Quiz 8 (on Canvas) Closed book / closed note Ends at 1:08pm

CS5670: Computer Vision Inverse Graphics & Neural Radiance Fields (NeRFs)

NeRF Slides adapted from material courtesy of Pratul Srinivasa

Announcements

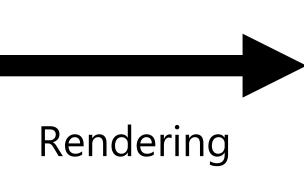
- To be done in groups of 2
- Sample final exam online see Ed Stem
- Final exam in-class on May 9

Project 5 released today, due Wednesday, May 3 (8pm)

Project 5 Demo

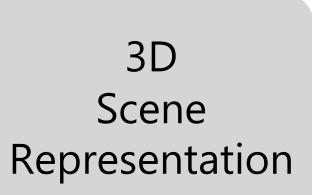
Rendering in computer graphics

3D Scene Representation



Adapted from material from Pratul Srinivas

Computer vision as inverse rendering



Adapted from material from Pratul Srinivas

Neural Radiance Fields (NeRF) as an approach to inverse rendering

Neural Radiance Field

Rendering

Adapted from material from Pratul Srinivas

Deep learning for 3D reconstruction

multi-view stereo on a set of images – "Classical" approach

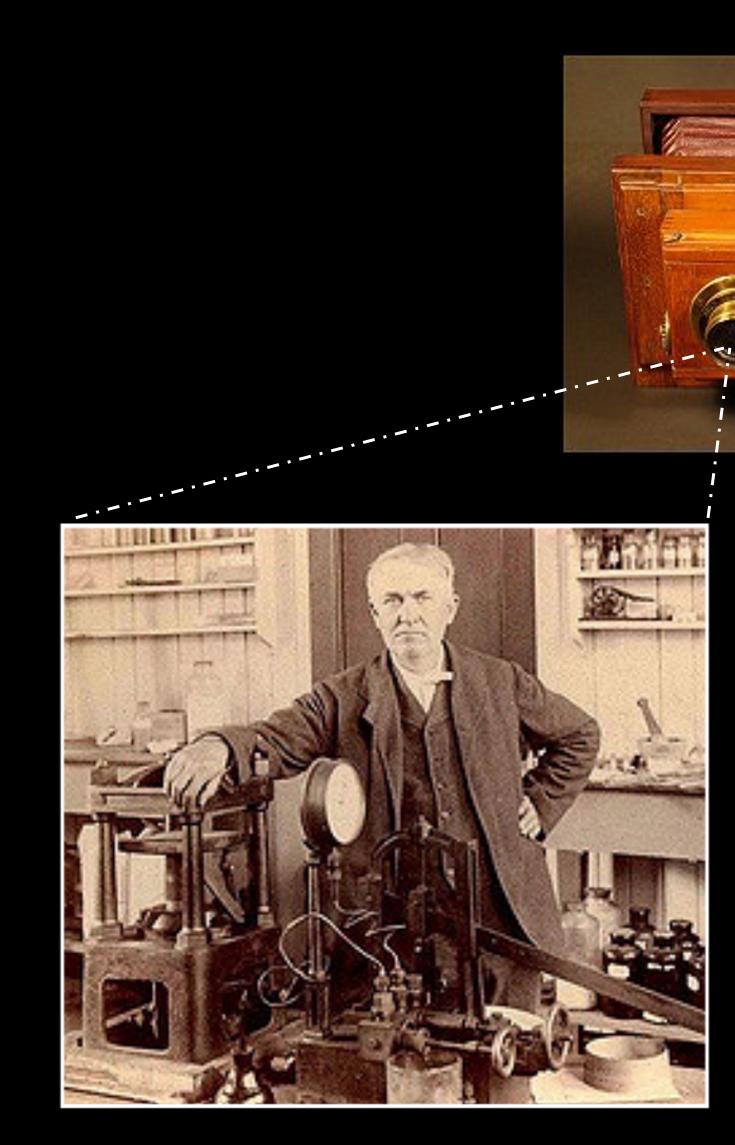
- How can we leverage powerful tools of deep learning?
 - Deep neural networks
 - GPU-accelerated stochastic gradient descent

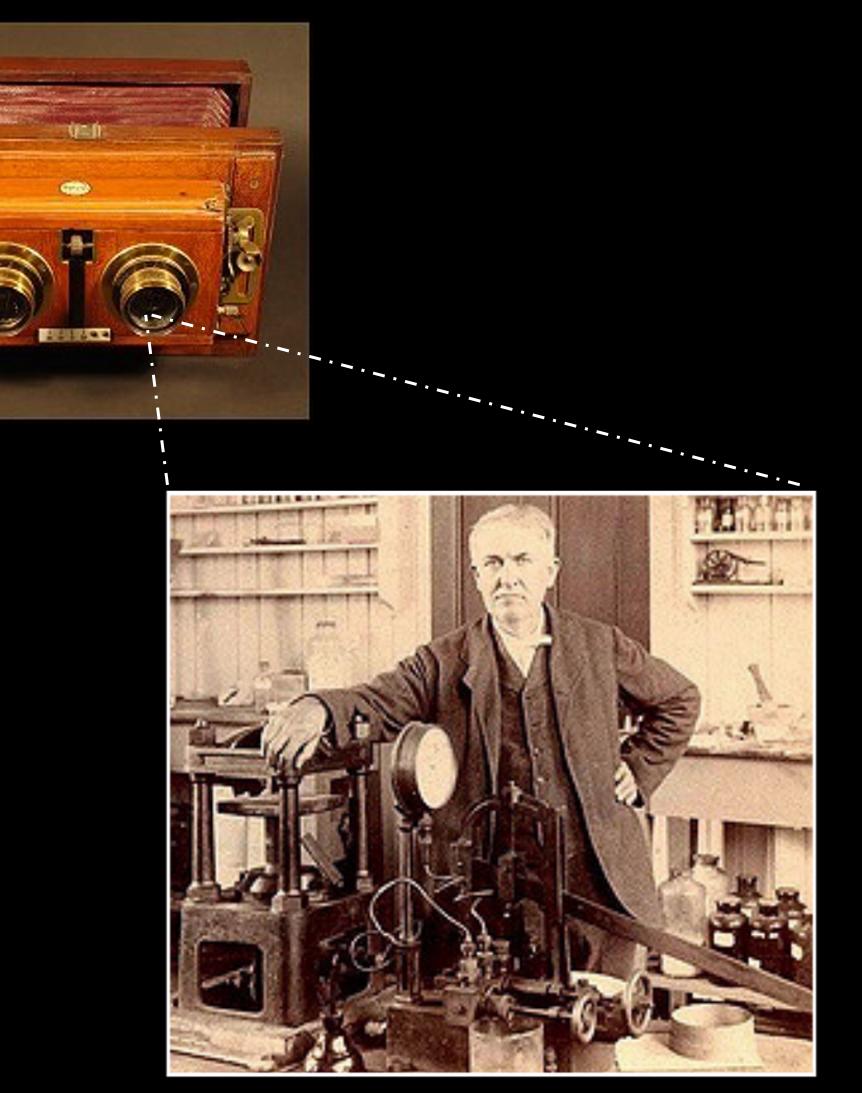
Previously: we reconstruct geometry by running stereo or

NeRF and related methods – Key ideas

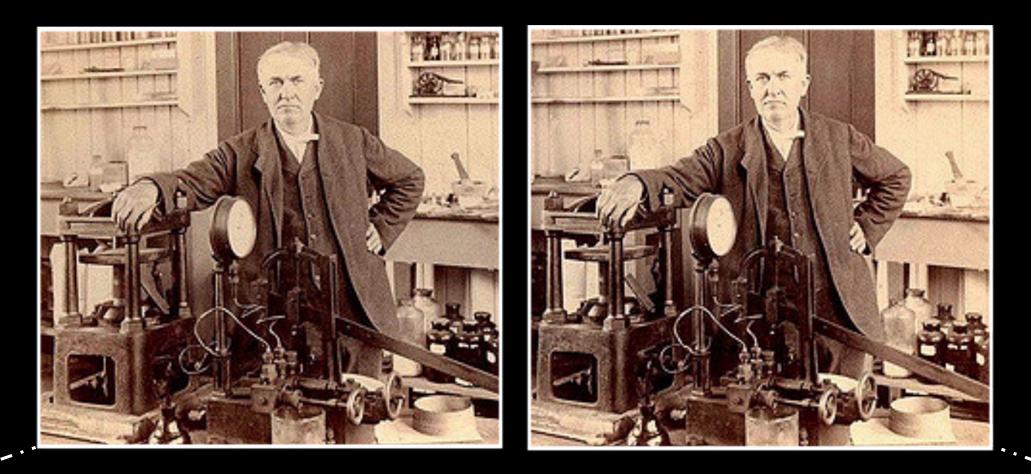
- We need to create a loss function and a scene representation that we can optimize using gradient descent to reconstruct the scene
- Differentiable rendering

Side Topic: Stereo Photography

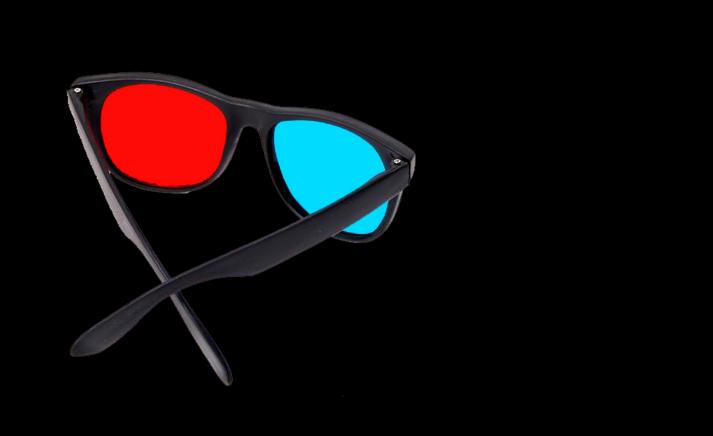


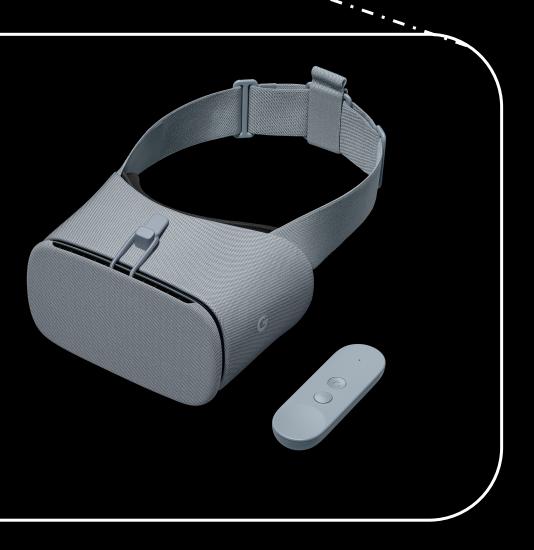


Stereo Photography



Viewing Devices





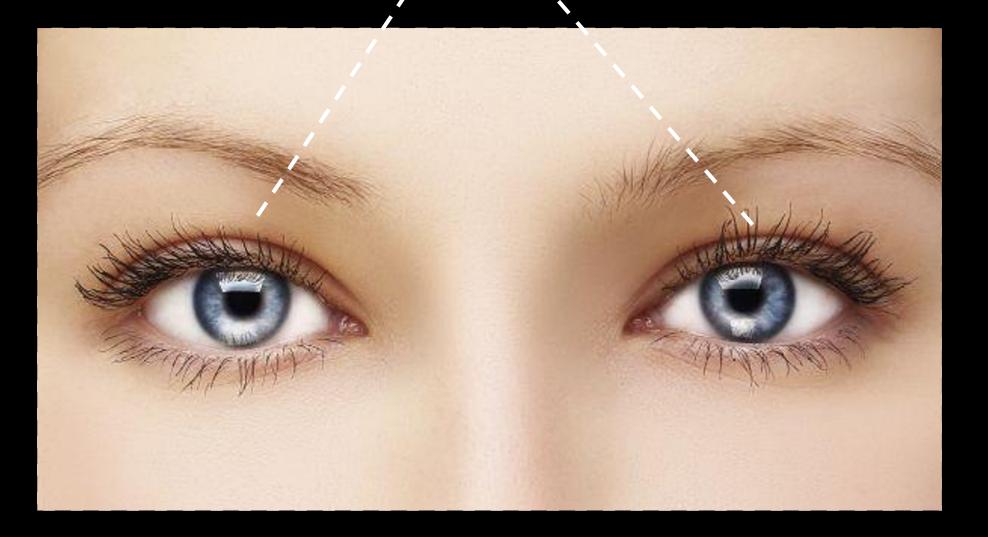
Stereo Photography

Queen Victoria at World Fair, 1851

Stereo Photography

Issue: Narrow Baseline

~6.5 cm



~1.5 cm

-

DA

Dinten mill

V Vm

Mas

memm

Output

-Das

Remonit

••• VVVVVVVVVVVVV+••• Output Input Output

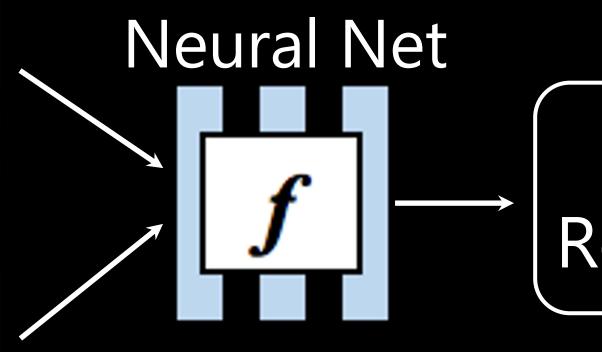
Extrapolation Large disocclusion Output Output Input

Non-Lambertian Effects

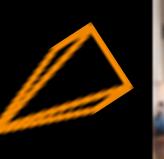
Reflections, transparencies, etc.

