CS5670: Computer Vision

Training Deep Networks

Image credit: <u>https://blog.imarticus.org/what-are-some-tips-and-tricks-for-training-deep-neural-networks/</u>

Some content adapted from material from Andrej Karpathy, Sean Bell, Kavita Bala, and

Announcements

- Project 5 (Neural Radiance Fields) due Weds, May 3 by 8pm
- In class final on May 9
 - Open book, open note
- Course evaluations are open starting Monday, May 1
 - We would love your feedback!
 - Small amount of extra credit for filling out
 - What you write is still anonymous, instructors only see whether students filled it out
 - Link coming soon

Readings

- Convolutional neural networks
 - Szeliski (2nd Edition) Chapter 5.4
- Neural Rendering
 - Szeliski (2nd Edition) Chapter 14.6
- Best practices for training CNNs
 - http://cs231n.github.io/neural-networks-2/
 - http://cs231n.github.io/neural-networks-3/

NeRF Recap

NeRF: Summary

- Represent the scene as volumetric colored "fog"
- Store the fog color and density at each point as an MLP mapping 3D position (x, y, z) to color ${\bf c}$ and density σ
- Render image by shooting a ray through the fog for each pixel and accumulating a color
- Optimize MLP parameters by rendering to a set of known viewpoints and comparing to ground truth images
- Can think of this as a learning problem where we train to reproduce the known images, and generalize to new views

NeRF Results

Extension: view-dependent neural field

NeRF encodes convincing view-dependent effects using directional dependence

NeRF encodes convincing view-dependent effects using directional dependence

NeRF encodes detailed scene geometry with occlusion effects

NeRF encodes detailed scene geometry

Adapted from material from Pratul Sriniva

Extension: Mip-NeRF 360

Mip-NeRF 360: Unbounded Anti-Aliased Neural Radiance Fields Jonathan T. Barron, Ben Mildenhall, Dor Verbin, Pratul P. Srinivasan, and Peter Hedman, CVPR 2022

Extension: NeRF in the Wild (NeRF-W)

Brandenburg

Sacre Coeur

Trevi Fountain

Gate Martin-Brualla*, Radwan*, Sajjadi*, Barron, Dosovitskiy, Duckworth. *NeRF in the Wild*. CVPR 2021.

https://www.youtube.com/watch?v=mRAKVQj5LRA

Inverse graphics beyond shape and color

Input images of an object

Reconstructed shape, albedo, and materials

Reconstructed models inserted into scene with new lighting

Zhang, Luan, Li, Snavely. CVPR

Questions?

Deep networks can be used for...

Image classification

View synthesis

And much more!

A Recent Example: Segment Anything

Segment Anything

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer Whitehead, Alexander C. Berg, Wan-Yen Lo, Piotr Dollár, Ross Girshick

Back to convolutional neural networks

Layer types:

- Convolutional layer
- Pooling layer
- Fully-connected layer

Training a network

 Given a network architecture (CNN, MLP, etc) and some training data, how do we actually set the weights of the network?

Gradient descent: iteratively follow the slope

https://laptrinhx.com/gradient-descent-animation-2-multiple-linear-regression-3070246823/

Stochastic gradient descent (SGD)

- Computing the exact gradient over the training set is expensive
- Train on batches of data (e.g., 32 images or 32 rays) at a time
- A full pass through the dataset (i.e., using batches that cover the training data) is called an **epoch**
- Usually need to train for multiple epochs, i.e., multiple full passes through the dataset to converge
- Stochastic gradient descent only approximates the true gradient, but works remarkably well in practice
- Use backpropagation to automatically compute gradients on each batch

How do you actually train these things?

Roughly speaking:

Gather labeled data Find a ConvNet architecture

Minimize the loss

But lots of details to get right!

Training a convolutional neural network

- Split and preprocess your data
- Choose your network architecture
- Initialize your network weights
- Find a learning rate and regularization weight
- Minimize the loss and monitor progress
- Fiddle with knobs...

Why so complicated?

 Training deep networks can be finicky – lots of parameters to learn, complex, non-linear optimization function

What makes training deep networks hard?

- It's easy to get high training accuracy:
 - Use a huge, fully connected network with tons of layers
 - Let it memorize your training data
- It's harder to get high *test* accuracy

This would be an example of *overfitting*

Related Question: Why Convolutional Layers?

