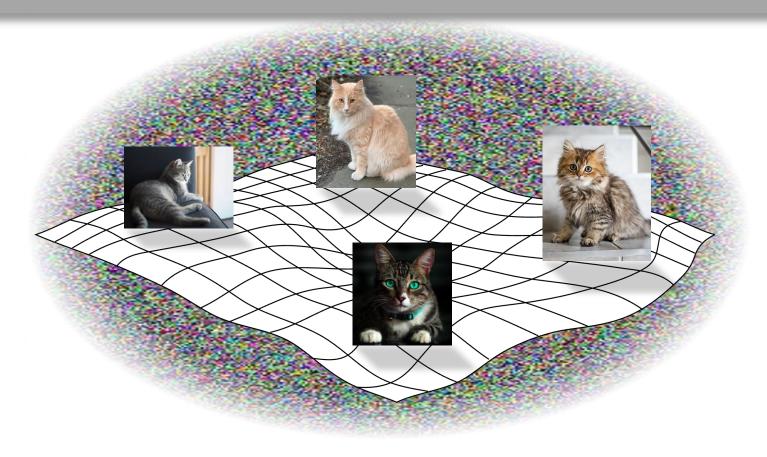
CS5670: Computer Vision

Image Manifolds & Image Generation



Some slides adapted from content by Abe Davis, Jin Sun, and Phillip

Announcements

- Project 5 (Neural Radiance Fields) due tomorrow by 8:00 pm
- In class final next Tuesday, May 9
 - Open book, open note
 - "Notes" are meant to be notes you write up yourself they will be limited to 15 pages front and back (although you likely won't need anywhere near that many pages)
- Course evaluations are open
 - We would love your feedback!
 - Small amount of extra credit for filling out
 - What you write is still anonymous; instructors only see if students filled it out
 - <u>https://apps.engineering.cornell.edu/CourseEval/</u>

Readings

- Szeliski 2nd Edition Chapter 5.5.4
- 5-Minute Graphics from Steve Seitz:
 - Large Language Models from scratch
 - Large Language Models: Part 2
 - <u>Text to Image in 5 minutes: Parti, Dall-E 2, Imagen</u>
 - <u>Text to Image: Part 2 -- how image diffusion works in 5 minutes</u>

Agenda

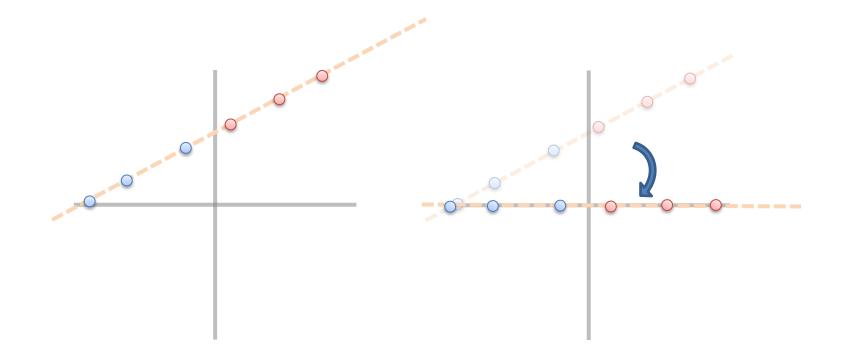
- The manifold of natural images
- Image-to-image methods and GANs
- Image synthesis methods
- Next time: diffusion models

By Abe Davis

DIMENSIONALITY REDUCTION

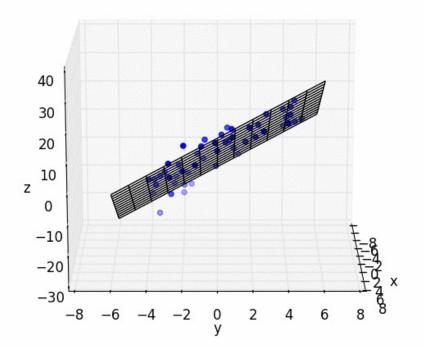
Linear Dimensionality Reduction: 2D->1D

- Consider a bunch of data points in 2D
- Let's say these points lie along a line
- If so, we can translate and rotate our data so that it is 1D



Linear Dimensionality Reduction: 3D->2D

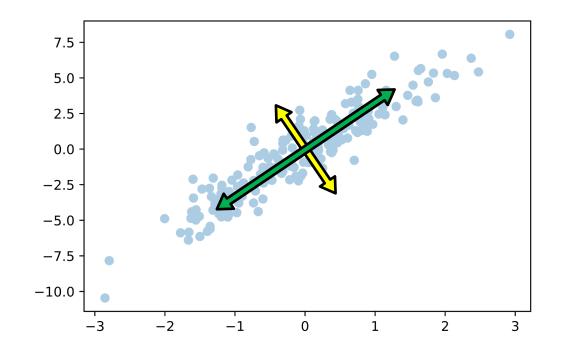
- Similar to 1D case, we can fit a plane to the data, and transform our coordinate system so that plane becomes the x-y plane
- "Plane fitting"
- Now we only need to store two numbers for each point (and the plane parameters)
- More generally: look for the 2D subspace that best fits the data, and ignore the remaining dimensions



Think of this as data that sits on a flat sheet of paper, suspended in 3D space. We will come back to this analogy in a couple slides...

Generalizing Linear Dimensionality Reduction

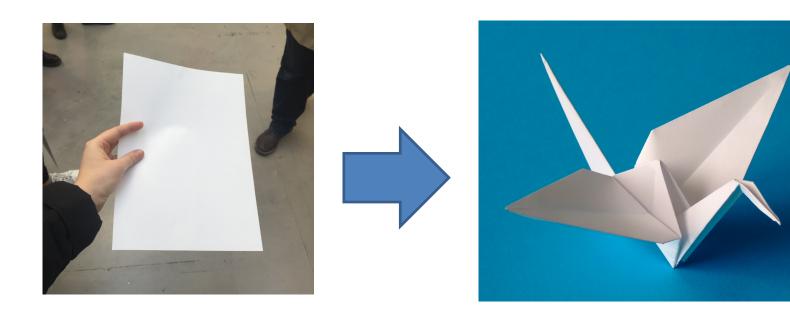
- **Principal Components Analysis** (**PCA**): find and order orthogonal axes by how much the data varies along each axis.
- The axes we find (ordered by variance of our data) are called *principal components*.
- Dimensionality reduction can be done by using only the first k principal components



Side Note: principal components are closely related to the eigenvectors of the covariance matrix for our data

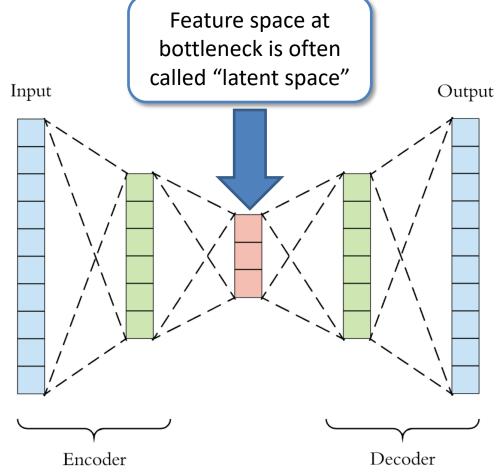
Manifolds

- Think of a piece of paper as a 2D subspace
- If we bend & fold it, it's still locally a 2D subspace...
- A "manifold" is the generalization of this concept to higher dimensions...



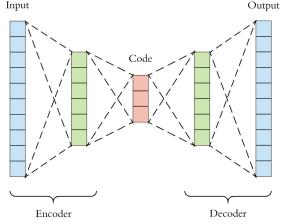
Autoencoders: Dimensionality Reduction for Manifolds

- Learn a non-linear (deep network) transformation into some lowerdimensional space (encoder)
- Learn a transformation from lowerdimensional space back to original content (decoder)
- Loss function measures difference between input & output
- Unsupervised
 - No labels required!

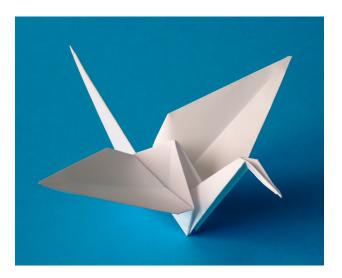


Autoencoders: Dimensionality Reduction for Manifolds

Transformations that reduce dimensionality cannot be invertible in general



 An autoencoder tries to learn a transformation that is invertible for points on some manifold



By Abe Davis

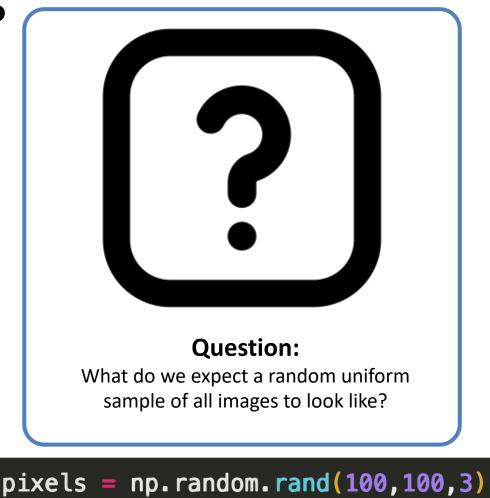
IMAGE MANIFOLDS

The Space of All Images

• Lets consider the space of all 100x100 images

• Now lets randomly sample that space...