Neural prediction of scene representations

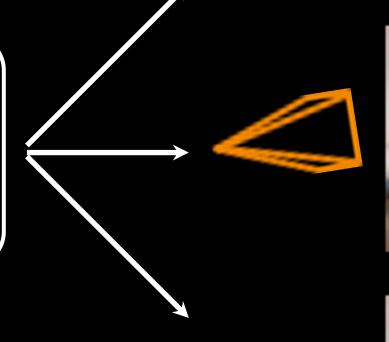
Input views

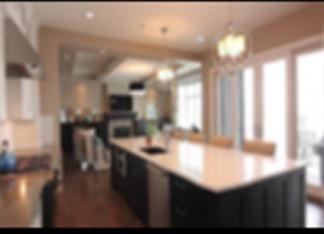


Output views



Scene Representation





•

Stereo Magnification: Learning View Synthesis using Multiplane Images

Tinghui Zhou, Richard Tucker, John Flynn, Graham Fyffe, Noah Snavely

SIGGRAPH 2018

Multiplane Camera (1937)

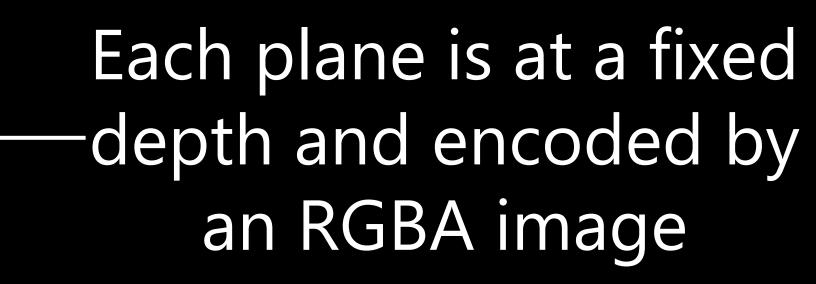
Image credits: Disney

https://www.youtube.com/watch?v=kN-eCBAOw60 (from 1957)

Multiplane Images (MPIs)