- A fully connected layer can generally represent the same functions as a convolutional one
 - Think of the convolutional layer as a version of the FC layer with constraints on parameters
- What is the advantage of CNNs?

Convolutional Layer

Fully Connected Layer

Overfitting: More Parameters, More Problems

- Non-Deep Example: consider the function $x^2 + x$
- Let's take some noisy samples of the function...

Overfitting: More Parameters, More Problems

• Now lets fit a polynomial to our samples of the form $P_N(x) = \sum x^k p_k$

k=0

Overfitting: More Parameters, More Problems

• A model with more parameters can represent more functions

• E.g.,: if
$$P_N(x) = \sum_{k=0}^N x^k p_k$$
 Rhen P_{15}

- More parameters will often reduce training error but increase testing error. This is overfitting.
- When overfitting happens, models do not generalize well

Deep Learning: More Parameters, More Problems?

- More parameters let us represent a larger space of functions
- The larger that space is, the harder our optimization becomes

- This means we need:
 - More data
 - More compute resources
 - Etc.

Convolutional Layer

Fully Connected Layer

Deep Learning: More Parameters, More Problems?

A convolutional layer looks for components of a function that are spatially-invariant

Convolutional Layer

Fully Connected Layer

• What happens if you directly optimize an MPI to reconstruct a small set of input views?

• Answer: you can exactly reconstruct the input views, but produce garbage for new views

• Reminiscent of *shadow sculptures*

Anamorphic Star Wars Shadow Art by Red Hong Yi, via

SHADOW ART

Niloy J. Mitra, Mark Pauly ACM SIGGRAPH Asia 2009

- MPI with 64 layers, each storing a 1024 x 768 RGBA image → ~200M parameters
- If we have 32 input RGB images of 1024x768 resolution → ~75M inputs
- Many more parameters than measurements → risk of overfitting
- Compare to NeRF: ~500K 1M parameters

How to Avoid Overfitting: Regularization

- In general:
 - More parameters means higher risk of overfitting
 - More constraints/conditions on parameters can help
- If a model is overfitting, we can
 - Collect more data to train on
 - *Regularize*: add some additional information or assumptions to better constrain learning
- Regularization can be done through:
 - the design of architecture
 - the choice of loss function
 - the preparation of data

• ...

Regularization: Architecture Choice

• "Bigger" architectures (typically, those with more parameters) tend to be more at risk of overfitting.

Convolutional Layer

Fully Connected Layer

Regularization reduces overfitting

$$L = L_{\rm data} + L_{\rm reg}$$

$$L_{\rm reg} = \lambda \frac{1}{2} ||W||_2^2$$

[Andrej Karpathy http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html]

(1) Data proprocessing

Preprocess the data so that learning is better conditioned:

X /= np.std(axis=0, keepdims=True)

Figure: Andrej Karpathy

(1) Data proprocessing

An input image (256x256)

Minus sign

The mean input image

In practice, often perform a single mean RGB value, and divide by a per-channel standard deviation (recall MOPS, Normalized 8-Point Algorithm)

(1) Data proprocessing

Batch normalization

 Side note – can also perform normalization after each layer of the network to stabilize network training ("batch normalization")

(1) Data preprocessing

Augment the data — extract random crops from the input, with slightly jittered offsets. Without this, typical ConvNets (e.g. [Krizhevsky 2012]) overfit the data.

E.g. 224x224 patches extracted from 256x256 images

Randomly reflect horizontally

Perform the augmentation live during training

Figure: Alex Krizhevsky

(2) Choose your architecture

https://playground.tensorflow.org/

(2) Choose your architecture

Very common modern choice for classification problems

[Krizhevsky et al. NIPS 2012] [Szegedy et al. CVPR 2015]

[Simonyan & Zisserman, ICLR 2015]

"VGG Net"

image conv-64 conv-64 maxpool conv-128 conv-128 maxpool

conv-256 maxpool conv-512 conv-512 maxpool conv-512 conv-512 maxpool FC-4096 FC-4096 FC-1000 softmax

(3) Initialize your weights

Set the weights to small random numbers:

