
Quiz 8 (on Canvas)
Closed book / closed note

Ends at 1:08pm



Inverse Graphics & Neural Radiance Fields (NeRFs)
CS5670: Computer Vision

NeRF Slides adapted from material courtesy of Pratul Srinivasan



Announcements
• Project 5 released today, due Wednesday, May 3 (8pm)
– To be done in groups of 2

• Sample final exam online – see Ed Stem

• Final exam in-class on May 9



Project 5 Demo



Rendering in computer graphics

3D
Scene

Representation Rendering

Adapted from material from Pratul Srinivasan



Computer vision as inverse rendering

3D
Scene

RepresentationInverse Rendering Rendering

Adapted from material from Pratul Srinivasan



Neural Radiance Fields (NeRF) as an 
approach to inverse rendering

Neural
Radiance 

FieldInverse Rendering Rendering

Adapted from material from Pratul Srinivasan



Deep learning for 3D reconstruction
• Previously: we reconstruct geometry by running stereo or 

multi-view stereo on a set of images
– “Classical” approach

• How can we leverage powerful tools of deep learning?
– Deep neural networks
– GPU-accelerated stochastic gradient descent



NeRF and related methods – Key ideas
• We need to create a loss function and a scene 

representation that we can optimize using gradient 
descent to reconstruct the scene

• Differentiable rendering



Side Topic: Stereo Photography



Stereo Photography

Viewing Devices



Queen Victoria at World Fair, 1851

Stereo Photography



Stereo Photography



Issue: Narrow Baseline

~1.5 cm~6.5 cm
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Output



Problem Statement 

3D scene 
representatio
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…
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…
Output Input



Challenges

……
InputOutput Output

Extrapolation

Large disocclusion

Non-Lambertian Effects

Reflections, transparencies, etc.



Input views

Scene
Representation

Neural prediction of scene representations

Output views

…

Neural Net



Stereo Magnification: Learning View 
Synthesis using Multiplane Images
Tinghui Zhou, Richard Tucker, John Flynn, Graham Fyffe, 
Noah Snavely

SIGGRAPH 2018



Multiplane Camera (1937)

Image credits: Disney https://www.youtube.com/watch?v=kN-eCBAOw60 (from 1957)

https://www.youtube.com/watch?v=kN-eCBAOw60


Multiplane Images (MPIs)

Reference 
Viewpoint

Each plane is at a fixed 
depth and encoded by 

an RGBA image



View Synthesis using Multiplane Images

Reference 
Viewpoint

Homography

Target
Viewpoint

Over



View Synthesis using Multiplane Images

Reference 
Viewpoint

Homography

Target
Viewpoint

Over

Synthesized image







• Models disocclusion

• Models soft edges and 
non-Lambertian effects

• Efficient for view synthesis

• Differentiable rendering

Properties of Multiplane Images



Learning Multiplane Images

Input views

Multiplane Image

Alpha

RGB

Neural net



Learning Multiplane Images

Input views

Rendered views

…

Ground-truthMultiplane Image

Alpha

RGB

Neural net



Mapping image-shaped inputs to image-
shaped outputs with the UNet architecture

Input RGB Image Output image 
(depth map)



Image Pair à Multiplane Image

Input pair

Suppose we want to map a pair of images to a 32-plane 
MPI

U-Net CNN

Plane sweep 
volume

…

(32 RGB planes)

MPI Planes

…

(32 RGBA images)



Training Data

…

Input views Target view

( )
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( )

,

,

,

Need massive set of 
triplets with known 

camera poses



SLAM

RealEstate10K

Running SLAM / SfM on YouTube videos at scale



10 million frames from 80,000 video clips from 10,000 videos
https://google.github.io/realestate10k/

RealEstate10K dataset

https://google.github.io/realestate10k/


Sampling Training Examples

… …

Input TargetInput
(Extrapolated)



Sampling Training Examples

… …

InputTargetInput
(Interpolated)



Results
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Right



Output



Image 1



Image 2



Reference input view

Plane 0

Plane 13

Plane 9

Plane 16

Plane 24 Plane 26

Multi-plane Image (MPI)





Computer vision as inverse rendering

3D
Scene

RepresentationInverse Rendering Rendering

Adapted from material from Pratul Srinivasan



Paradigm 1: “Feedforward” inverse 
rendering

4
8

3D
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Inverse Rendering
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Adapted from material from Pratul Srinivasan



Paradigm 1: “Feedforward” inverse 
rendering

4
9

3D
Scene

Representation
Rendering Loss

𝜃

RenderingInverse Rendering
Network

Adapted from material from Pratul Srinivasan



5
0

3D
Scene

Representation

𝜃

Paradigm 2: “Render-and-compare”

Inverse Rendering Rendering

Adapted from material from Pratul Srinivasan
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3D
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Representation

𝜃 Rendering Loss
Inverse Rendering Rendering

Paradigm 2: “Render-and-compare”

Adapted from material from Pratul Srinivasan



What representation to use?
• Could use triangle meshes, but 

hard to differentiate during 
rendering

• Multiplane images (MPIs) are easy 
to differentiate, but only allow for 
rendering a small range of views





NeRF == Differentiable Rendering with 
a Neural Volumetric Representation

5
4



5
5

3D
Scene

Representation

𝜃

Paradigm 2: “Render-and-compare”

Inverse Rendering Rendering

Adapted from material from Pratul Srinivasan



Barron et al 2021, Mip-NeRF 360: Unbounded Anti-Aliased Neural Radiance Fields



Neural Volumetric Rendering

5
7



Neural Volumetric Rendering

5
8

querying the radiance value 
along rays through 3D space

What color?