Reference Viewpoint

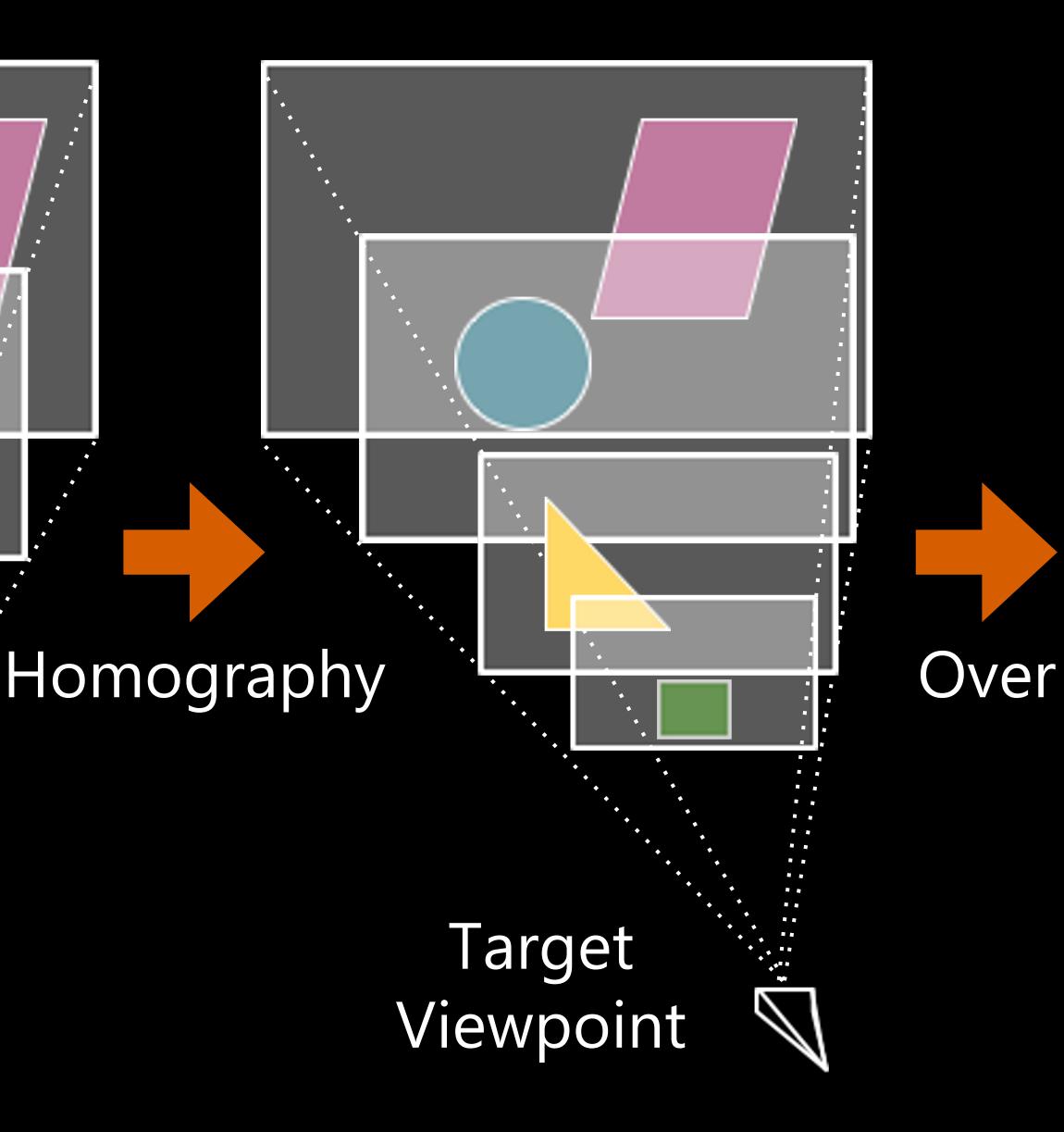
 \mathbf{V}



View Synthesis using Multiplane Images

Reference Viewpoint

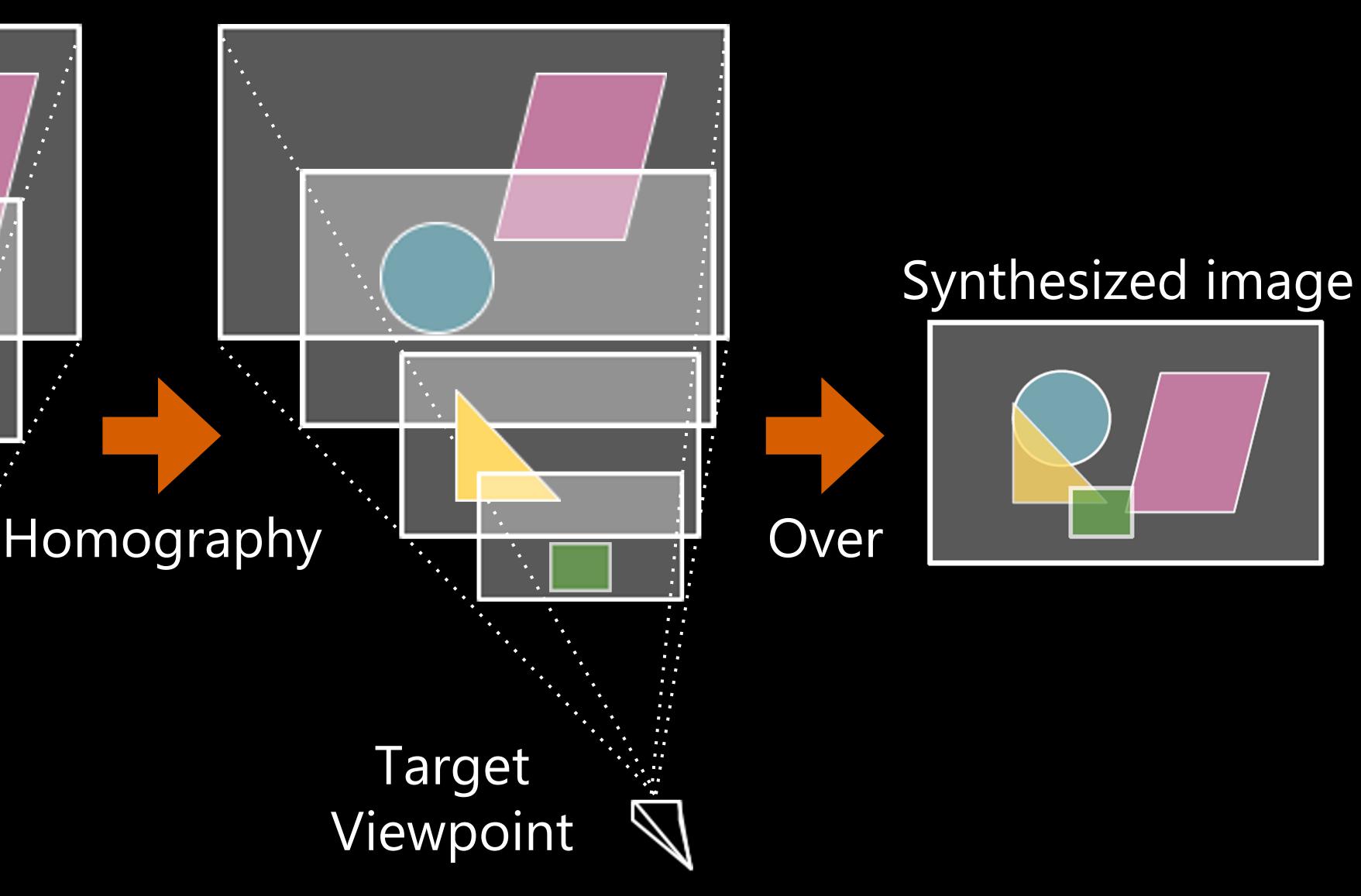
 \bigvee

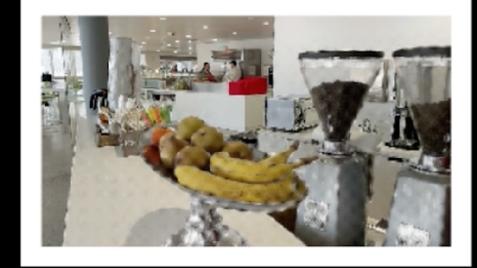


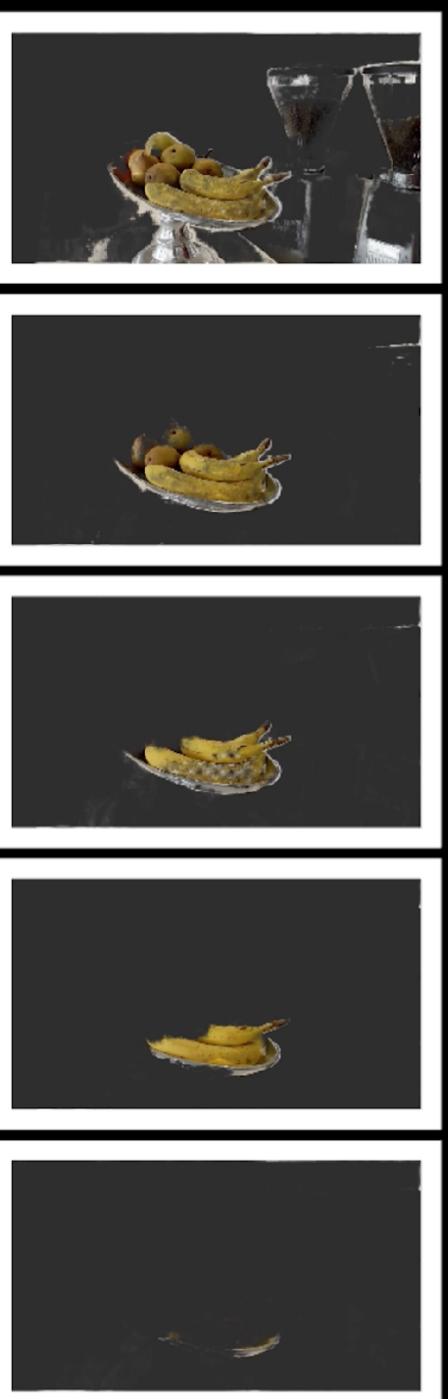
View Synthesis using Multiplane Images

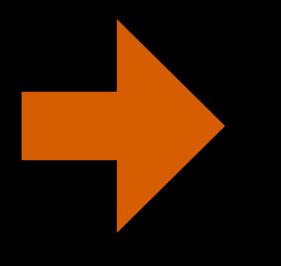
Reference Viewpoint

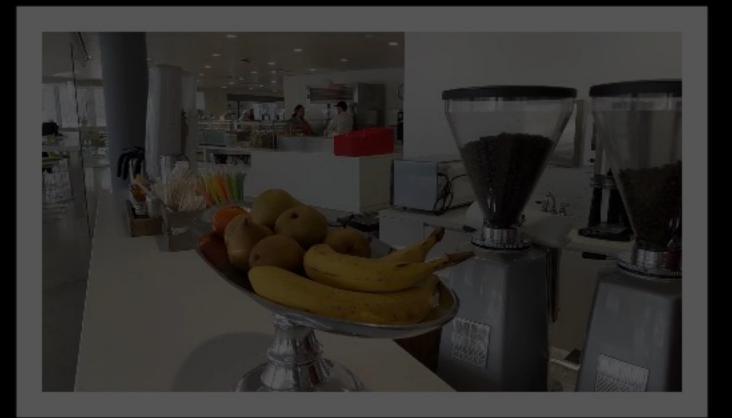
 \bigvee

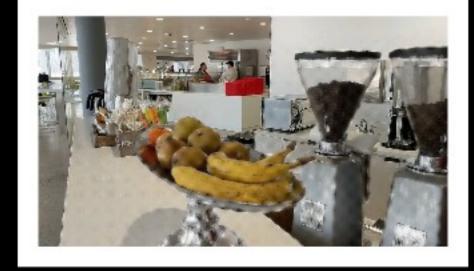






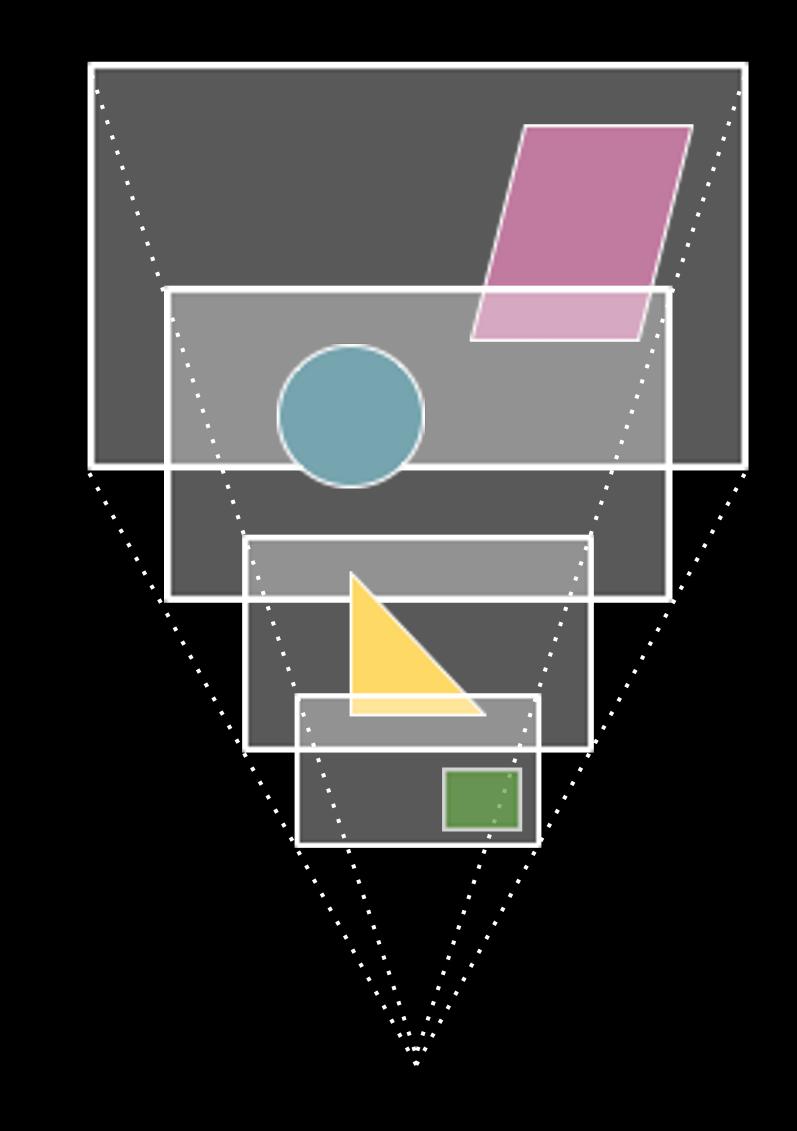








Properties of Multiplane Images

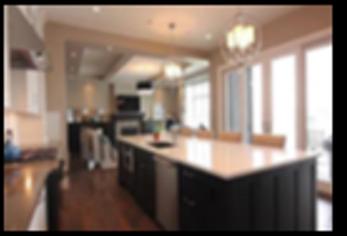


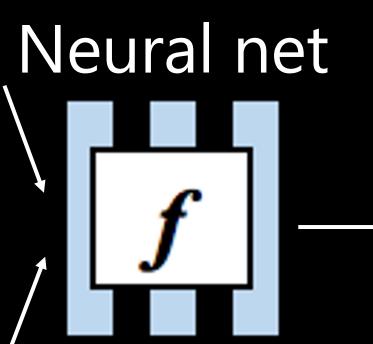
- Models disocclusion
- Models soft edges and non-Lambertian effects
- Efficient for view synthesis
- Differentiable rendering

Learning Multiplane Images

Multiplane Image

Input views



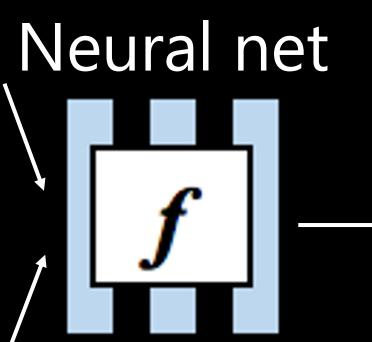


Alpha

Learning Multiplane Images

Multiplane Image

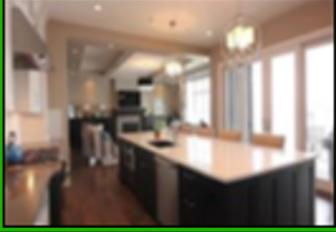
Input views



Alpha

Rendered views Ground-truth





Mapping image-shaped inputs to imageshaped outputs with the UNet architecture

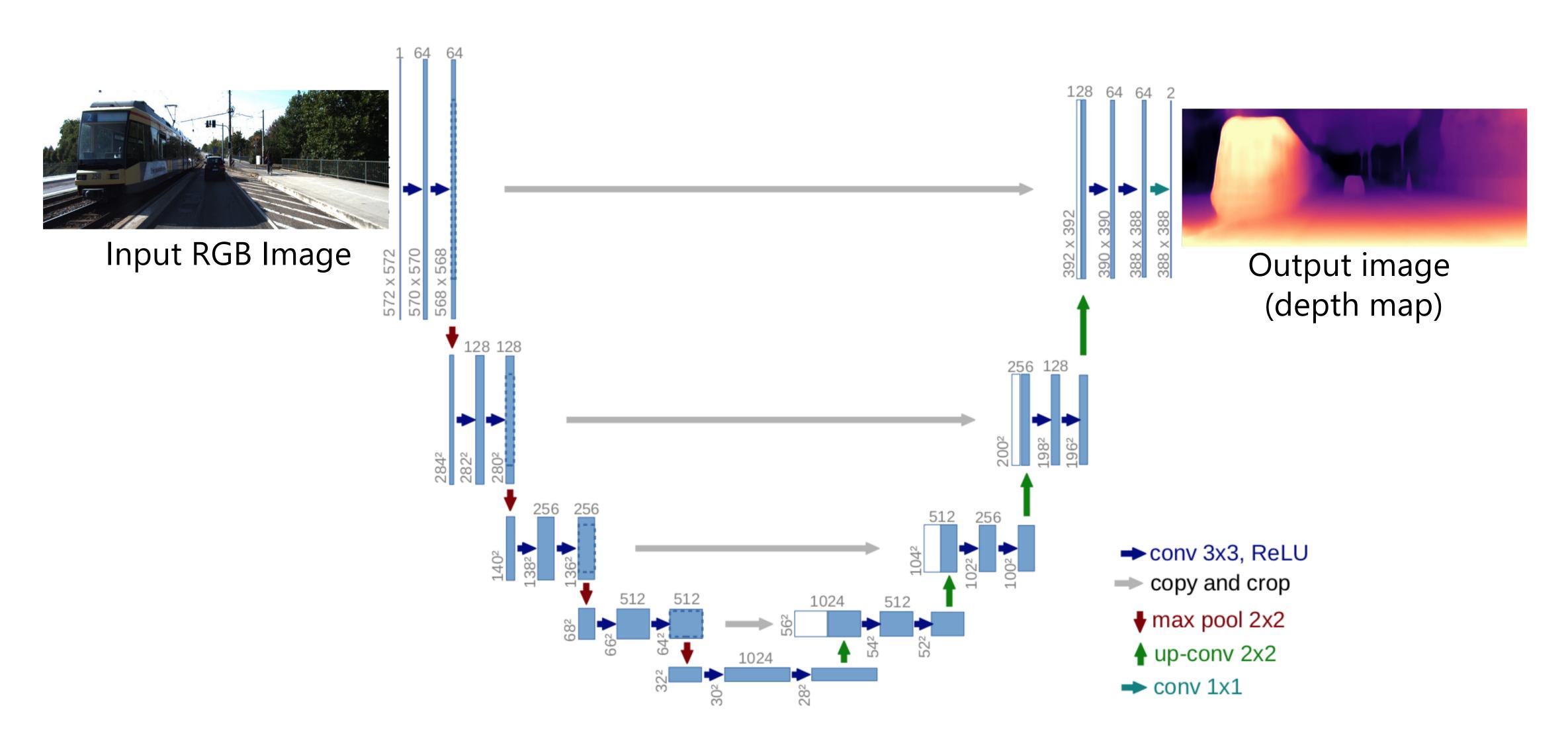
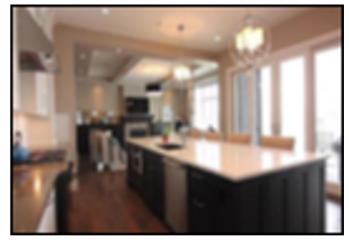
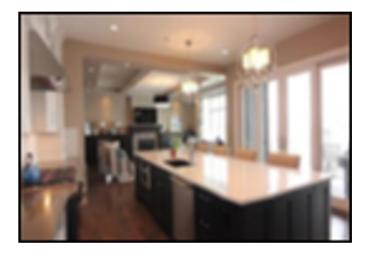


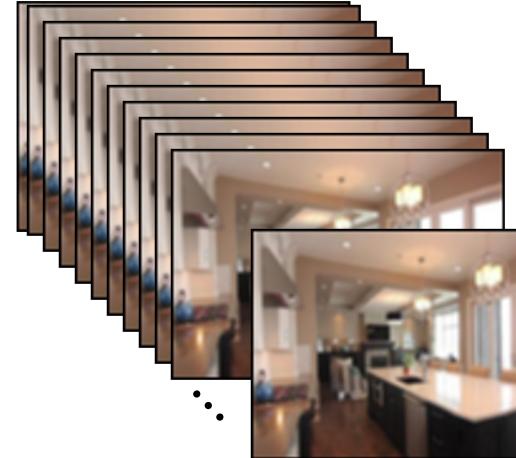
Image Pair → Multiplane Image Suppose we want to map a pair of images to a 32-plane MPI