W = np.random.randn(D, H) * 0.001

(matrix of small random numbers drawn from a Gaussian distribution)

Set the bias to zero (or small nonzero):

b = np.zeros(H)

(if you use ReLU activations, folks tend to initialize bias to small positive number)

Slide: Andrej Karpathy

(4) Overfit a small portion of the data

The above code:

- take the first 20 examples from CIFAR-10
- turn off regularization (reg = 0.0)
- use simple vanilla 'sgd'

(4) Overfit a small portion of the data

Details:

'sgd': vanilla gradient descent (no momentum etc)

learning_rate_decay = 1: constant learning rate

sample_batches = False (full gradient descent, no batches)

epochs = 200: number of passes through the data

Slide: Andrej Karpathy

(4) Overfit a small portion of the data

100% accuracy on the training set (good)

Finished epoch 1 / 200: cost 2.302603, train: 0.400000, val 0.400000, lr 1.000000e-03	ñ.
Finished epoch 2 / 200: cost 2.302258, train: 0.450000, val 0.450000, lr 1.000000e-03	
Finished epoch 3 / 200: cost 2.301849, train: 0.600000, val 0.600000, lr 1.000000e-03	1
Finished epoch 4 / 200: cost 2.301196, train: 0.650000, val 0.650000, lr 1.000000e-03	
Finished epoch 5 / 200: cost 2.300044, train: 0.650000, val 0.650000, lr 1.000000e-03	
Finished epoch 6 / 200: cost 2.297864, train: 0.550000, val 0.550000, lr 1.000000e-03	
Finished epoch 7 / 200: cost 2.293595, train: 0.600000, val 0.600000, lr 1.000000e-03	
Finished epoch 8 / 200: cost 2.285096, train: 0.550000, val 0.550000, lr 1.000000e-03	
Finished epoch 9 / 200: cost 2.268094, train: 0.550000, val 0.550000, lr 1.000000e-03	
Finished epoch 10 / 200: cost 2.234787, train: 0.500000, val 0.500000, lr 1.000000e-03	
Finished epoch 11 / 200: cost 2.173187, train: 0.500000, val 0.500000, lr 1.000000e-03	
Finished epoch 12 / 200: cost 2.076862, train: 0.500000, val 0.500000, lr 1.000000e-03	
Finished epoch 13 / 200: cost 1.974090, train: 0.400000, val 0.400000, lr 1.000000e-03	
Finished epoch 14 / 200: cost 1.895885, train: 0.400000, val 0.400000, lr 1.000000e-03	
Finished epoch 15 / 200: cost 1.820876, train: 0.450000, val 0.450000, lr 1.000000e-03	
Finished epoch 16 / 200: cost 1.737430, train: 0.450000, val 0.450000, lr 1.000000e-03	
Finished epoch 17 / 200: cost 1.642356, train: 0.500000, val 0.500000, lr 1.000000e-03	
Finished epoch 18 / 200: cost 1.535239, train: 0.600000, val 0.600000, lr 1.000000e-03	
Finished epoch 19 / 200: cost 1.421527, train: 0.600000, val 0.600000, lr 1.000000e-03	
Finished anal 20 / 200, and 1 205760 their 0 650000 well 0 650000 le 1 000000- 02	
Finished epoch 195 / 200: cost 0.002694, train: 1.000000, val 1.000000, lr 1.000000e-03	
Finished epoch 196 / 200: cost 0.002674, train: 1.000000, val 1.000000, lr 1.000000e-03	
Finished epoch 197 / 200: cost 0.002655, train: 1.000000, val 1.000000, lr 1.000000e-03	
Finished epoch 198 / 200: cost 0.002635, train: 1.000000, val 1.000000, lr 1.000000e-03	
Finished epoch 199 / 200: cost 0.002617, train: 1.000000, val 1.000000, lr 1.000000e-03	
Finished epoch 200 / 200: cost 0.002597, train: 1.000000, val 1.000000, lr 1.000000e-03	
finished optimization. best validation accuracy: 1.000000	

Slide: Andrej Karpathy

(4) Find a learning rate

Q: Which one of these learning rates is best to use?

Learning rate schedule

How do we change the learning rate over time?

