
Training Deep Networks
CS5670: Computer Vision

Some content adapted from material from 
Andrej Karpathy, Sean Bell, Kavita Bala, and 
Abe Davis

Image credit: https://blog.imarticus.org/what-are-some-tips-and-tricks-for-
training-deep-neural-networks/

https://blog.imarticus.org/what-are-some-tips-and-tricks-for-training-deep-neural-networks/
https://blog.imarticus.org/what-are-some-tips-and-tricks-for-training-deep-neural-networks/


Announcements

• Project 5 (Neural Radiance Fields) due Weds, May 3 by 
8pm

• In class final on May 9
– Open book, open note

• Course evaluations are open starting Monday, May 1
–We would love your feedback!
– Small amount of extra credit for filling out
• What you write is still anonymous, instructors only see whether 

students filled it out
– Link coming soon



Readings

• Convolutional neural networks
– Szeliski (2nd Edition) Chapter 5.4

• Neural Rendering
– Szeliski (2nd Edition) Chapter 14.6

• Best practices for training CNNs
– http://cs231n.github.io/neural-networks-2/
– http://cs231n.github.io/neural-networks-3/

http://cs231n.github.io/neural-networks-2/
http://cs231n.github.io/neural-networks-3/


NeRF Recap



NeRF: Summary
• Represent the scene as volumetric colored “fog”
• Store the fog color and density at each point as an MLP 

mapping 3D position (x, y, z) to color c and density σ
• Render image by shooting a ray through the fog for each 

pixel and accumulating a color
• Optimize MLP parameters by rendering to a set of known 

viewpoints and comparing to ground truth images
• Can think of this as a learning problem where we train to 

reproduce the known images, and generalize to new 
views





NeRF Results
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Extension: view-dependent neural 
field

Include the ray direction in 
the input to the MLP 
allows for capturing and 
rendering view-dependent 
effects (e.g., shiny surfaces)



NeRF encodes convincing view-dependent 
effects using directional dependence

Adapted from material from Pratul Srinivasan



Adapted from material from Pratul Srinivasan

NeRF encodes convincing view-dependent 
effects using directional dependence



NeRF encodes detailed scene geometry 
with occlusion effects

Adapted from material from Pratul Srinivasan



NeRF encodes detailed scene geometry

Adapted from material from Pratul Srinivasan



Extension: Mip-NeRF 360

Mip-NeRF 360: Unbounded Anti-Aliased Neural Radiance Fields
Jonathan T. Barron, Ben Mildenhall, Dor Verbin, Pratul P. Srinivasan, and Peter Hedman,
CVPR 2022

https://jonbarron.info/mipnerf360/


Extension: NeRF in the Wild (NeRF-W)

Brandenburg 
Gate

Sacre Coeur Trevi Fountain

Martin-Brualla*, Radwan*, Sajjadi*, Barron, Dosovitskiy, Duckworth. 
NeRF in the Wild. CVPR 2021.
https://www.youtube.com/watch?v=mRAKVQj5LRA

https://www.youtube.com/watch?v=mRAKVQj5LRA


Inverse graphics beyond shape and color

Reconstructed models inserted into scene with new lightingInput images of 
an object

Zhang, Luan, Li, Snavely. CVPR 
2022.

Reconstructed shape, 
albedo, and materials



Questions?



Deep networks can be used for… 

Image classification View synthesis

And much more!



A Recent Example: Segment Anything

Segment Anything
Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura 
Gustafson, Tete Xiao, Spencer Whitehead, Alexander C. Berg, Wan-Yen Lo, Piotr 
Dollár, Ross Girshick

https://segment-anything.com/


Back to convolutional neural networks

Layer types:
• Convolutional layer
• Pooling layer
• Fully-connected layer



Training a network

• Given a network architecture (CNN, MLP, etc) and some 
training data, how do we actually set the weights of the 
network?