Input pair



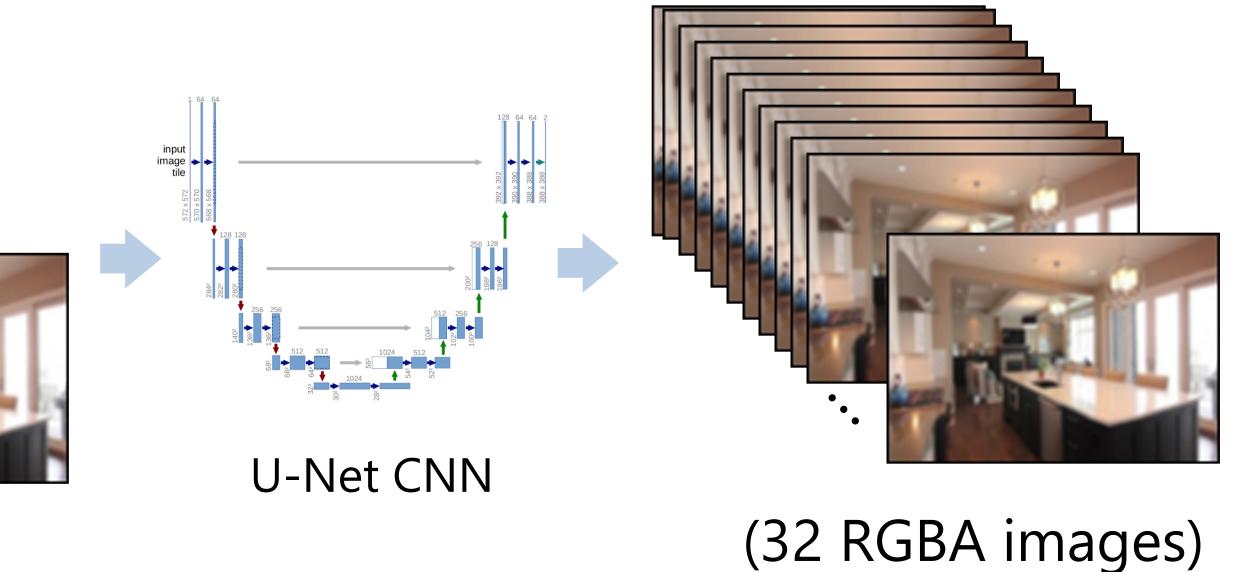


Plane sweep volume



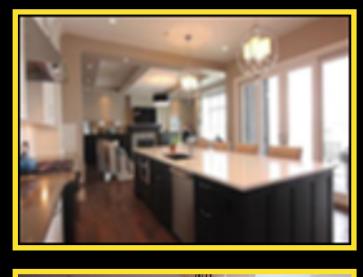
(32 RGB planes)

MPI Planes



Training Data

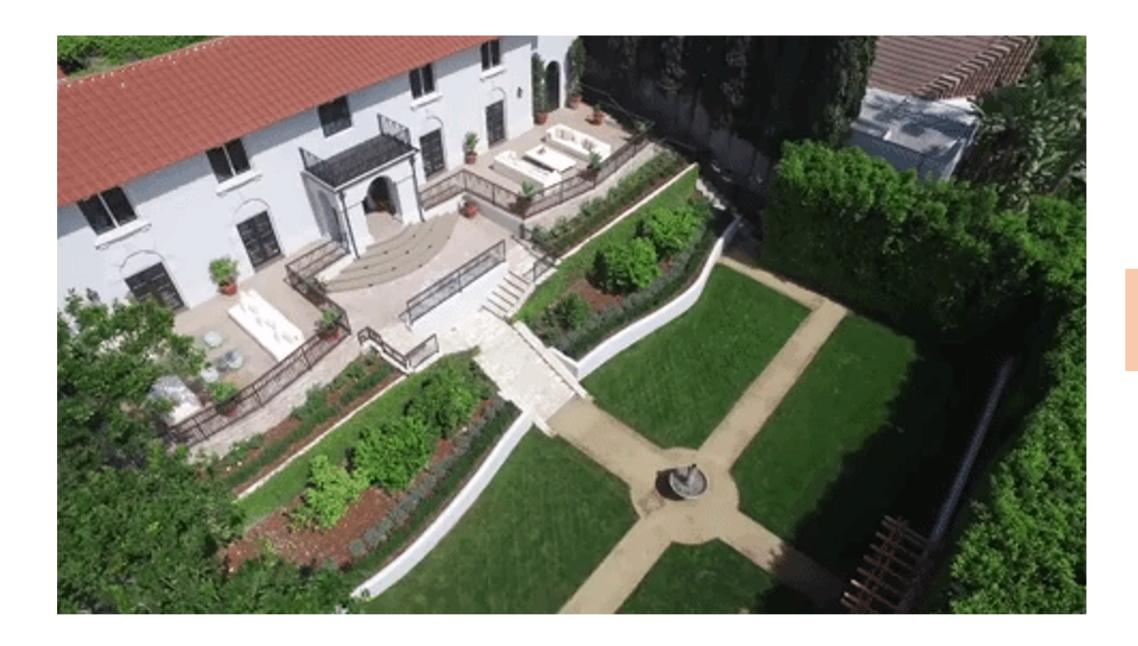
Input views



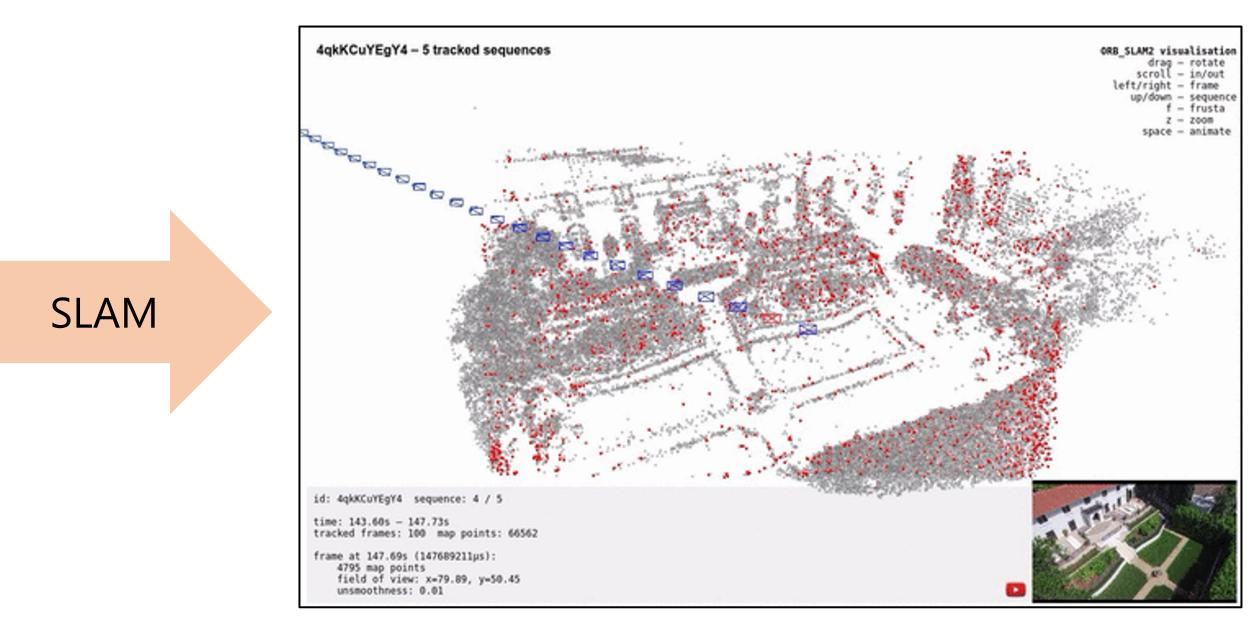
Target view

Need massive set of triplets with known camera poses

RealEstate10K

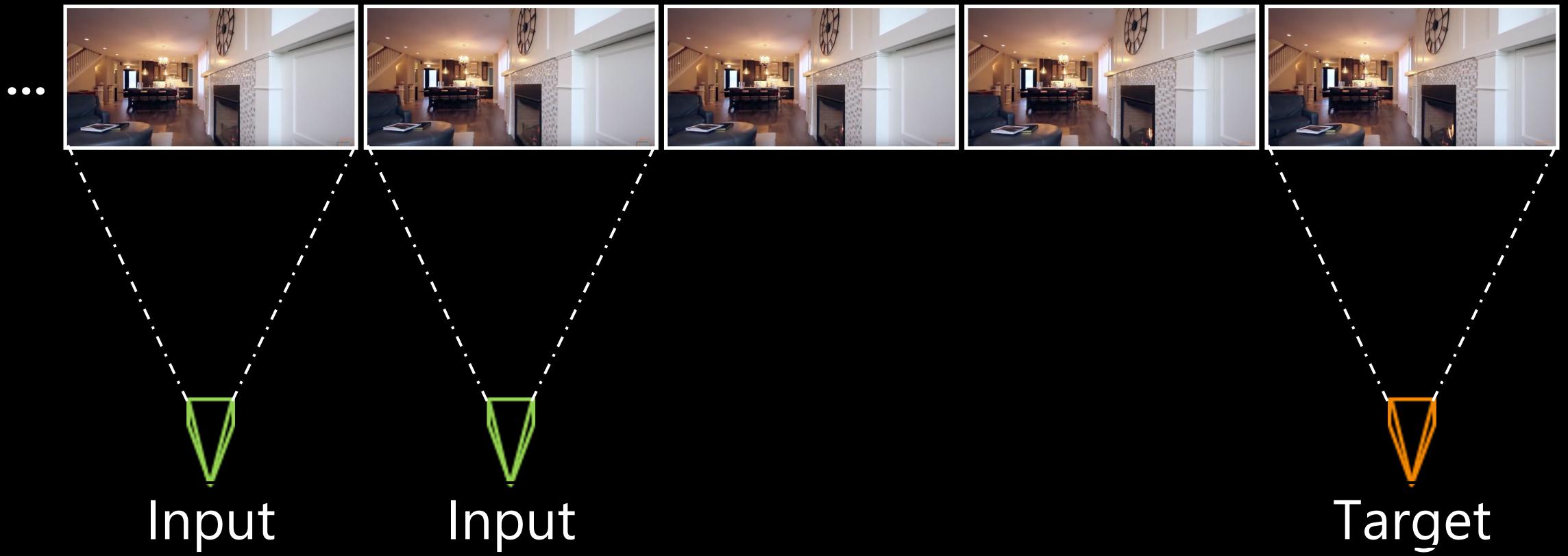


Running SLAM / SfM on YouTube videos at scale



RealEstate10K dataset 10 million frames from 80,000 video clips from 10,000 videos https://google.github.io/realestate10k/

Sampling Training Examples



(Extrapolated)