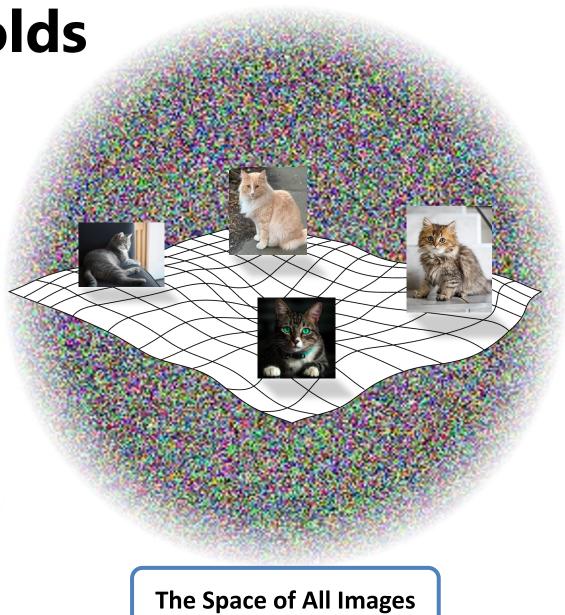
• Conclusion: Most images are noise



Natural Image Manifolds

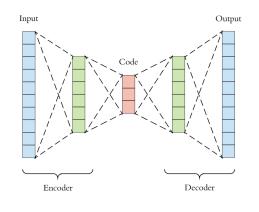
- Most images are "noise"
- "Meaningful" images tend to form some manifold within the space of all images

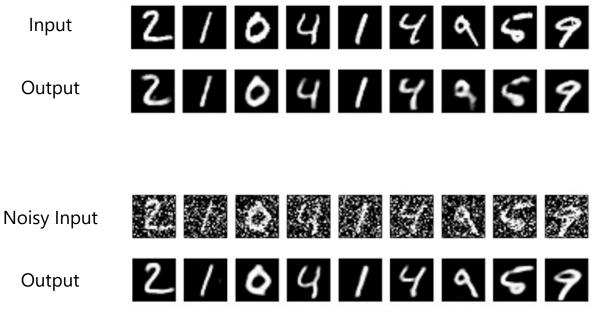
 Images of a particular class fall on manifolds within that manifold...



Denoising & the "Nullspace" of Autoencoders

- The autoencoder tries to learn a dimensionality reduction that is invertible for our data (data on some manifold)
- Most noise will be in the non-invertible part of image space (off the manifold)
- If we feed noisy data in, we will often get denoised data

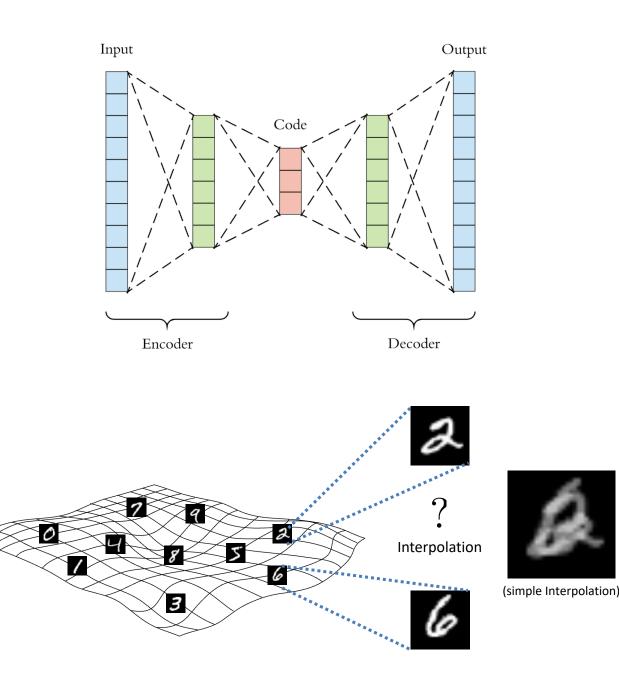




Examples from: https://blog.keras.io/building-autoencoders-in-keras.html

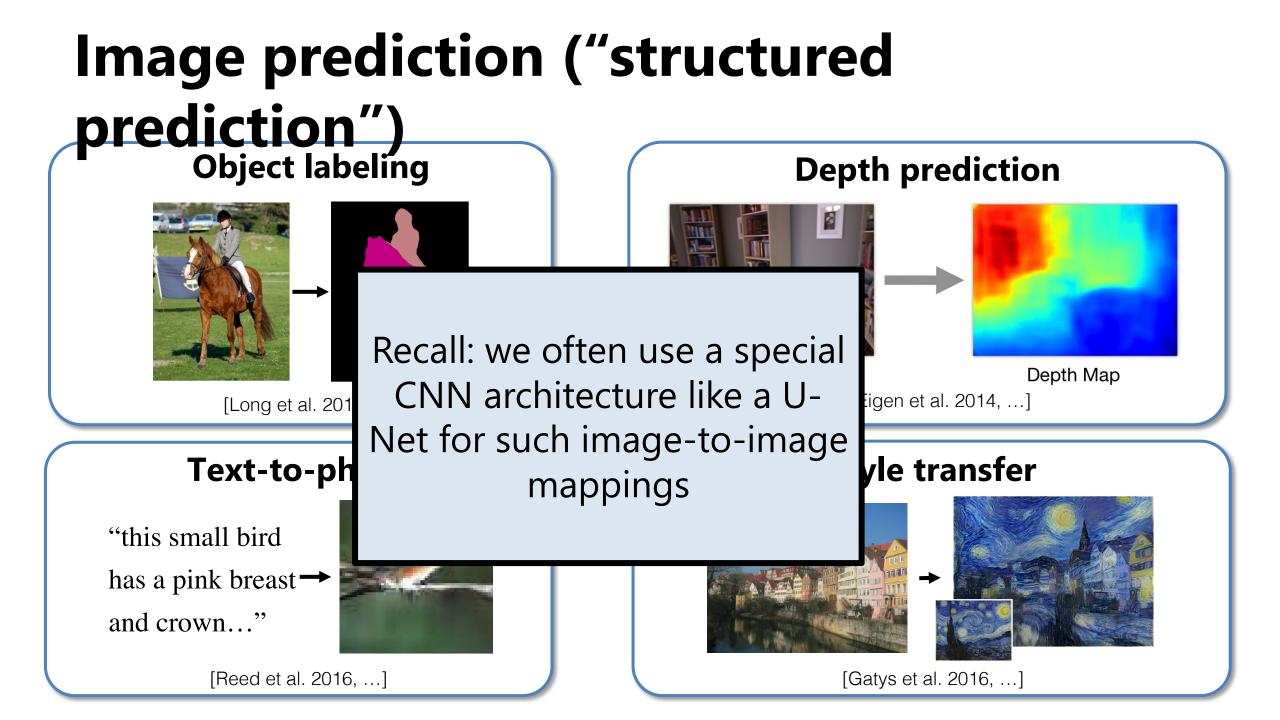
Problem

- Autoencoders can compress because data sits on a manifold
- This doesn't mean that every point in the latent space will be on the manifold...
- GANs (later this lecture) will learn a loss function that belos with this