Various choices:

- Step down by a factor of 0.1 every 50,000 mini-batches (used by SuperVision [Krizhevsky 2012])
- Decrease by a factor of 0.97 every epoch (used by GoogLeNet [Szegedy 2014])
- Scale by sqrt(1-t/max_t) (used by BVLC to re-implement GoogLeNet)
- Scale by 1/t
- Scale by exp(-t)

Summary of things to fiddle with

- Network architecture
- Learning rate, decay schedule, update type (+batch size)
- Regularization (L2, L1, maxnorm, dropout, ...)
- Loss function (softmax, SVM, ...)
- Weight initialization

Neural network parameters

Questions?

Transfer learning

"You need a lot of data if you want to train/use CNNs for a new classification task"

Transfer learning

"You need a lot of data if you want to train/use civils for a new classification task"

Transfer learning with CNNs

Step 1: Take a model trained on ImageNet

Transfer learning with CNNs

Step 2a: If you have a small amount of new data, adjust a small number of network weights

FC-1000	FC-C		
FC-4096	FC-4096		Reinitialize
FC-4096	FC-4096	1	this and train
MaxPool	MaxPool		this and train
Conv-512	Conv-512		
Conv-512	Conv-512		
MaxPool	MaxPool		
Conv-512	Conv-512		
Conv-512	Conv-512		
MaxPool	MaxPool	∕	 Freeze these
Conv-256	Conv-256	1	
Conv-256	Conv-256		
MaxPool	MaxPool		
Conv-128	Conv-128		
Conv-128	Conv-128		
MaxPool	MaxPool		
Conv-64	Conv-64		
Conv-64	Conv-64	J	
Image	Image	-	

Transfer learning with CNNs

Step 2b: If you have a larger amount of new data, adjust a larger number of network weights

FC-1000 FC-4096 FC-4096 MaxPool		very similar dataset	very different dataset
Conv-512 MaxPool Conv-512 MaxPool Conv-256 Conv-256 MaxPool MaxPool	very little data	?	?
Conv-128 Conv-128 MaxPool Conv-64 Conv-64 Image	quite a lot of data	?	?

FC-1000 FC-4096 FC-4096 MaxPool		very similar dataset	very different dataset
Conv-512 MaxPool Conv-512 MaxPool Conv-256 Conv-256 MaxPool MaxPool	very little data	Use Linear Classifier on top layer	?
Conv-128 Conv-128 MaxPool Conv-64 Conv-64 Image	quite a lot of data	Finetune a few layers	?

FC-1000 FC-4096 FC-4096 MaxPool		very similar dataset	very different dataset
Conv-512 MaxPool Conv-512 MaxPool Conv-256 Conv-256 MaxPool MaxPool	very little data	Use Linear Classifier on top layer	You're in trouble Try linear classifier from different stages
Conv-128 Conv-128 MaxPool Conv-64 Conv-64 Image	quite a lot of data	Finetune a few layers	Finetune a larger number of layers

Transfer learning with CNNs is pervasive

• It's the norm, not the exception

Image Captioning: CNN + RNN

Karpathy and Fei-Fei, "Deep Visual-Semantic Alignments for Generating Image Descriptions", CVPR 2015 Figure copyright IEEE, 2015. Reproduced for educational purposes.

Girshick, "Fast R-CNN", ICCV 2015 Figure copyright Ross Girshick, 2015. Reproduced with permission.

Transfer learning with CNNs is pervasive

• It's the norm, not the exception

Karpathy and Fei-Fei, "Deep Visual-Semantic Alignments for Generating Image Descriptions", CVPR 2015 Figure copyright IEEE, 2015. Reproduced for educational purposes.

Girshick, "Fast R-CNN", ICCV 2015 Figure copyright Ross Girshick, 2015. Reproduced with permission.

Other pre-trained models are starting to become standard

- Swin-transformer pre-trained on ImageNet-21K
- DINO features
- Foundation models (Stable Diffusion, etc)

Takeaway for your projects and beyond

Have some dataset of interest, but it has << ~1M images?

- Find a large dataset with similar data (e.g., ImageNet), train a large CNN
- 2. Apply transfer learning to fine-tune on your data

Common modern approach: start with a ResNet architecture pre-trained on ImageNet, and fine-tune on your (smaller) dataset

For step 1, many existing models exist in "Model Zoos"

Questions?