned}
$$

Variance: Captures how much your classifier changes if you train on a different training set. How "overspecialized" is your classifier to a particular training set (overfitting)? If we have the best possible model for our training data, how far off are we from the average classifier?

Bias: What is the inherent error that you obtain from your classifier even with infinite training data? This is due to your classifier being "biased" to a particular kind of solution (e.g. linear classifier). In other words, bias is inherent to your model.

Noise: How big is the data-intrinsic noise? This error measures ambiguity due to your data distribution and feature representation. You can never beat this, it is an aspect of the data.
\qquad

> Fig 1: Graphical illustration of bias and variance. (Source http://scott.fortmann-roe.com/docs/BiasVariance.html) Fig 2 : The variation of Bias and Variance with the model complexity. This is similar to the concept of overfitting and underfitting. More complex models overfit while the simplest models underfit. (Source http://scott.fortmann-roe.com/docs/BiasVariance.html)