Abe Davis, with slides from Jin Sun, Phillip Isola, and Richard Zhang

IMAGE-TO-IMAGE APPLICATIONS



 \mathbf{X}

у

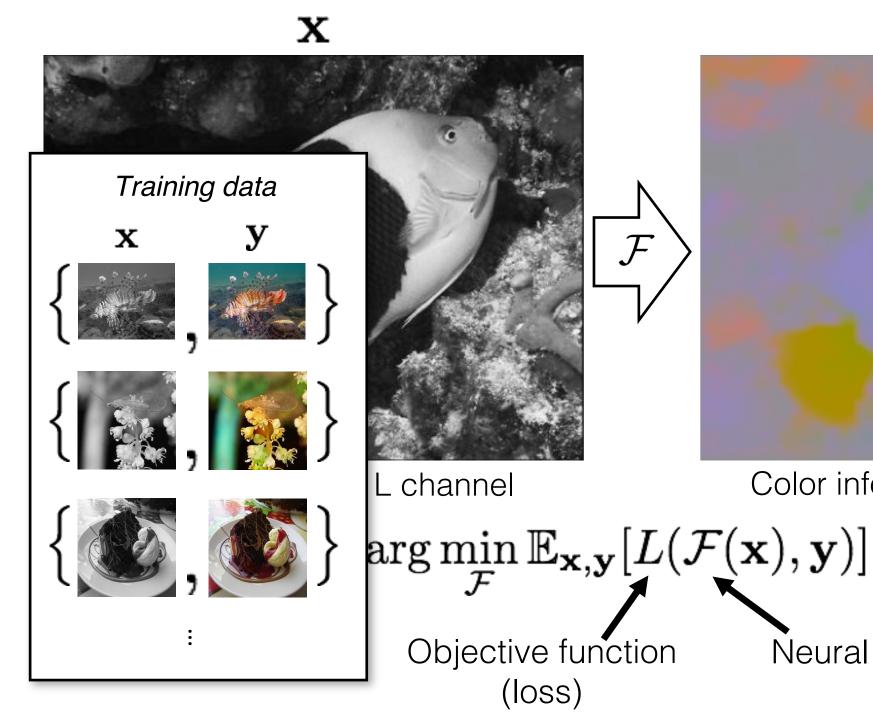
Image Colorization

 \mathcal{F}

 \mathbf{x}

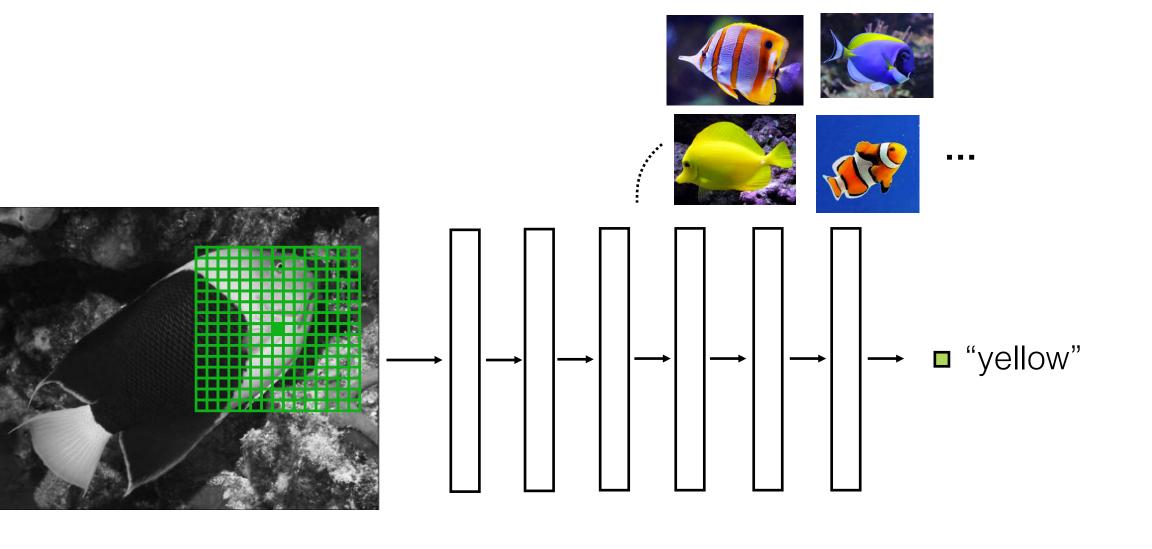
 $\arg\min_{\mathcal{F}} \mathbb{E}_{\mathbf{x},\mathbf{y}}[L(\mathcal{F}(\mathbf{x}),\mathbf{y})]$ "What should I do" "How should I do it?"

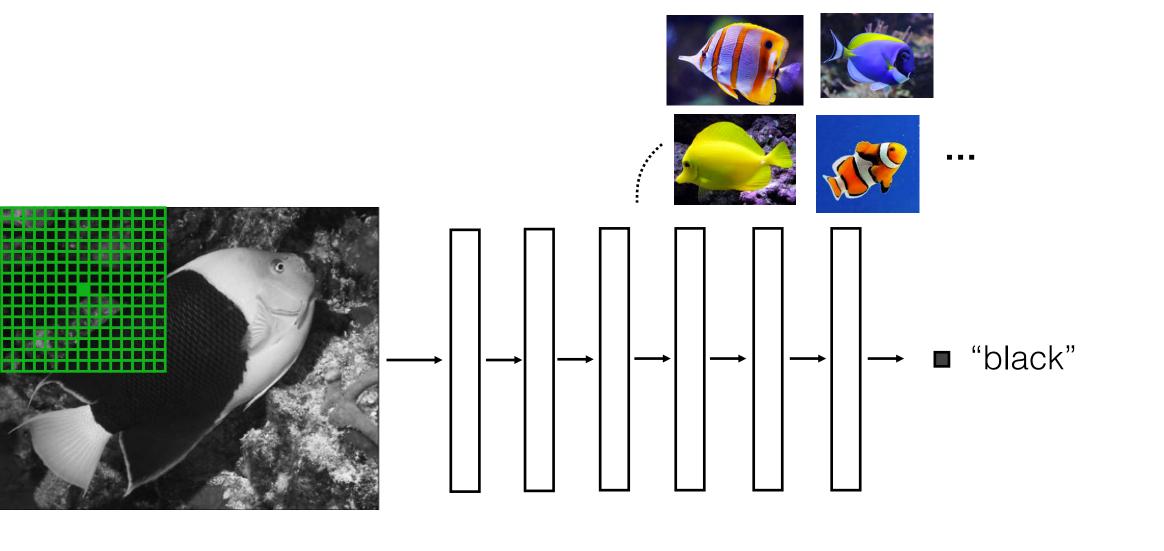
 \mathcal{F}

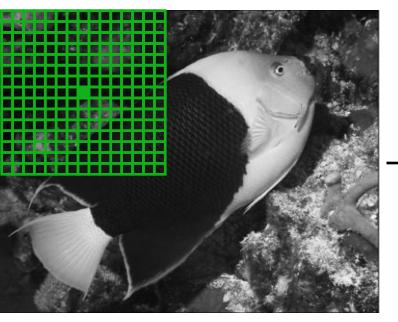


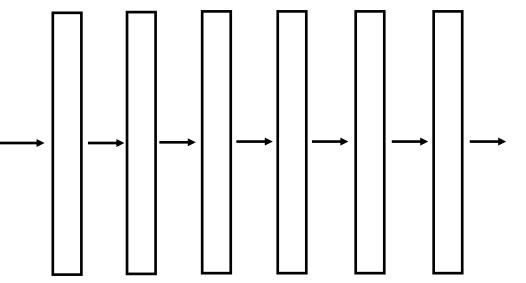
Color information: ab channels

Neural Network









Recap: basic loss functions

Prediction:
$$\mathbf{\hat{y}} = \mathcal{F}(\mathbf{x})$$
 Truth: \mathbf{y}

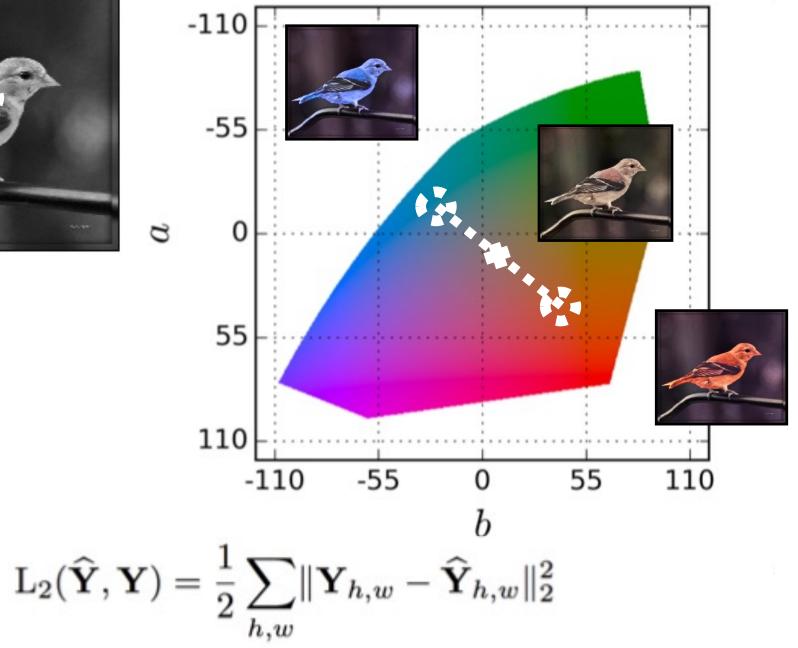
Classification (cross-entropy):

$$L(\hat{\mathbf{y}}, \mathbf{y}) = -\sum_{i} \hat{\mathbf{y}}_{i} \log \mathbf{y}_{i} \quad \longleftarrow \quad \begin{array}{l} \text{How many extra} \\ \text{bits it takes to} \\ \text{correct the} \\ \text{predictions} \end{array}$$
Least-squares regression:

$$L(\hat{\mathbf{y}}, \mathbf{y}) = \|\hat{\mathbf{y}} - \mathbf{y}\|_{2} \quad \longleftarrow \quad \begin{array}{l} \text{How far off we are} \\ \text{in Euclidean} \\ \text{distance} \end{array}$$

Output Ground truth

$$L_2(\widehat{\mathbf{Y}}, \mathbf{Y}) = \frac{1}{2} \sum_{h, w} \|\mathbf{Y}_{h, w} - \widehat{\mathbf{Y}}_{h, w}\|_2^2$$



Zhang et al. 2016

Ground truth

Color distribution cross-entropy loss with colorfulness enhancing term.