Gradient descent: iteratively follow the 
slope

https://laptrinhx.com/gradient-descent-animation-2-multiple-linear-regression-3070246823/

https://laptrinhx.com/gradient-descent-animation-2-multiple-linear-regression-3070246823/


Stochastic gradient descent (SGD)
• Computing the exact gradient over the training set is 

expensive
• Train on batches of data (e.g., 32 images or 32 rays) at a time
• A full pass through the dataset (i.e., using batches that cover 

the training data) is called an epoch
• Usually need to train for multiple epochs, i.e., multiple full 

passes through the dataset to converge
• Stochastic gradient descent only approximates the true 

gradient, but works remarkably well in practice 
• Use backpropagation to automatically compute gradients on 

each batch



How do you actually train these things?

But lots of details to get right!



Training a convolutional neural network

• Split and preprocess your data
• Choose your network architecture
• Initialize your network weights
• Find a learning rate and regularization weight
• Minimize the loss and monitor progress
• Fiddle with knobs…



Why so complicated?

• Training deep networks can be finicky – lots of parameters 
to learn, complex, non-linear optimization function



• It’s easy to get high training 
accuracy:
• Use a huge, fully connected 

network with tons of layers
• Let it memorize your training data

• It’s harder to get high test 
accuracy

What makes training deep networks hard?

… …

This would be an 
example of overfitting



• A fully connected layer can 
generally represent the same 
functions as a convolutional one
• Think of the convolutional layer as 

a version of the FC layer with 
constraints on parameters

• What is the advantage of CNNs?

Related Question: Why Convolutional Layers?

Convolutional Layer Fully Connected Layer



Overfitting: More Parameters, More Problems

• Non-Deep Example: consider the function 
• Let’s take some noisy samples of the function…



Overfitting: More Parameters, More Problems

• Now lets fit a polynomial to our samples of the form  



• A model with more parameters can 
represent more functions

• E.g.,: if                                         then

• More parameters will often reduce training 
error but increase testing error. This is 
overfitting.

• When overfitting happens, models do not 
generalize well

Overfitting: More Parameters, More Problems

P2 2 P15

<latexit sha1_base64="6BBEXEAhguQ3G68yFwsayvpJ/XE=">AAAB9HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKix6LXjxGsB/QhrDZbtqlm026uymU0N/hxYMiXv0x3vw3btsctPXBwOO9GWbmBQlnStv2t1XY2t7Z3Svulw4Oj45PyqdnbRWnktAWiXksuwFWlDNBW5ppTruJpDgKOO0E4/uF35lSqVgsnvQsoV6Eh4KFjGBtJM/1a30mkOtnTmPulyt21V4CbRInJxXI4frlr/4gJmlEhSYcK9Vz7ER7GZaaEU7npX6qaILJGA9pz1CBI6q8bHn0HF0ZZYDCWJoSGi3V3xMZjpSaRYHpjLAeqXVvIf7n9VId3noZE0mqqSCrRWHKkY7RIgE0YJISzWeGYCKZuRWREZaYaJNTyYTgrL+8Sdq1qlOvNh7rleZdHkcRLuASrsGBG2jCA7jQAgITeIZXeLOm1ov1bn2sWgtWPnMOf2B9/gB6RJFF</latexit>

Degree 2 Fit

Degree 15 Fit



• More parameters let us represent a 
larger space of functions

• The larger that space is, the harder 
our optimization becomes

• This means we need:
• More data
• More compute resources
• Etc.

Deep Learning: More Parameters, More Problems?

Convolutional Layer Fully Connected Layer



Deep Learning: More Parameters, More Problems?

Convolutional Layer Fully Connected Layer

A convolutional layer 
looks for components 
of a function that are 

spatially-invariant



Overfitting in view synthesis

• What happens if you directly optimize an MPI to reconstruct a small 
set of input views?