 $\bullet \bullet \bullet$

Sampling Training Examples

 $\bullet \bullet \bullet$

Input



Input

Target (Interpolated) $\bullet \bullet \bullet$

Results

Right

Output

Image 1

24 24

Image 2

2.23

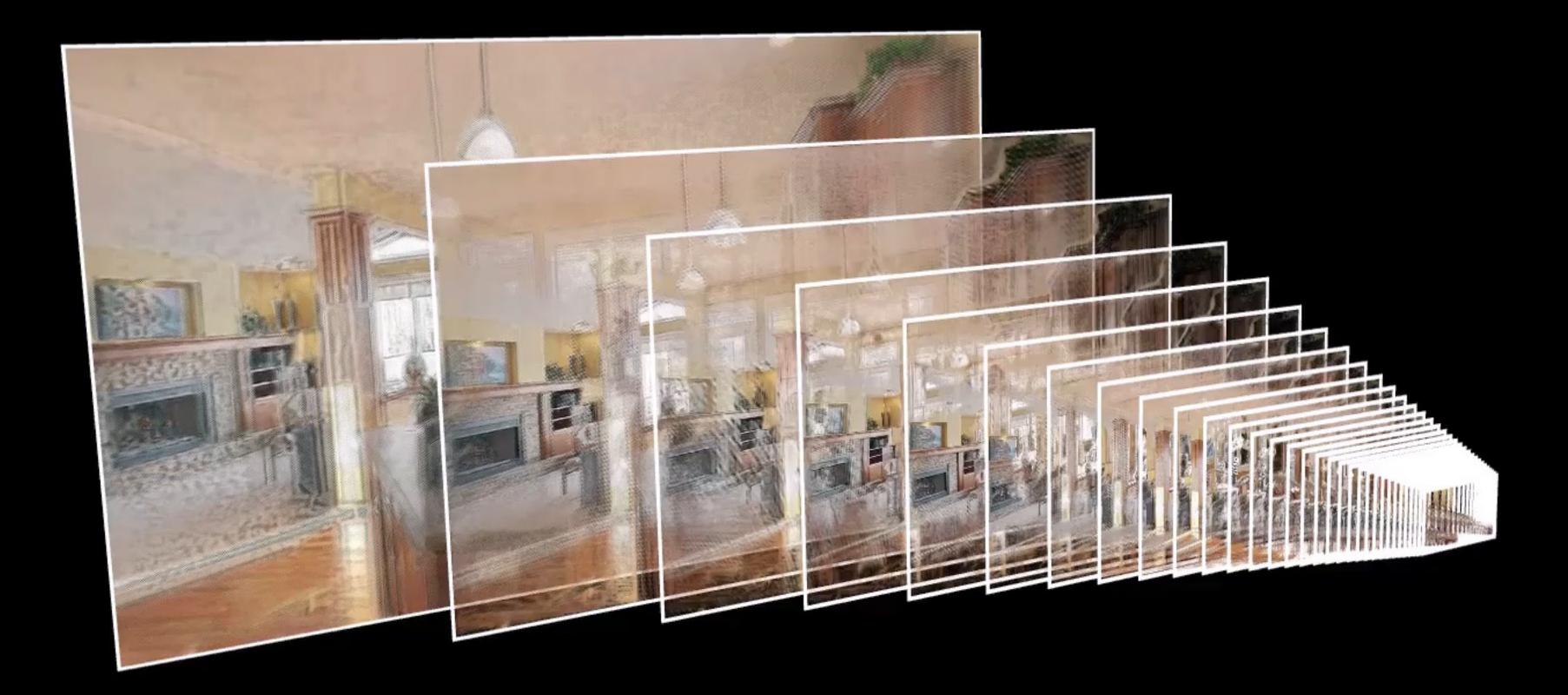
Reference input view

Multi-plane Image (MPI)Plane 0Plane 9

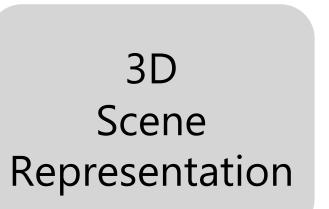
Plane 13

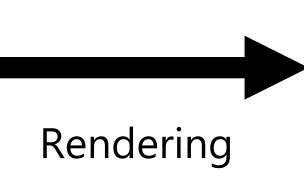
Plane 16

Plane 24

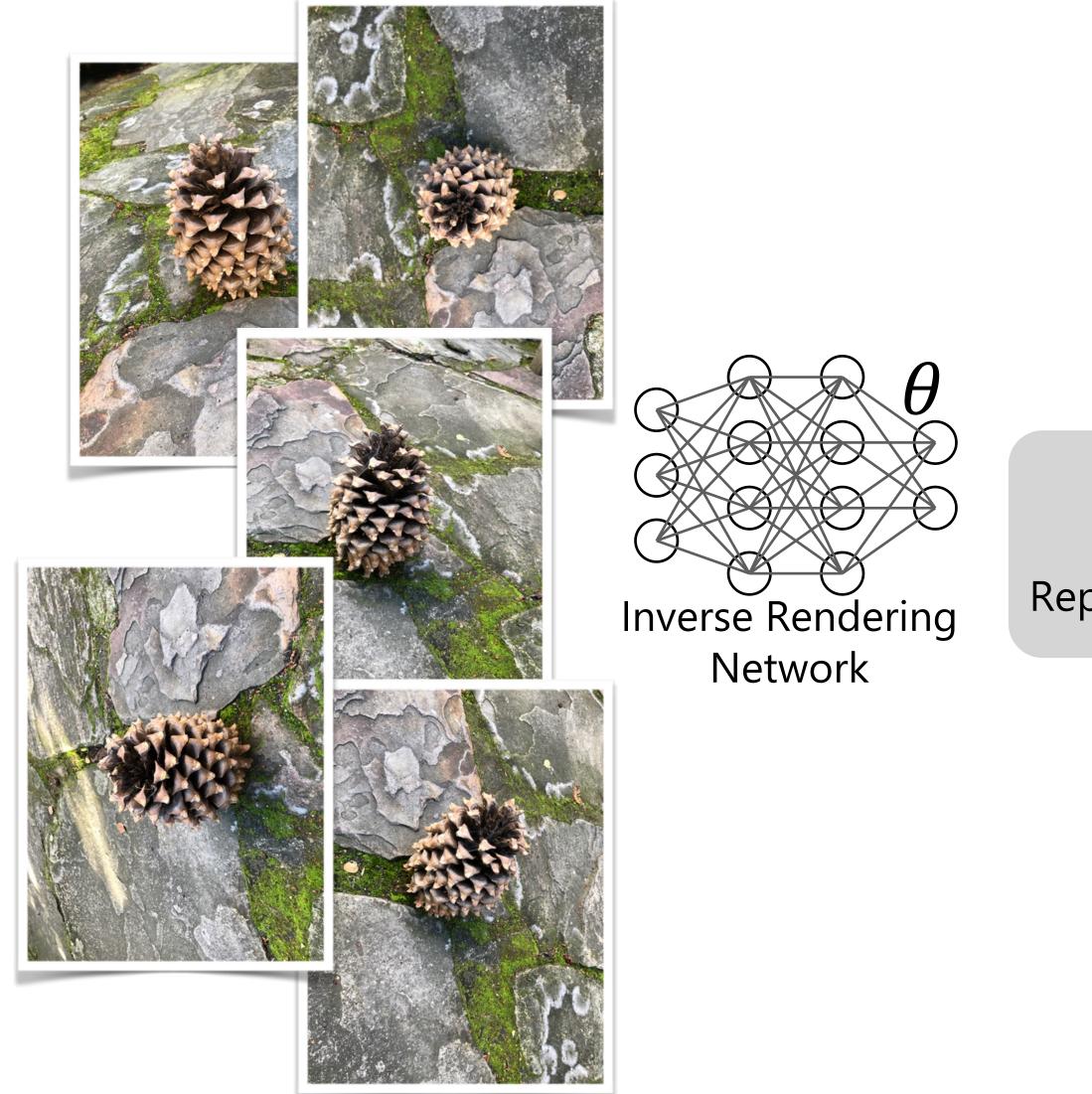


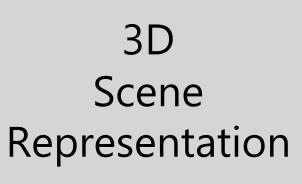
Computer vision as inverse rendering

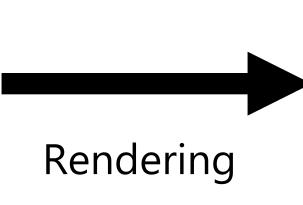




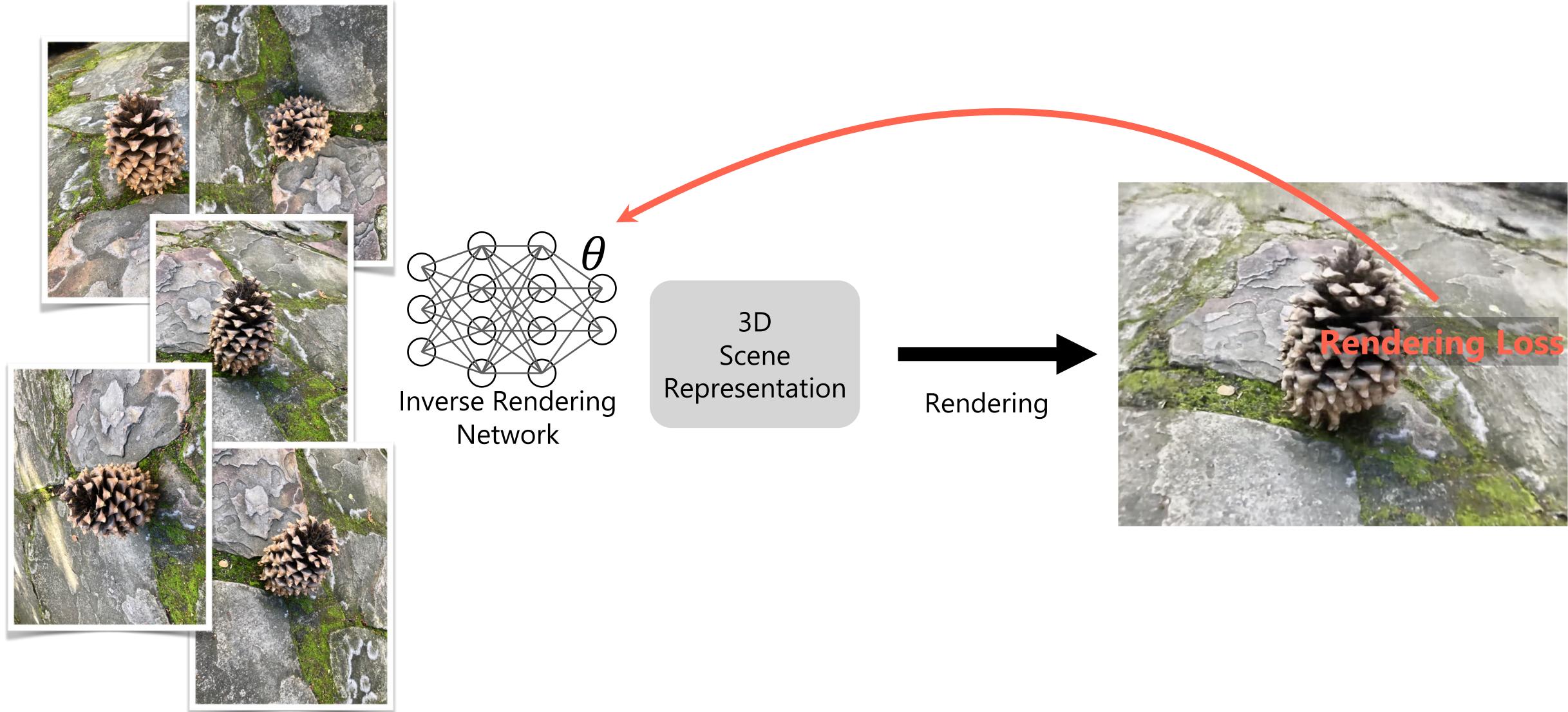
Paradigm 1: "Feedforward" inverse rendering