[Zhang, Isola, Efros, ECCV 2016]

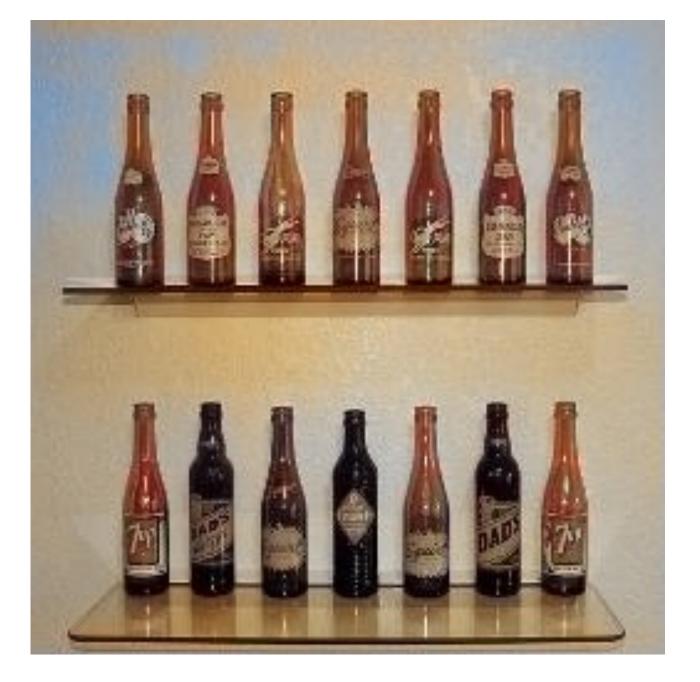
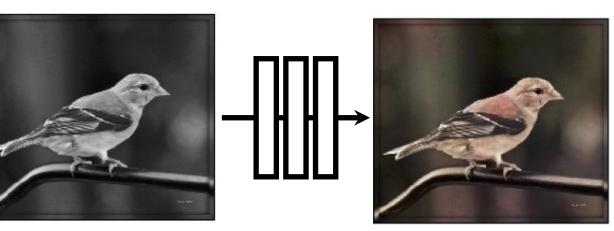


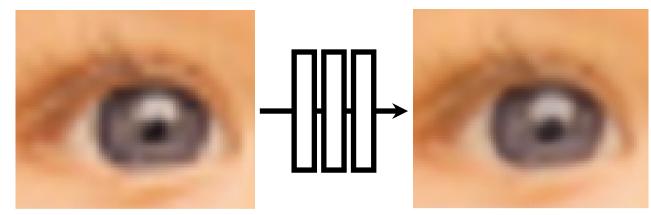
Image colorization



L2 regression

[Zhang, Isola, Efros, ECCV 2016]

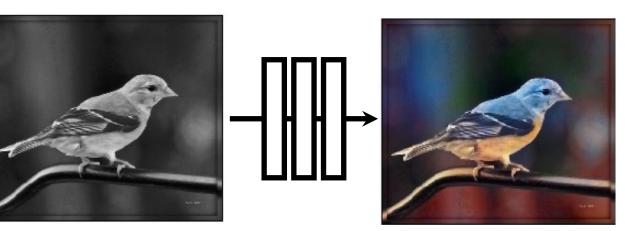
Super-resolution



[Johnson, Alahi, Li, ECCV 2016]

L2 regression

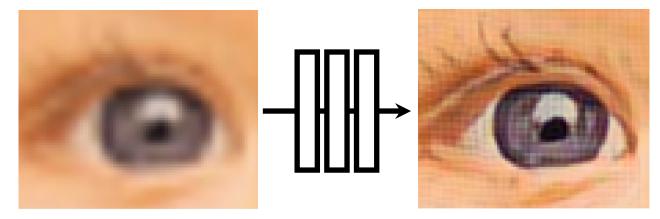
Image colorization



Cross entropy objective, with colorfulness term

[Zhang, Isola, Efros, ECCV 2016]

Super-resolution

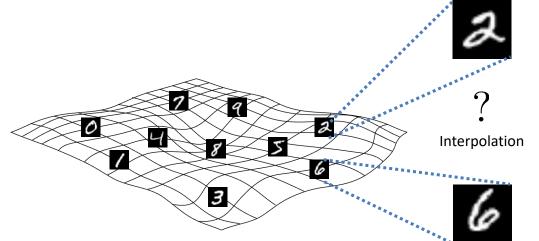


Deep feature covariance matching objective

[Johnson, Alahi, Li, ECCV 2016]

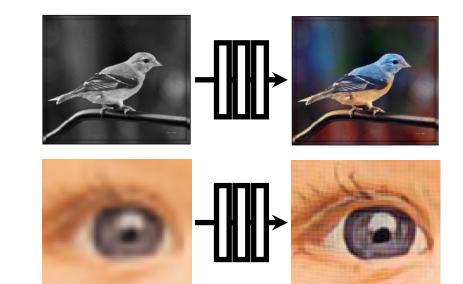
Better Loss Function: Sticking to the Manifold

 How do we design a loss function that penalizes images that aren't on the image manifold?



(simple Interpolation)

 Key insight: we will *learn* our loss function by training a network to discriminate between images that are on the manifold and images that aren't

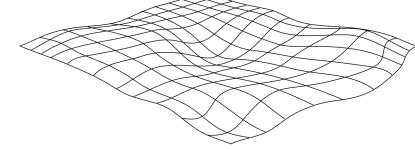


PART 3: GENERATIVE ADVERSARIAL NETWORKS (GANS)

Abe Davis, with slides from Jin Sun and Phillip Isola

Generative Adversarial Networks (GANs)

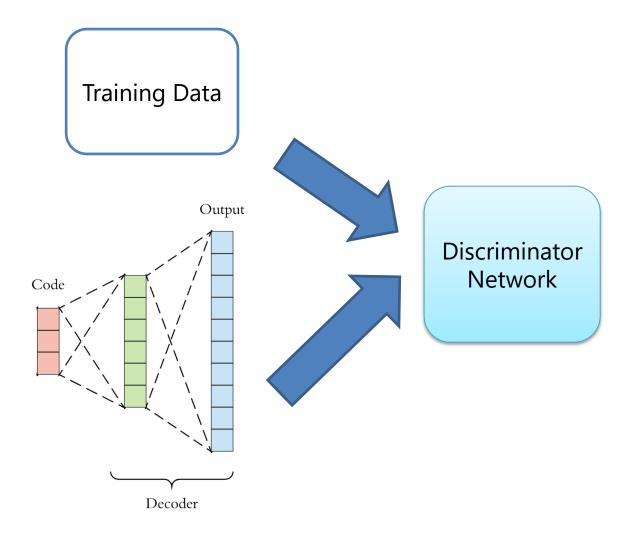
Basic idea: Learn a mapping from some latent space to images on a particular manifold



- Example of a *Generative Model*:
 - We can think of classification as a way to compute some P(x) that tells us the probability that image x is a member of a class.
 - Rather than simply evaluating this distribution, a generative model tries to learn a way to sample from it

Generative <u>Adversarial</u> Networks (GANs)

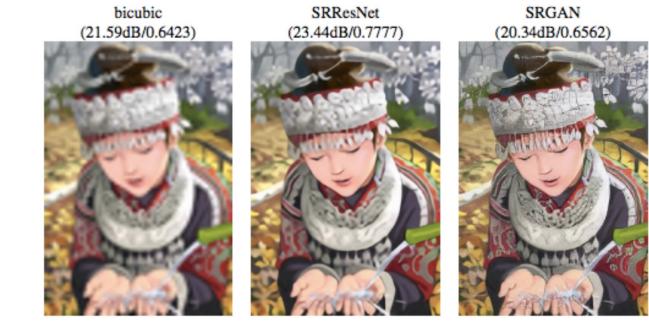
- Generator network has similar structure to the decoder of our autoencoder
 - Maps from some latent space to images
- We train it in an adversarial manner against a discriminator network
 - Generator takes image noise, and tries to create output indistinguishable from training data
 - Discriminator tries to distinguish between generator output and

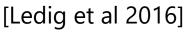


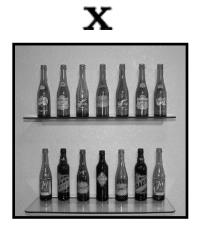
First: Conditional GANs

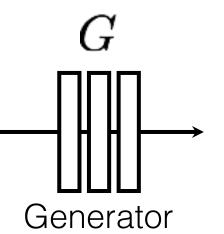
- Generate samples from a *conditional distribution* (conditioned on some other input)
- Example: generate high-resolution image conditioned on low resolution input