Overfitting in view synthesis

• Answer: you can exactly reconstruct the input views, but produce 
garbage for new views



• Reminiscent of shadow sculptures

Overfitting in view synthesis

Anamorphic Star Wars Shadow Art by Red Hong Yi, via 
TKSST

https://thekidshouldseethis.com/post/anamorphic-star-wars-shadow-art-by-red-hong-yi


Overfitting in view synthesis

SHADOW ART
Niloy J. Mitra, Mark Pauly
ACM SIGGRAPH Asia 2009

https://graphics.stanford.edu/~niloy/research/shadowArt/shadowArt_sigA_09.html


• MPI with 64 layers, each storing a 1024 x 768 RGBA image à ~200M 
parameters
• If we have 32 input RGB images of 1024x768 resolution à ~75M 

inputs
• Many more parameters than measurements à risk of overfitting

• Compare to NeRF: ~500K - 1M parameters

Overfitting in view sythesis



• In general:
• More parameters means higher risk of overfitting
• More constraints/conditions on parameters can help

• If a model is overfitting, we can
• Collect more data to train on
• Regularize: add some additional information or assumptions to better constrain 

learning

• Regularization can be done through:
• the design of architecture
• the choice of loss function
• the preparation of data
• … 

How to Avoid Overfitting: Regularization



• “Bigger” architectures (typically, 
those with more parameters) tend 
to be more at risk of overfitting.

Regularization: Architecture Choice

Convolutional 
Layer

Fully Connected Layer



Regularization reduces overfitting



(1) Data proprocessing



(1) Data proprocessing

In practice, often perform a single mean RGB value, and divide by a 
per-channel standard deviation (recall MOPS, Normalized 8-Point 
Algorithm)



(1) Data proprocessing



Batch normalization

• Side note – can also perform normalization after each 
layer of the network to stabilize network training (“batch 
normalization”)



(1) Data preprocessing



(2) Choose your architecture

https://playground.tensorflow.org/

https://playground.tensorflow.org/


(2) Choose your architecture
Very common modern choice 

for classification problems



(3) Initialize your weights

(if you use ReLU activations, folks tend to initialize bias to small positive number)



(4) Overfit a small portion of the data



(4) Overfit a small portion of the data



(4) Overfit a small portion of the data



(4) Find a learning rate



Learning rate schedule



Summary of things to fiddle with

(+batch size)



Questions?



Transfer learning

“You need a lot of data if you want 
to train/use CNNs for a new 

classification task”

Slide credit: Fei-Fei Li, Justin Johnson, and Serena Yeung



“You need a lot of data if you want 
to train/use CNNs for a new 

classification task”

Transfer learning

BU
ST
ED

Slide credit: Fei-Fei Li, Justin Johnson, and Serena Yeung



Transfer learning with CNNs

Step 1: Take a model trained on ImageNet

Slide credit: Fei-Fei Li, Justin Johnson, and Serena Yeung



Transfer learning with CNNs

Step 2a: If you have a small amount of new data, adjust a 
small number of network weights

Slide credit: Fei-Fei Li, Justin Johnson, and Serena Yeung



Transfer learning with CNNs

Step 2b: If you have a larger amount of new data, adjust a 
larger number of network weights

Slide credit: Fei-Fei Li, Justin Johnson, and Serena Yeung



Slide credit: Fei-Fei Li, Justin Johnson, and Serena Yeung



Slide credit: Fei-Fei Li, Justin Johnson, and Serena Yeung



Slide credit: Fei-Fei Li, Justin Johnson, and Serena Yeung



Transfer learning with CNNs is pervasive

• It’s the norm, not the exception

Slide credit: Fei-Fei Li, Justin Johnson, and Serena Yeung



Transfer learning with CNNs is pervasive

• It’s the norm, not the exception

Slide credit: Fei-Fei Li, Justin Johnson, and Serena Yeung



Other pre-trained models are starting to 
become standard
• Swin-transformer pre-trained on ImageNet-21K
• DINO features
• Foundation models (Stable Diffusion, etc)



Takeaway for your projects and beyond
Have some dataset of interest, but it 
has << ~1M images?

1. Find a large dataset with similar 
data (e.g., ImageNet), train a large 
CNN

2. Apply transfer learning to fine-tune 
on your data

For step 1, many existing models exist 
in “Model Zoos”

Common modern approach:  
start with a ResNet
architecture pre-trained on 
ImageNet, and fine-tune on 
your (smaller) dataset

Slide credit: Fei-Fei Li, Justin Johnson, and Serena Yeung



Questions?