Adapted from material from Pratul Srinivasan



Neural Volumetric Rendering

5
9

continuous, differentiable 
rendering model without 

concrete ray/surface intersections

Adapted from material from Pratul Srinivasan



Neural Volumetric Rendering

6
0

using a neural network as a 
scene representation, rather 

than a voxel grid of data

Scene 
properties(𝑥, 𝑦, 𝑧)

Multi-layer 
Perceptron (Neural 

Network) Adapted from material from Pratul Srinivasan



6
1

NeRF: Representing 
Scenes as Neural Radiance 
Fields for View Synthesis
ECCV 2020

Ben Mildenhall*

UC Berkeley

Pratul Srinivasan* Matt Tancik* Jon Barron Ravi Ramamoorthi Ren Ng

UC Berkeley UC Berkeley Google Research UC San Diego UC Berkeley



Given a set of sparse views of an 
object with known camera poses

3D reconstruction viewable 
from any angle

Optimize a NeRF
model



NeRF Overview

‣ Volumetric rendering

‣ Neural networks as representations for spatial data 

‣ Neural Radiance Fields (NeRF)



NeRF Overview

‣ Volumetric rendering

‣ Neural networks as representations for spatial data

‣ Neural Radiance Fields (NeRF)



Traditional volumetric rendering

Theory of volume rendering co-opted from physics in 
the 1980s: absorption, emission, out-scattering/in-
scattering

‣ Adapted for visualising medical data and linked with 
alpha compositing

‣ Modern path tracers use sophisticated Monte Carlo 
methods to render volumetric effects

Levoy 1988, Display of Surfaces from Volume Data
Max 1995, Optical Models for Direct Volume Rendering

Kajiya 1984, Ray Tracing Volume Densities
Chandrasekhar 1950, Radiative Transfer

Novak et al 2018, Monte Carlo methods for physically based volume rendering
Porter and Duff 1984, Compositing Digital Images

Ray tracing simulated cumulus cloud [Kajiya]

Adapted from material from Pratul Srinivasan



Full volumetric rendering formulation

6
6

Slide credit: Novak et al 2018, Monte Carlo methods for physically based volume rendering

http://commons.wikimedia.org

Absorption

http://coclouds.com

Scattering

http://wikipedia.org

Emission



Volumetric formulation for NeRF

Scene is a cloud of colored fog

Max and Chen 2010, Local and Global Illumination in the Volume Rendering Integral



Volumetric formulation for NeRF

Consider a ray traveling through the scene, and a point 
at distance 𝑡 along this ray. We look up its color 𝐜(𝑡), 
and its opacity (alpha value) α(𝑡) from a neural network

Camera

Ray 𝐫(𝑡) = 𝐨 + 𝑡𝐝

𝑡

Adapted from material from Pratul Srinivasan



Volumetric formulation for NeRF

But 𝑡 may also be blocked by earlier points along the 
ray. 𝑇(𝑡): probability that the ray didn’t hit any particles 
earlier.
𝑇(𝑡) is called “transmittance”

𝑃[no hits before 𝑡] = 𝑇(𝑡)

𝑡

Adapted from material from Pratul Srinivasan



Volume rendering estimation: integrating color along a 
ray

Rendering model for ray 𝐫(𝑡) = 𝐨 + 𝑡𝐝:

How much light is blocked earlier along ray:
3D volume

𝑡%

Camera

Ray

colors
weights

𝐜 ≈ ∑
!"#

$
𝑇!𝛼!𝐜!

𝑇! = ∏
%"#

!&#
(1 − 𝛼%)

𝑡!

𝑡" 𝑇#

𝐜! , 𝛼#
𝑡#

final rendered 
color along ray

Computing the color for a 
set of rays through the 
pixels of an image yields 
a rendered image

Adapted from material from Pratul Srinivasan



Volume rendering estimation: integrating color along a 
ray

Rendering model for ray 𝐫(𝑡) = 𝐨 + 𝑡𝐝:

How much light is blocked earlier along ray:
3D volume

𝑡%

Camera

Ray

colors
weights

𝐜 ≈ ∑
!"#

$
𝑇!𝛼!𝐜!

𝑇! = ∏
%"#

!&#
(1 − 𝛼%)

𝑡!

𝑡" 𝑇#

𝐜! , 𝜎#
𝑡#

final rendered 
color along ray

𝛼! = 1 − exp(−𝜎!𝛿!)