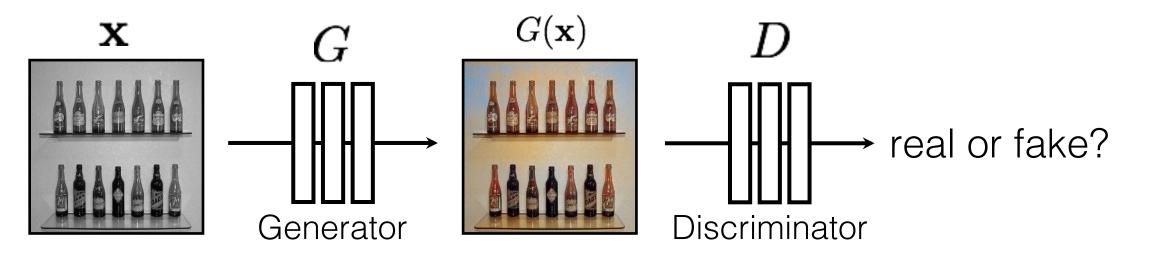
original





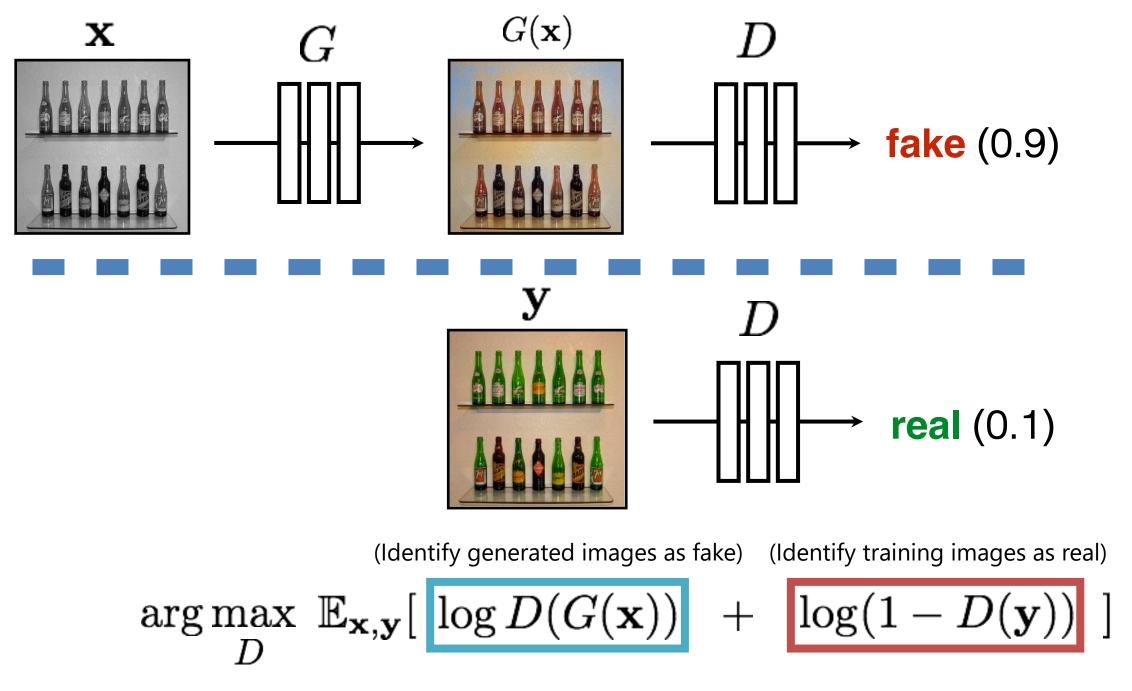


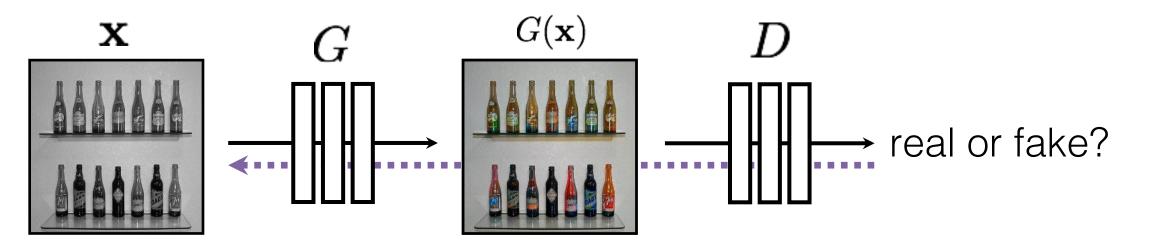




G tries to synthesize fake images that fool **D**

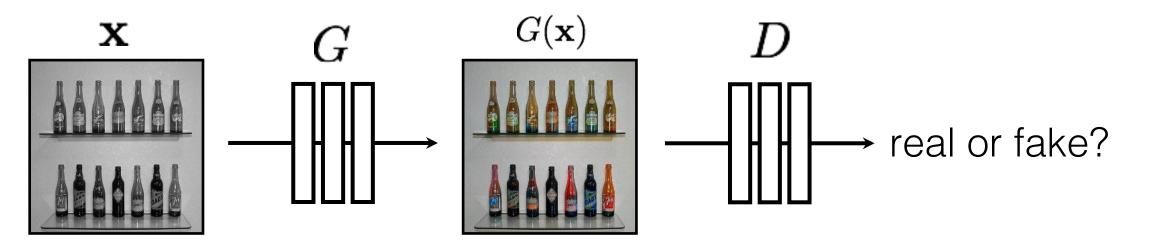
D tries to identify the fakes





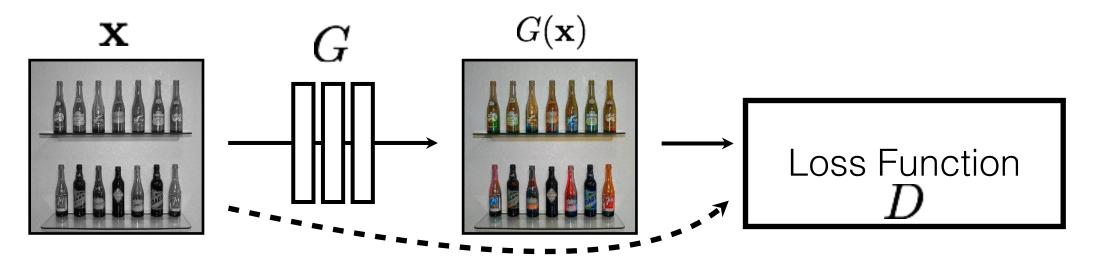
G tries to synthesize fake images that **fool D**:

$$\arg\min_{G} \mathbb{E}_{\mathbf{x},\mathbf{y}} \left[\log D(G(\mathbf{x})) + \log(1 - D(\mathbf{y})) \right]$$



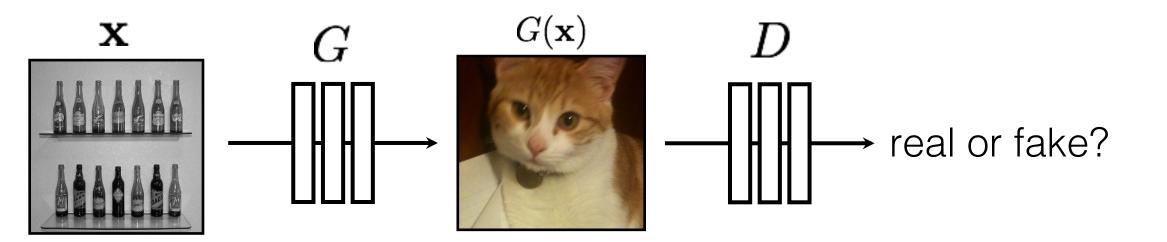
G tries to synthesize fake images that *fool* the *best* D:

$$\arg\min_{G}\max_{D} \mathbb{E}_{\mathbf{x},\mathbf{y}}[\log D(G(\mathbf{x})) + \log(1 - D(\mathbf{y}))]$$

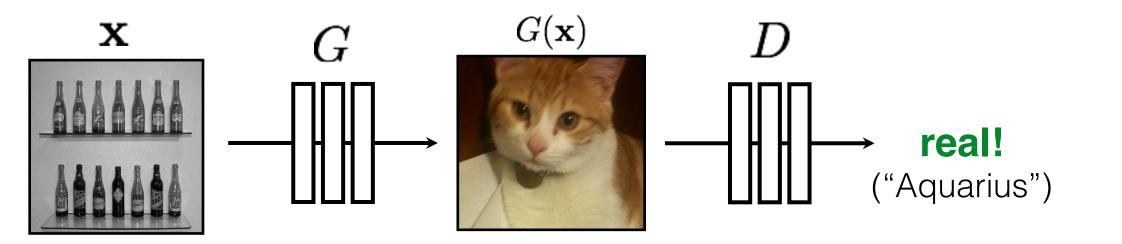


G's perspective: **D** is a loss function.

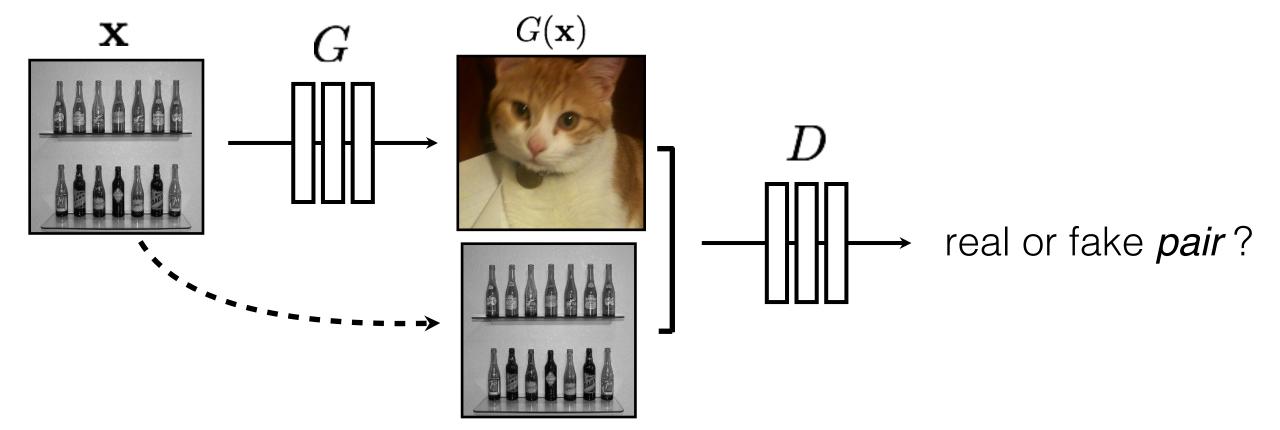
Rather than being hand-designed, it is *learned*.



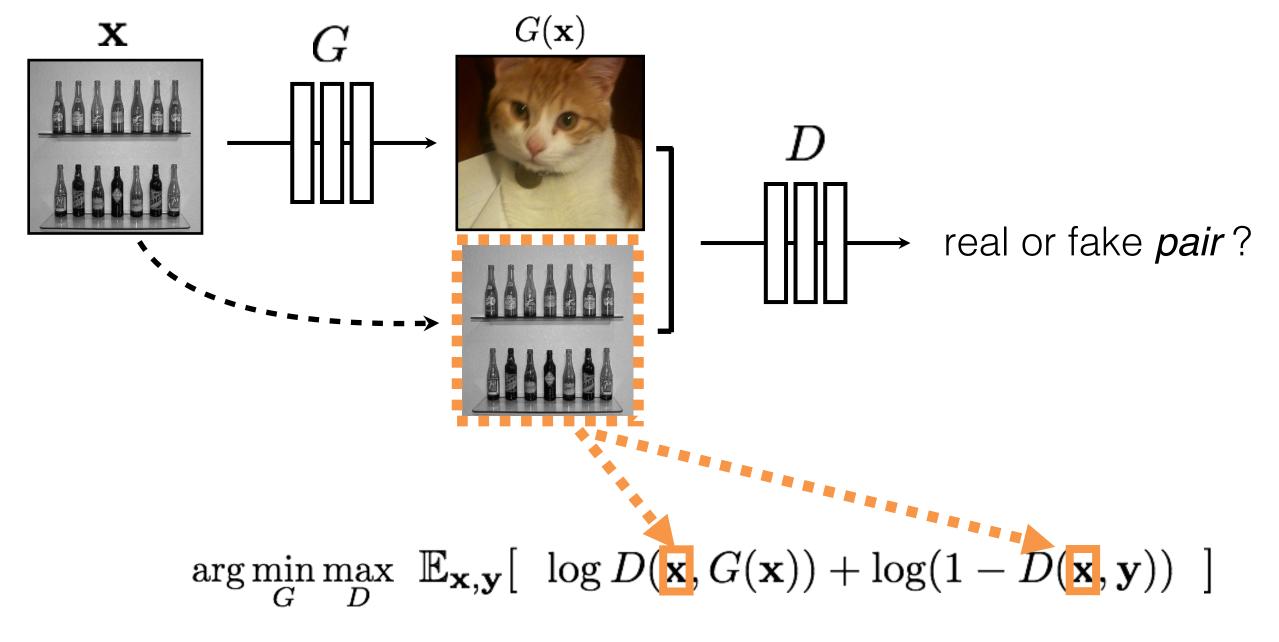
$\arg\min_{G} \max_{D} \mathbb{E}_{\mathbf{x},\mathbf{y}} [\log D(G(\mathbf{x})) + \log(1 - D(\mathbf{y}))]$

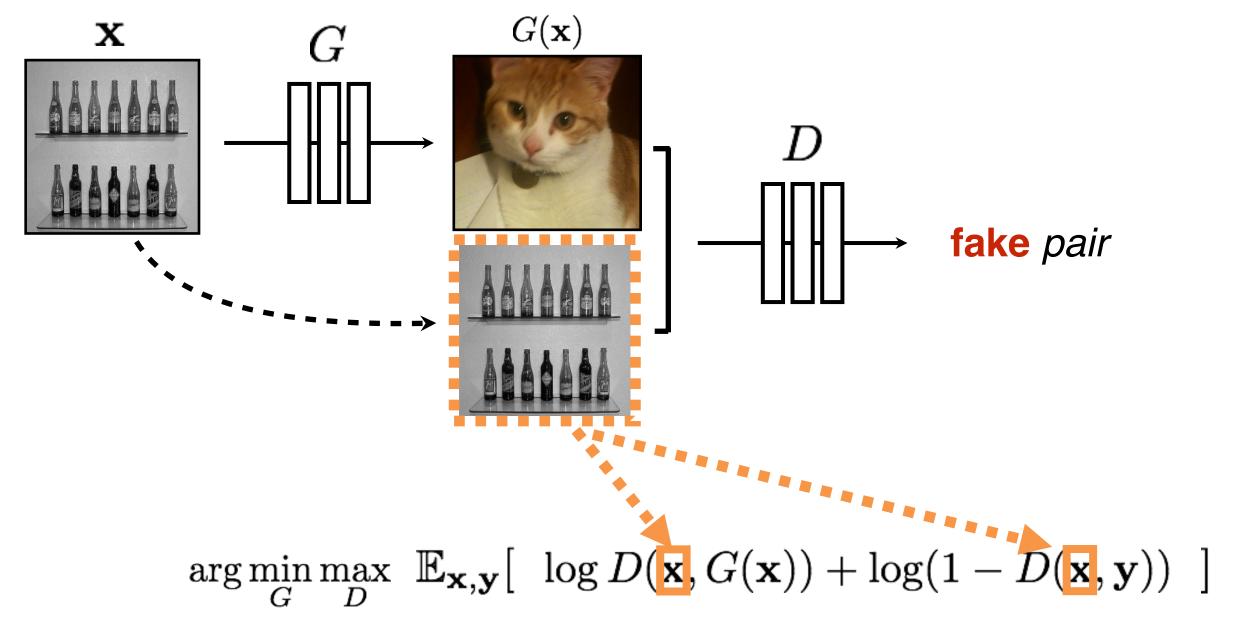


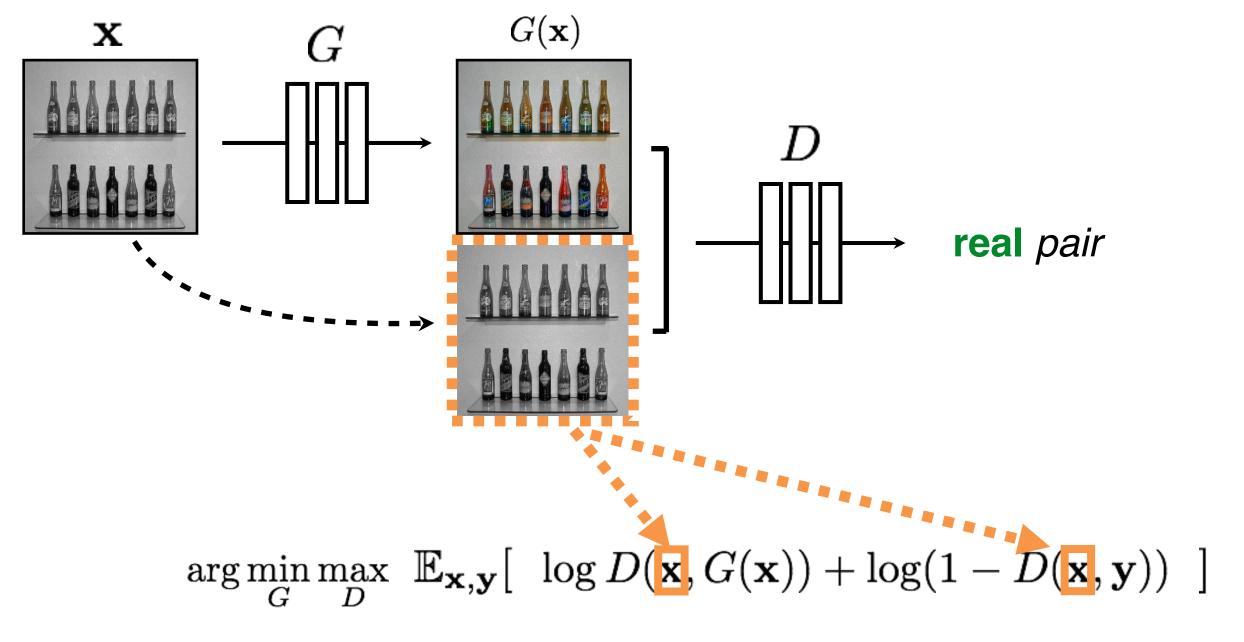
$\arg\min_{G}\max_{D} \mathbb{E}_{\mathbf{x},\mathbf{y}}[\log D(G(\mathbf{x})) + \log(1 - D(\mathbf{y}))]$