Slight modification: 𝛼 is not directly stored in the volume, 
but instead is derived from a stored volume density 
sigma (σ) that is multiplied by the distance between 
samples delta (δ):

𝛿#
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Adapted from material from Pratul Srinivasan



Volume rendering estimation: integrating color along a 
ray

Rendering model for ray 𝐫(𝑡) = 𝐨 + 𝑡𝐝:

How much light is blocked earlier along ray:
3D volume

𝑡%

Camera

Ray

colors
weights

𝐜 ≈ ∑
!"#

$
𝑇!𝛼!𝐜!

𝑇! = ∏
%"#

!&#
(1 − 𝛼%)

𝑡!

𝑡" 𝑇#

𝐜! , 𝜎#
𝑡#

final rendered 
color along ray

Computing the color for a 
set of rays through the 
pixels of an image yields 
a rendered image

How do we store the values of 
𝐜, 𝜎 at each point in space?

Adapted from material from Pratul Srinivasan



NeRF Overview

‣ Volumetric rendering 

‣ Neural networks as representations for spatial data

‣ Neural Radiance Fields (NeRF)



Toy problem: storing 2D image data

(𝑥, 𝑦) (𝑟, 𝑔, 𝑏)

Usually we store an image as a 
2D grid of RGB color values

Adapted from material from Pratul Srinivasan



Toy problem: storing 2D image data

(𝑥, 𝑦) (𝑟, 𝑔, 𝑏)

What if we train a simple fully-connected 
network (MLP) to do this instead?

𝐹!

Adapted from material from Pratul Srinivasan



Same concept as before, except we are computing an image, instead of a classifier!

Recall the TensorFlow playground



Naive approach fails!

Ground truth image Neural network output fit 
with gradient descent

Adapted from material from Pratul Srinivasan



Problem:
“Standard” coordinate-based MLPs cannot represent 

high frequency functions



Solution:
Pass input coordinates through a 

high frequency mapping first



Example mapping: “positional encoding”

Adapted from material from Pratul Srinivasan



Positional encoding

Raw encoding of a number x “Positional encoding” of a number x

Adapted from material from Pratul Srinivasan



Problem solved!

Ground truth image Neural network output without
high frequency mapping

Neural network output with
high frequency mapping

Adapted from material from Pratul Srinivasan



Recall “squared” encoding in TensorFlow Playground

Sometimes a better input encoding is all you 
need



NeRF Overview

‣ Volumetric rendering 

‣ Neural networks as representations for spatial data

‣ Neural Radiance Fields (NeRF)

8
4



NeRF = volume rendering + 
coordinate-based network



How do we store the values of 𝐜, 𝜎 at each point in space?

𝑡%

𝐜, 𝜎
MLP

𝑡%
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Adapted from material from Pratul Srinivasan
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How do we store the values of 𝐜, 𝜎 at each point in space?

Adapted from material from Pratul Srinivasan
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How do we store the values of 𝐜, 𝜎 at each point in space?

Adapted from material from Pratul Srinivasan
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How do we store the values of 𝐜, 𝜎 at each point in space?

Adapted from material from Pratul Srinivasan
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Adapted from material from Pratul Srinivasan
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Adapted from material from Pratul Srinivasan
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How do we store the values of 𝐜, 𝜎 at each point in space?

Adapted from material from Pratul Srinivasan
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How do we store the values of 𝐜, 𝜎 at each point in space?

Adapted from material from Pratul Srinivasan



𝑡%𝑡%

3D point and direction
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MLP
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Extension: view-dependent field

Include the ray direction in 
the input to the MLP à
allows for capturing and 

rendering view-dependent 
effects (e.g., shiny surfaces)



Putting it all together

Adapted from material from Pratul Srinivasan



∇∥ − ∥!

Train network using gradient descent 
to reproduce all input views of scene 

Volume rendering of 
MLP colors/densities

Ground truth
image

Adapted from material from Pratul Srinivasan



Results





NeRF encodes convincing view-dependent effects using 
directional dependence

Adapted from material from Pratul Srinivasan



NeRF encodes convincing view-dependent effects using 
directional dependence

Adapted from material from Pratul Srinivasan



NeRF encodes detailed scene geometry with occlusion effects

Adapted from material from Pratul Srinivasan



NeRF encodes detailed scene geometry

Adapted from material from Pratul Srinivasan



Summary
• Represent the scene as volumetric colored “fog”
• Store the fog color and density at each point as an MLP 

mapping 3D position (x, y, z) to color c and density σ
• Render image by shooting a ray through the fog for each 

pixel
• Optimize MLP parameters by rendering to a set of known 

viewpoints and comparing to ground truth images



Extension: NeRF in the Wild (NeRF-W)

Brandenburg Gate Sacre Coeur Trevi Fountain

Martin-Brualla*, Radwan*, Sajjadi*, Barron, Dosovitskiy, Duckworth. 
NeRF in the Wild. CVPR 2021.
https://www.youtube.com/watch?v=mRAKVQj5LRA

https://www.youtube.com/watch?v=mRAKVQj5LRA


Inverse graphics beyond shape and color

Reconstructed models inserted into scene with new lightingInput images of 
an object

Zhang, Luan, Li, Snavely. CVPR 
2022.

Reconstructed shape, 
albedo, and materials



Questions?