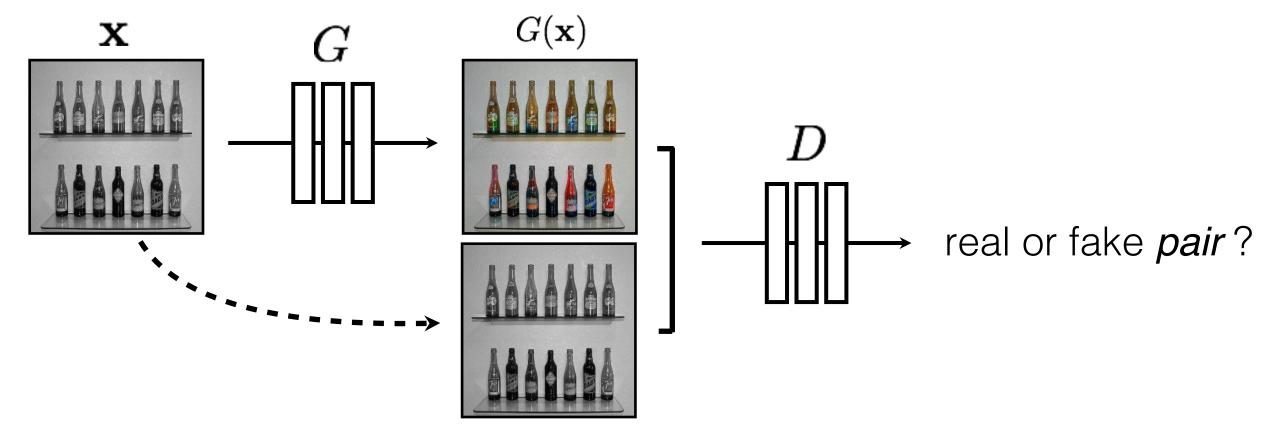


$$\arg\min_{G} \max_{D} \mathbb{E}_{\mathbf{x},\mathbf{y}} \left[\log D(G(\mathbf{x})) + \log(1 - D(\mathbf{y})) \right]$$









$$\arg\min_{G}\max_{D} \mathbb{E}_{\mathbf{x},\mathbf{y}} \left[\log D(\mathbf{x}, G(\mathbf{x})) + \log(1 - D(\mathbf{x}, \mathbf{y})) \right]$$

More Examples of Image-to-Image Translation with GANs

- We have pairs of corresponding training images
- Conditioned on one of the images, sample from the distribution of likely corresponding images

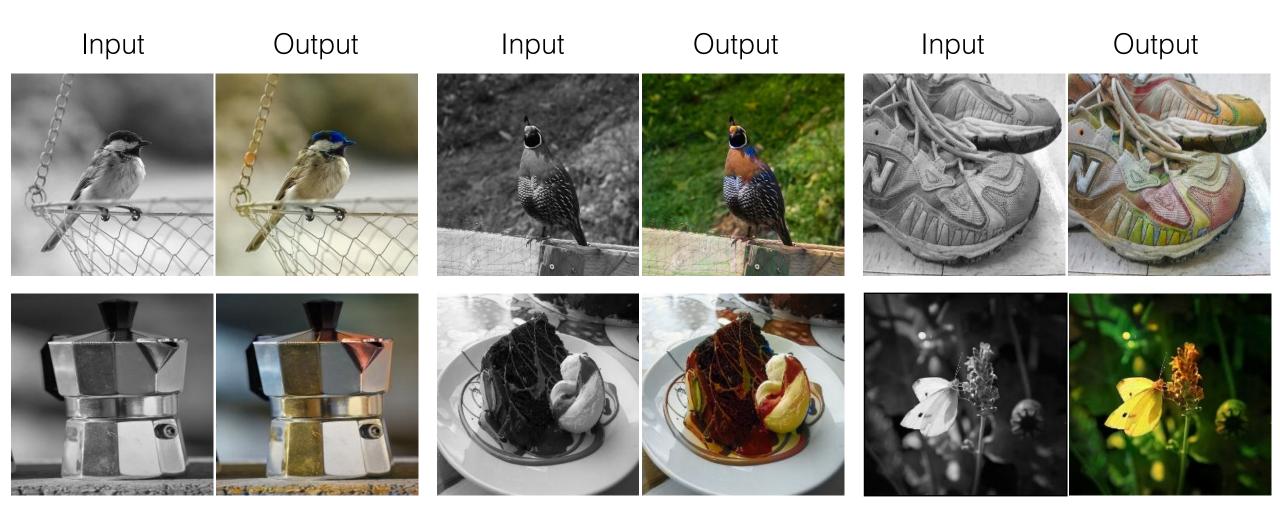
input

input

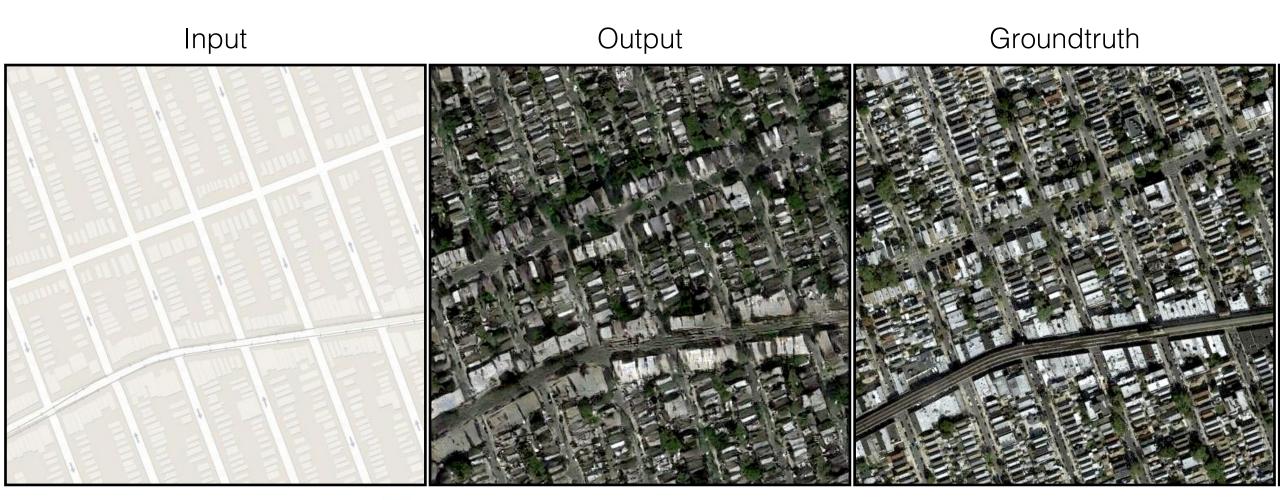
Aerial Photo To Map

Edges to Image Ground truth

$BW \rightarrow Color$



Data from [Russakovsky et al. 2015]

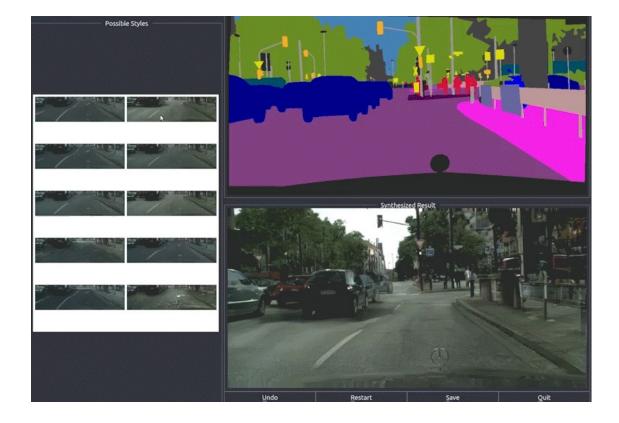


Data from [maps.google.com]

Labels → Street Views

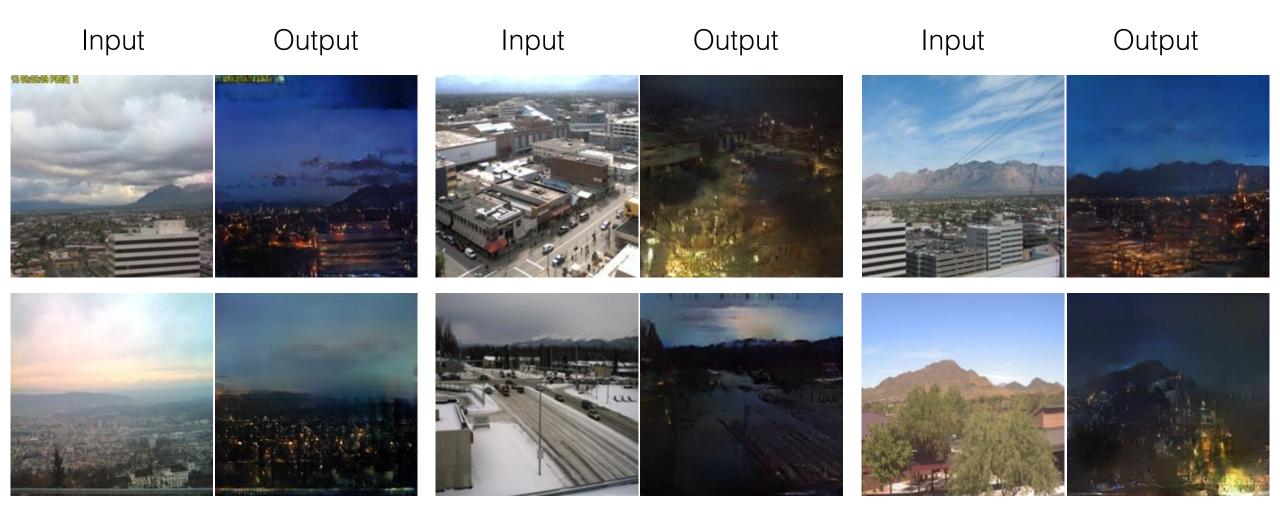
Input labels

Synthesized image



Data from [Wang et al, 2018]

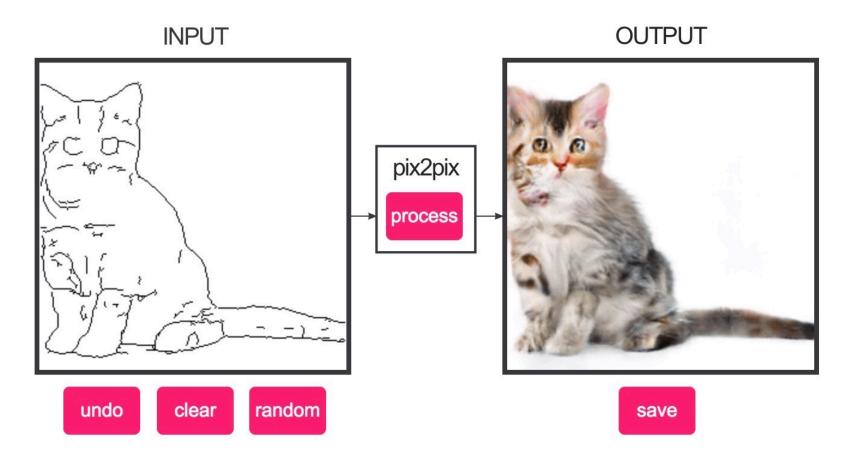
 $Day \rightarrow Night$



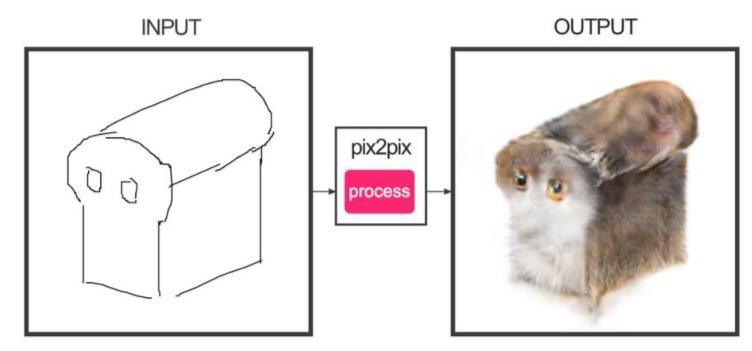
Data from [Laffont et al., 2014]

Edges → Images

Demo



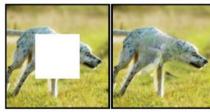
https://affinelayer.com/pixsrv/

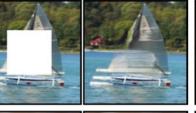


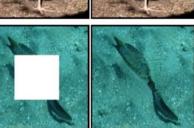
Ivy Tasi @ivymyt

Vitaly Vidmirov @vvid

Image Inpainting

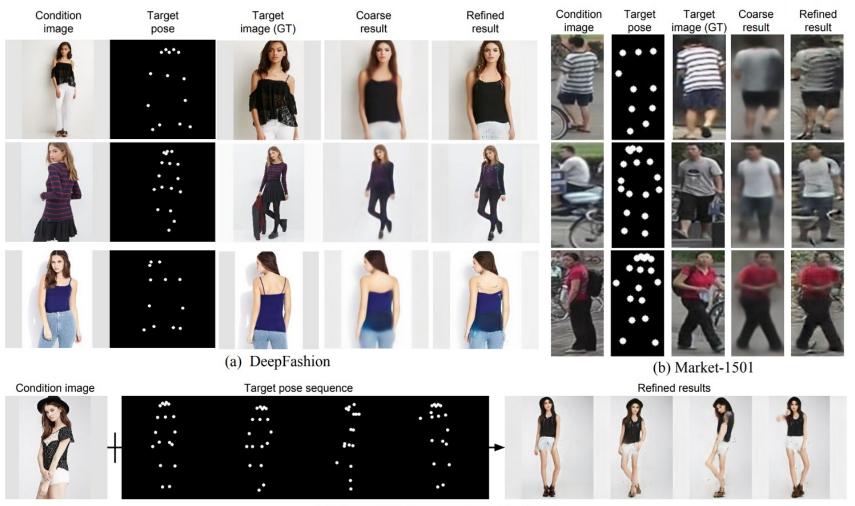






Data from [Pathak et al., 2016]

Pose-guided Generation

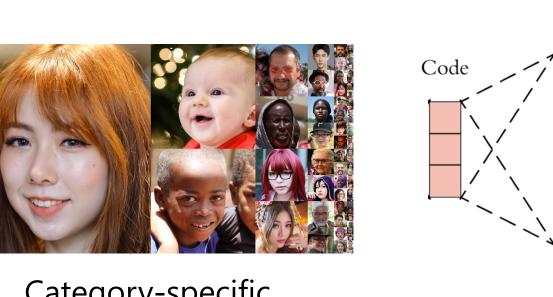


(c) Generating from a sequence of poses

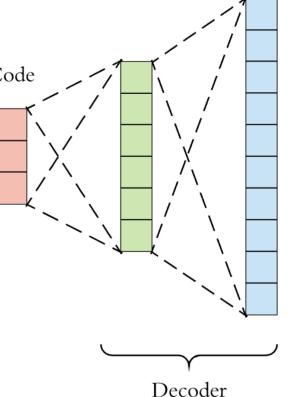
Data from [Ma et al., 2018]

Challenges —> **Solutions**

- Output is high-dimensional, structured object
 - Approach: Use a deep net, D, to analyze output!
- Uncertainty in mapping; many plausible outputs
 Approach: D only cares about "plausibility", doesn't hedge

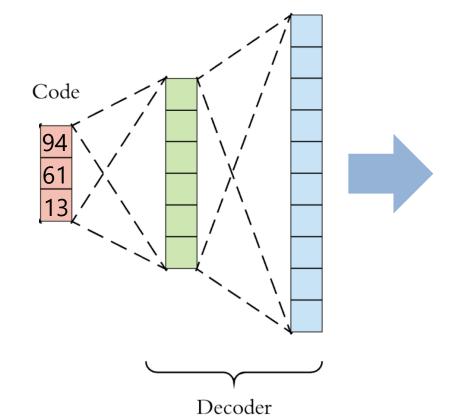


Category-specific image dataset (FFHQ)



Output

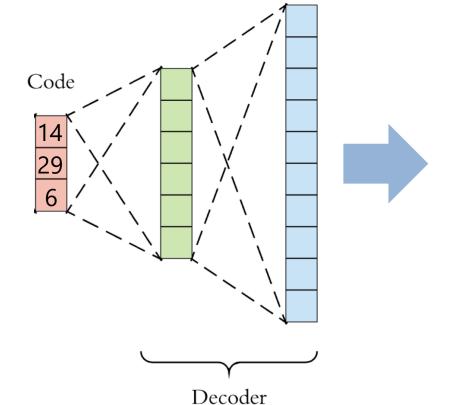
Category-specific image dataset (FFHQ)



Output

Output image

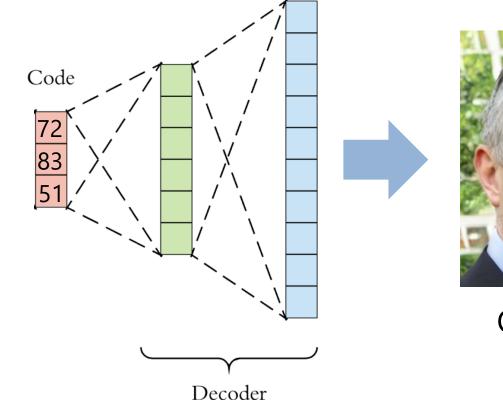
Category-specific image dataset (FFHQ)



Output

Output image

Category-specific image dataset (FFHQ)



Output

Output image

Example: Randomly Sampling the Space of Face Images

(Using Generative Adversarial Networks (GANs)

Which face is real?

slido

Which face is real?

(i) Start presenting to display the poll results on this slide.

Example: Randomly Sampling the Space of Face Images

(Using Generative Adversarial Networks (GANs)

Which face is real?

StyleGAN

A Style-Based Generator Architecture for Generative Adversarial Networks Tero Karras, Samuli Laine, Timo Aila <u>https://github.com/NVlabs/stylegan</u>

StyleGAN2 [2020]

Analyzing and Improving the Image Quality of StyleGAN

Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, Timo Aila

https://github.com/NVlabs/stylegan2

StyleGAN3 [2021]

Alias-Free Generative Adversarial Networks (StyleGAN3)

Tero Karras, Miika Aittala, Samuli Laine, Erik Härkönen, Janne Hellsten, Jaakko Lehtinen, Timo Aila

GAN models trained on animal faces: interpolating between latent codes

GAN models trained on MetFaces: interpolating between latent codes

Limitation

- The unconditional models above must be trained percategory:
 - We have a separate model for every category an animal face model, broccoli model, horse model, etc...
- What if we want to generate an image from **any** description?
- Next time: diffusion and text-to-image models

Questions?