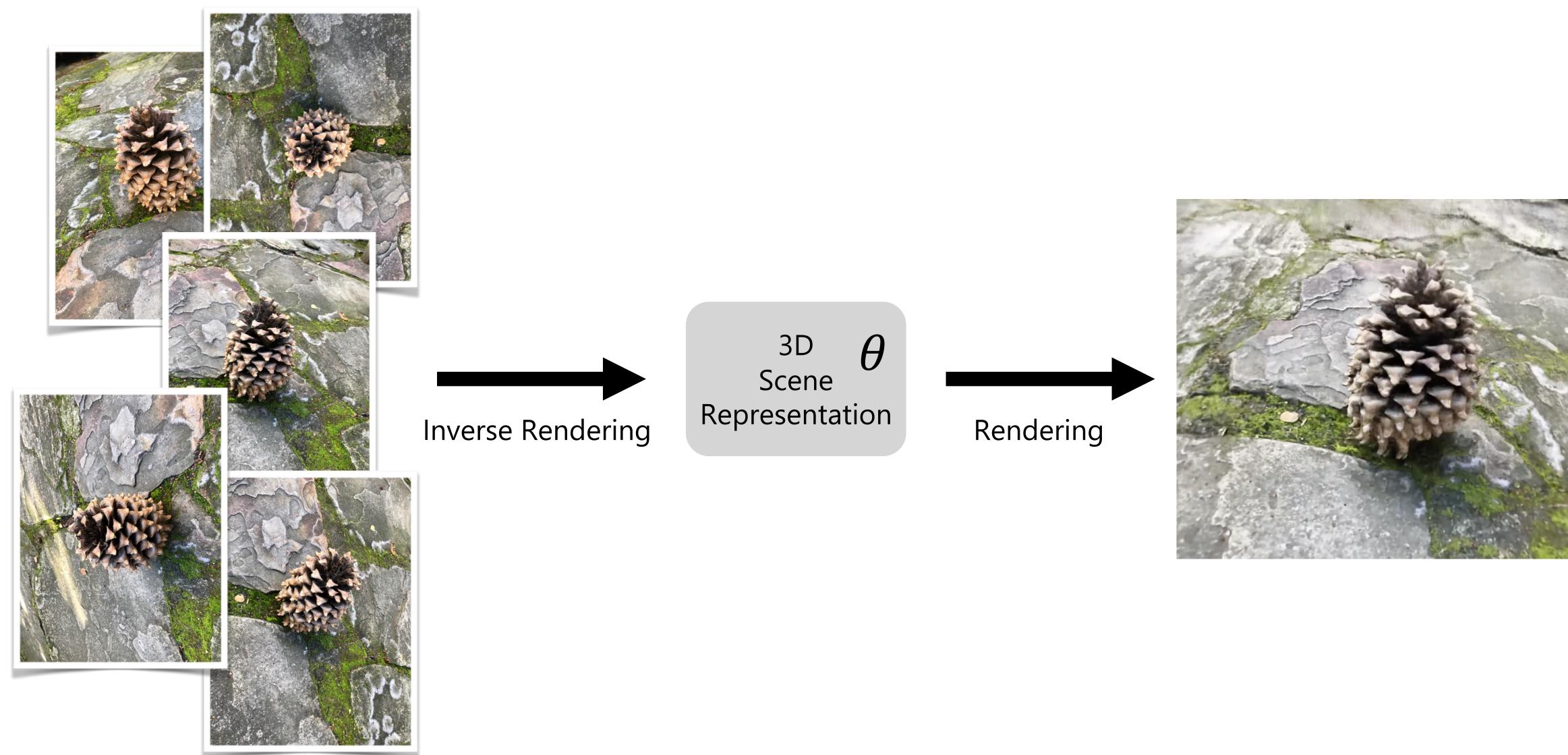




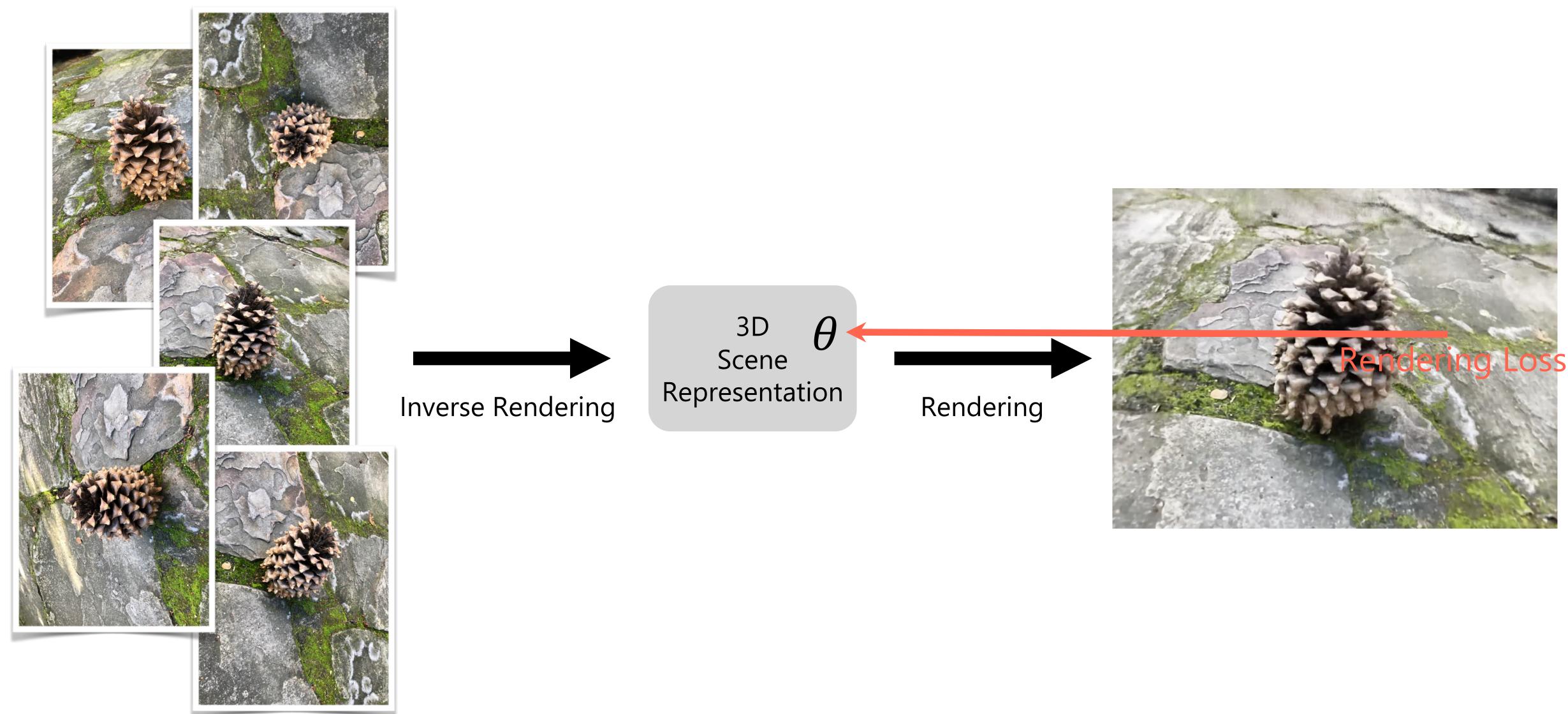
Paradigm 1: "Feedforward" inverse rendering



Paradigm 2: "Render-and-compare"

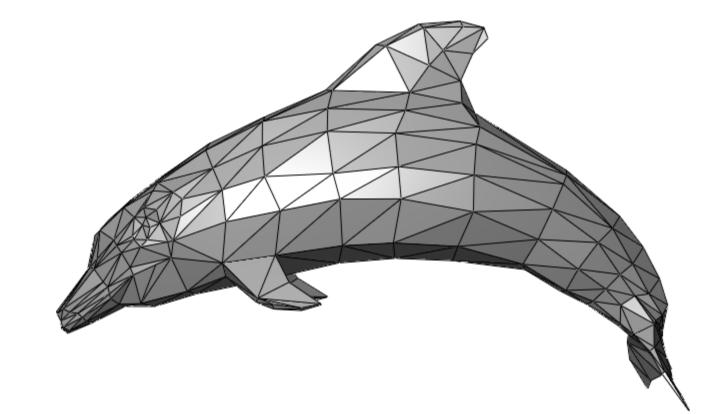


Paradigm 2: "Render-and-compare"



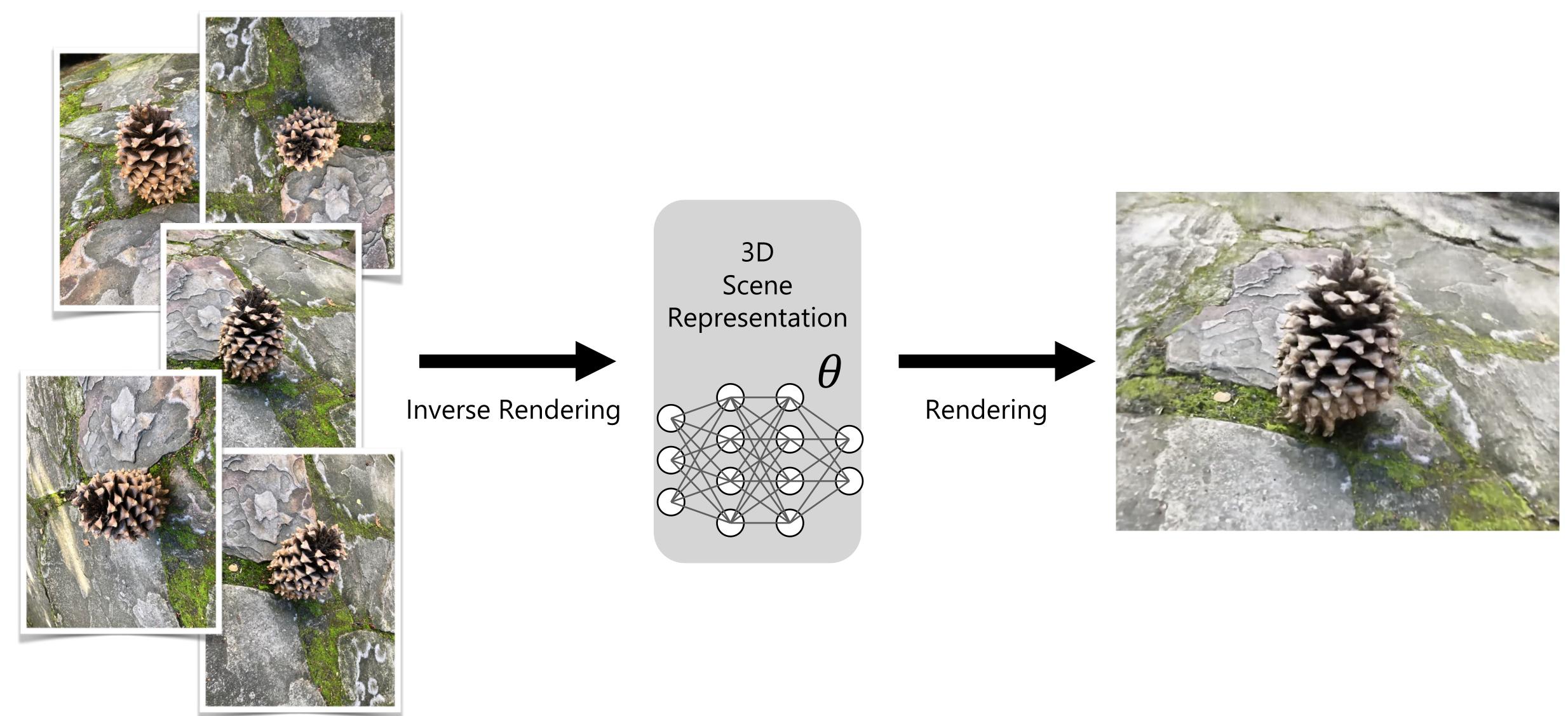
What representation to use?

- Could use triangle meshes, but hard to differentiate during rendering
- Multiplane images (MPIs) are easy to differentiate, but only allow for rendering a small range of views



NeRF == Differentiable Rendering with a **Neural Volumetric Representation**

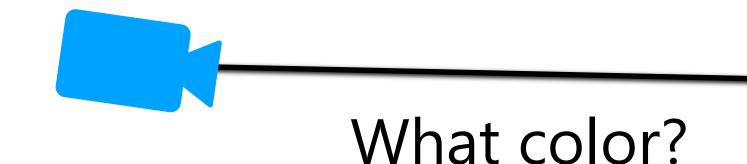
Paradigm 2: "Render-and-compare"



Barron et al 2021, Mip-NeRF 360: Unbounded Anti-Aliased Neural Radiance Fields

Neural Volumetric Rendering

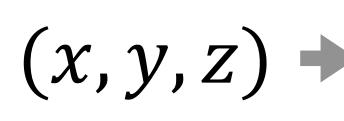
Neural Volumetric Rendering querying the radiance value along rays through 3D space

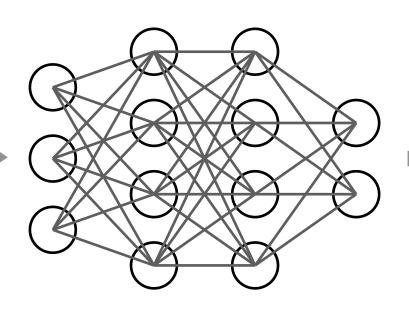


Neural Volumetric Rendering continuous, differentiable rendering model without concrete ray/surface intersections

Neural Volumetric Rendering

using a neural network as a scene representation, rather than a voxel grid of data



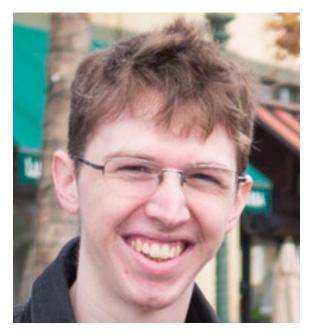


Scene properties

Multi-layer Perceptron (Neural Network)

NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis ECCV 2020

Ben Mildenhall*



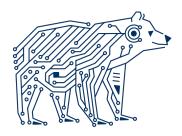
UC Berkeley

Pratul Srinivasan*

UC Berkeley

Matt Tancik*

UC Berkeley



Jon Barron

Google Research

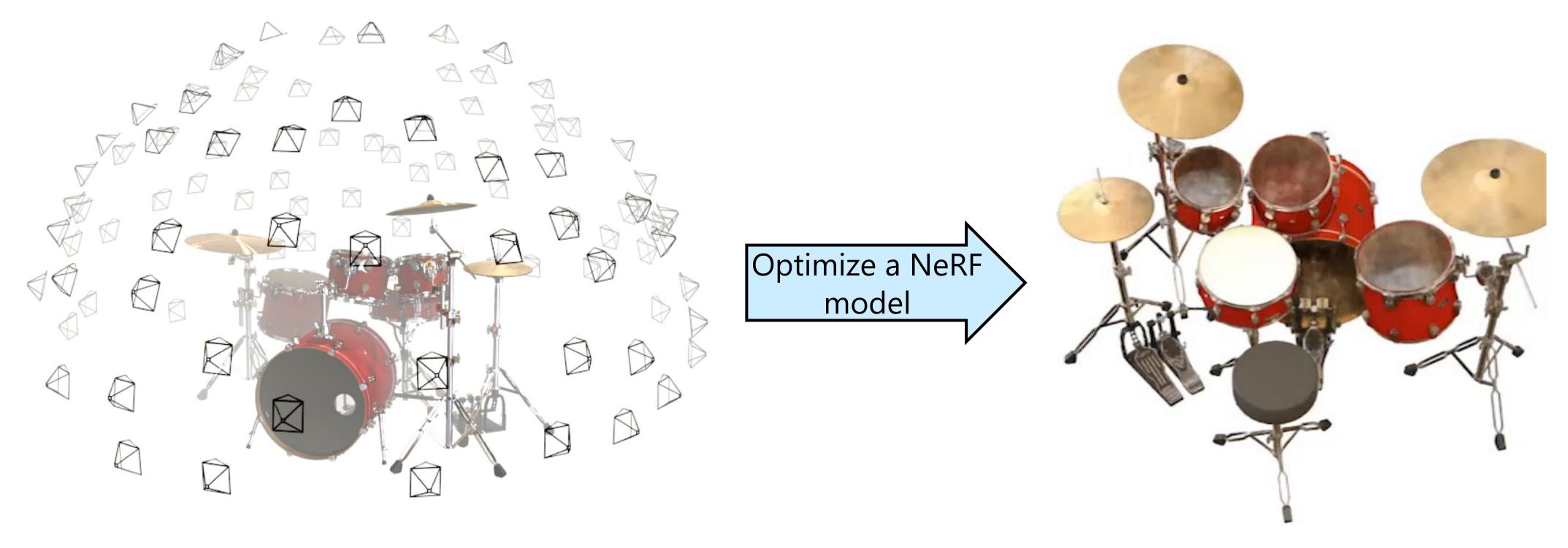
Google

Ravi Ramamoorthi

UC San Diego UC San Diego

Ren Ng

UC Berkeley

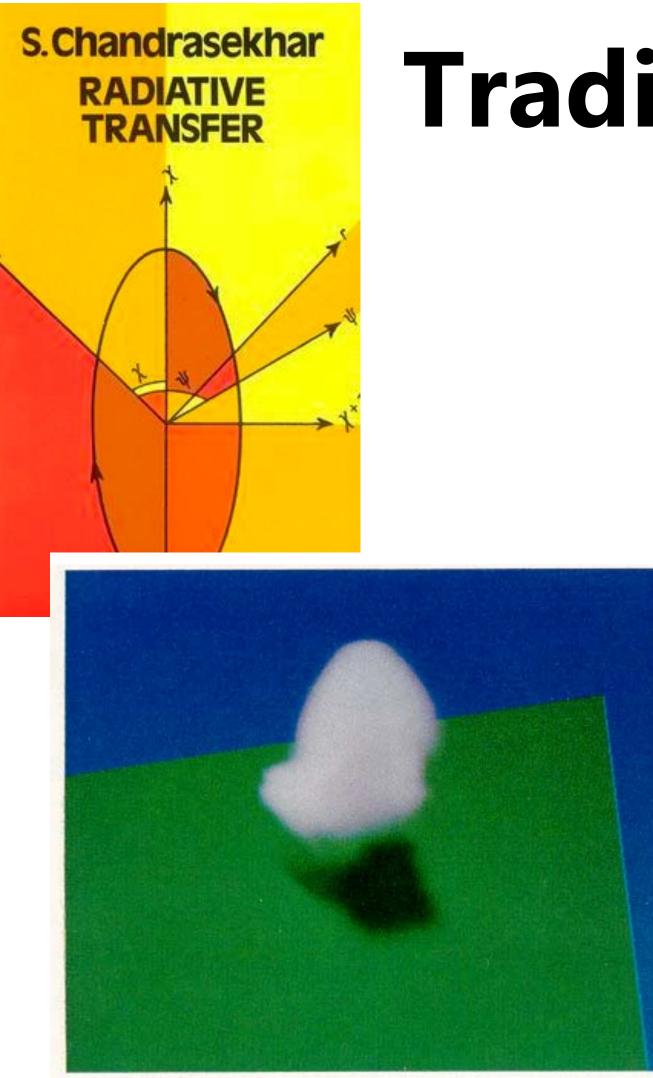


Given a set of sparse views of an object with known camera poses

3D reconstruction viewable from any angle

- Volumetric rendering
- Neural networks as representations for spatial data
- Neural Radiance Fields (NeRF)

- Volumetric rendering
- Neural networks as representations for spatial data
- Neural Radiance Fields (NeRF)



Theory of volume rendering co-opted from physics in the 1980s: absorption, emission, out-scattering/inscattering

Ray tracing simulated cumulus cloud [Kajiya]

Chandrasekhar 1950, Radiative Transfer Kajiya 1984, Ray Tracing Volume Densities

Traditional volumetric rendering

Full volumetric rendering formulation Scattering **Absorption Emission**

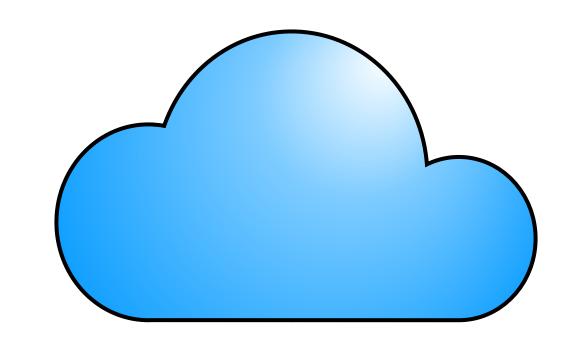
http://commons.wikimedia.org

Slide credit: Novak et al 2018, Monte Carlo methods for physically based volume rendering

http://coclouds.com

6

Volumetric formulation for NeRF



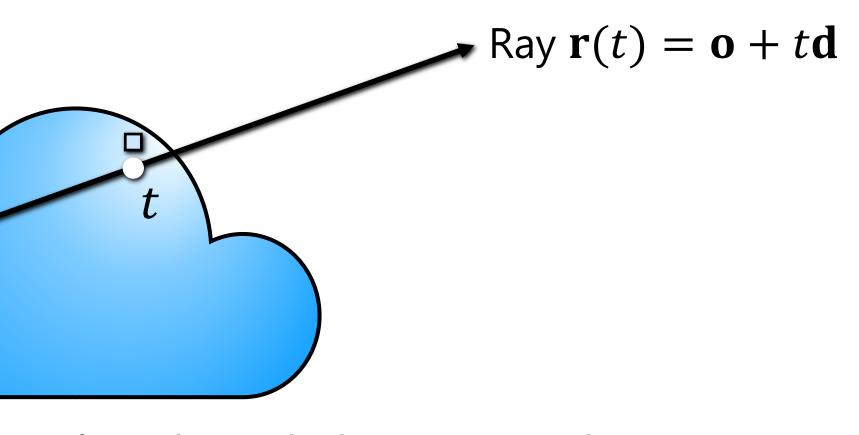
Max and Chen 2010, Local and Global Illumination in the Volume Rendering Integral

Scene is a cloud of colored fog

Volumetric formulation for NeRF

Camera

Consider a ray traveling through the scene, and a point at distance t along this ray. We look up its color $\mathbf{c}(t)$, and its opacity (alpha value) $\alpha(t)$ from a neural network

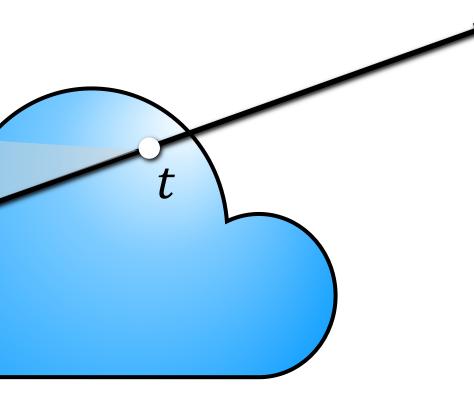


Volumetric formulation for NeRF

P[no hits before t] = T(t)

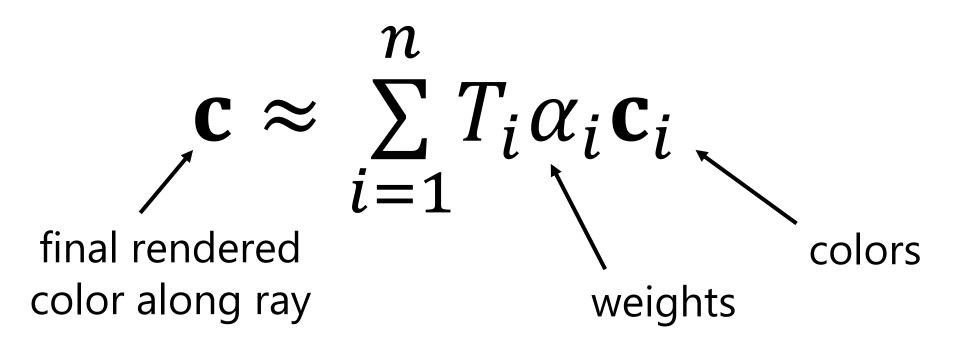
But t may also be blocked by earlier points along the ray. T(t): probability that the ray didn't hit any particles earlier.

T(t) is called "transmittance"



Volume rendering estimation: integrating color along a ray

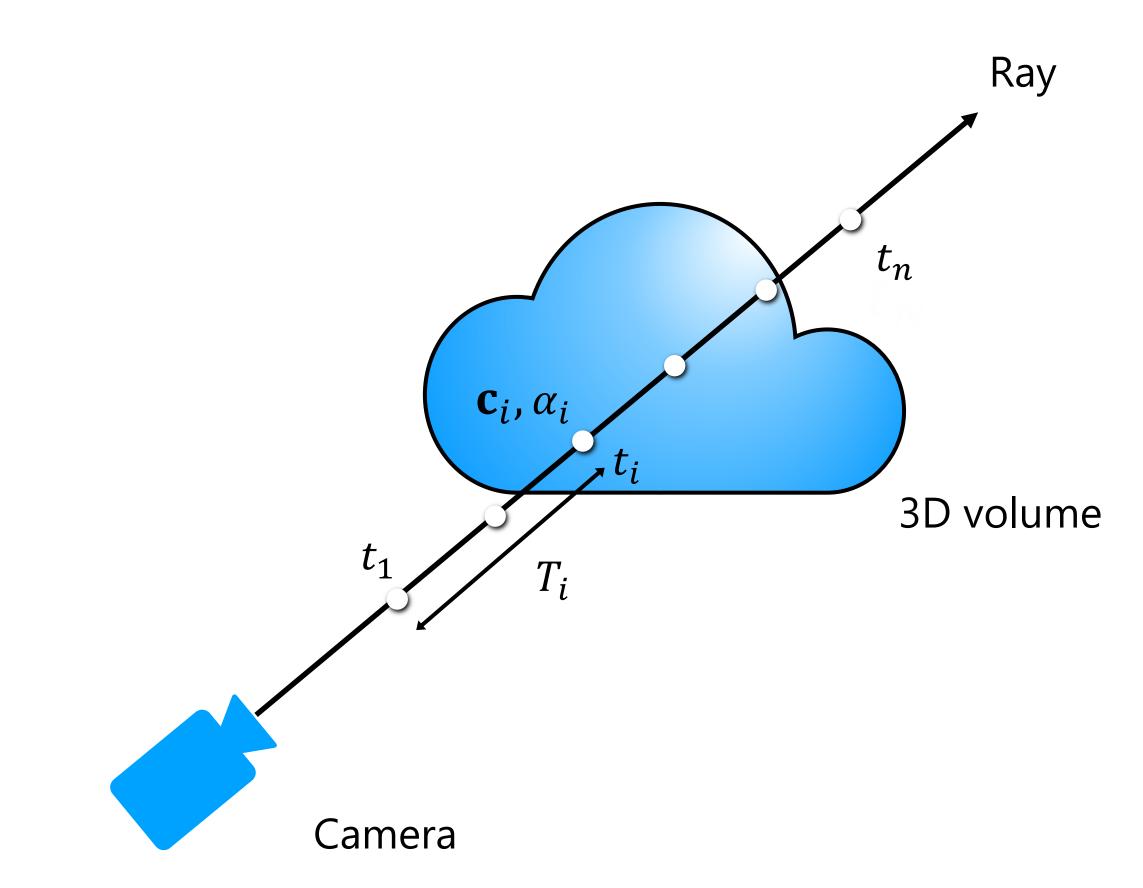
Rendering model for ray $\mathbf{r}(t) = \mathbf{o} + t\mathbf{d}$:



How much light is blocked earlier along ray:

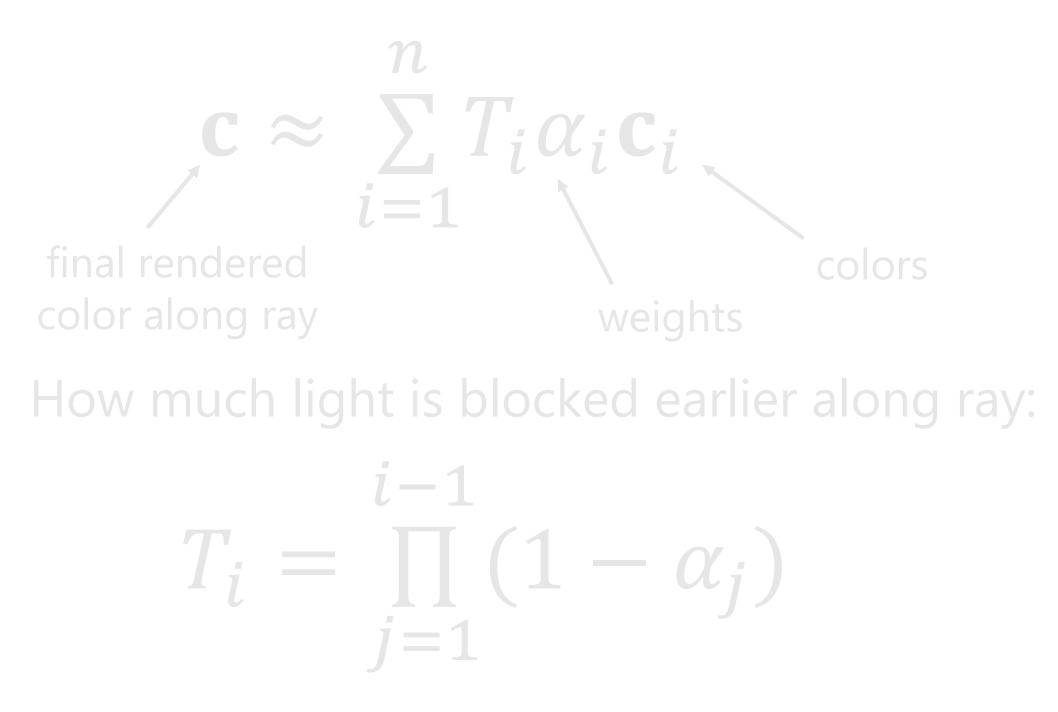
$$T_i = \prod_{j=1}^{i-1} (1 - \alpha_j)$$

Computing the color for a set of rays through the pixels of an image yields a rendered image

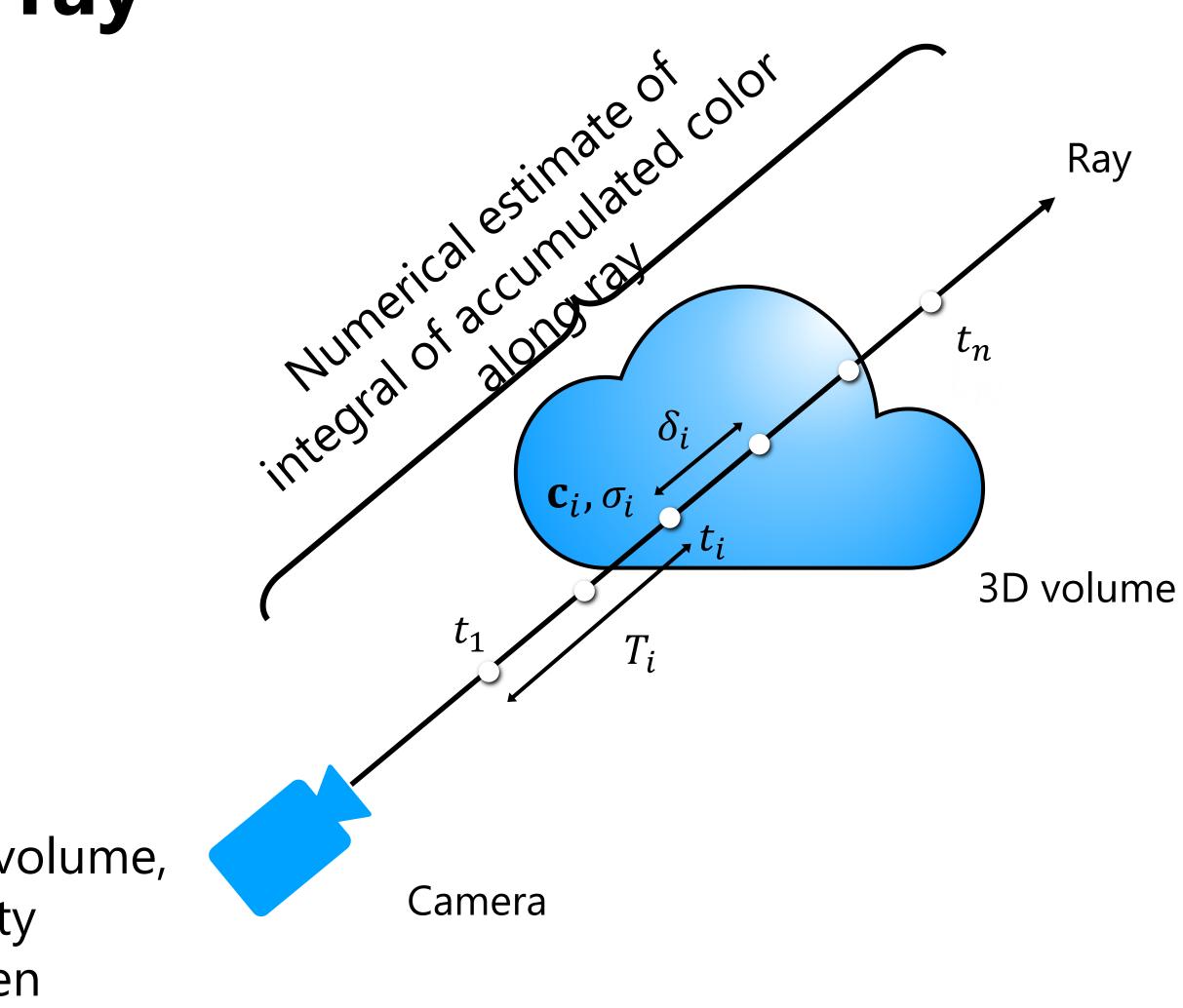


Volume rendering estimation: integrating color along a ray

Rendering model for ray $\mathbf{r}(t) = \mathbf{o} + t\mathbf{d}$:



Slight modification: α is not directly stored in the volume, but instead is derived from a stored volume density sigma (σ) that is multiplied by the distance between samples delta $1^{\delta} = \exp(-\sigma_i \delta_i)$



Volume rendering estimation: integrating color along a ray

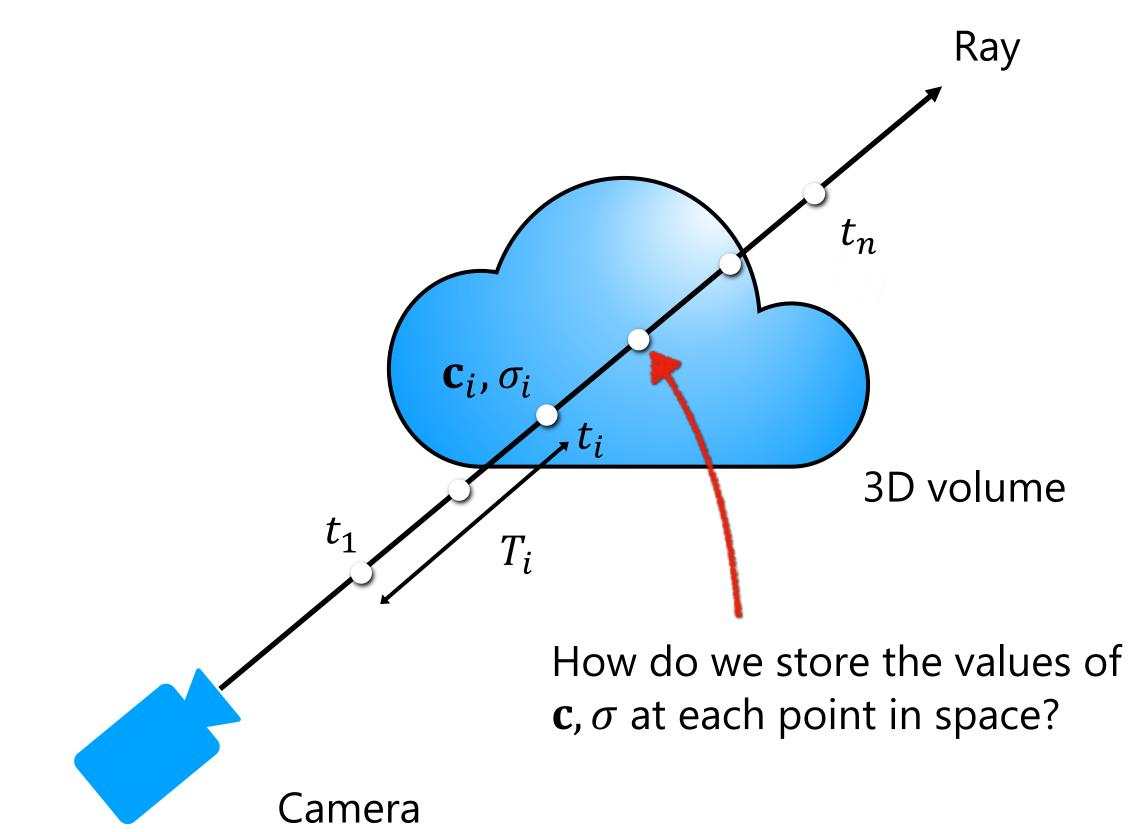
Rendering model for ray $\mathbf{r}(t) = \mathbf{o} + t\mathbf{d}$:

 $\sum_{i=1}^{\mathbf{c}} T_i \alpha_i \mathbf{c}_i$ color along ray weights

How much light is blocked earlier along ray:

i-1 $T_i = \prod (1 - \alpha_i)$ i=1

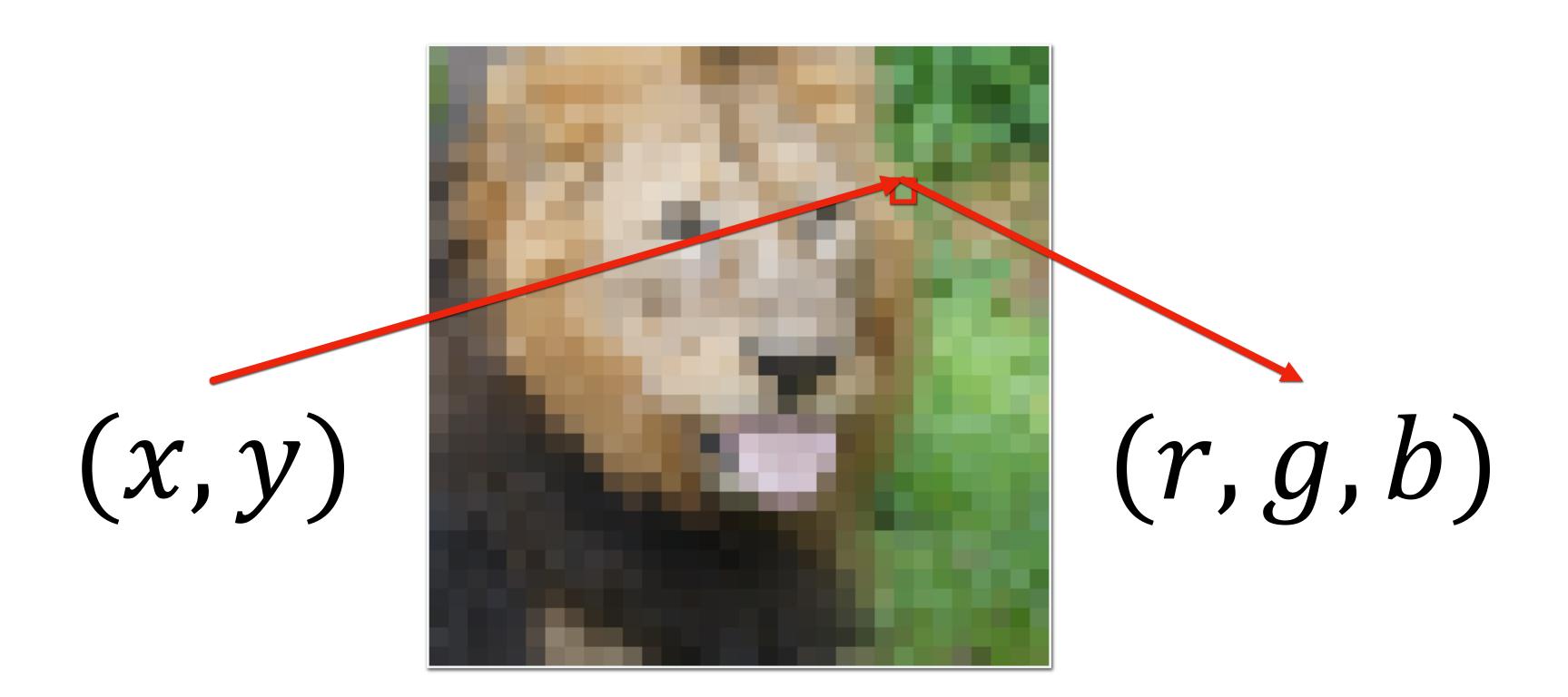
Computing the color for a set of rays through the pixels of an image yields a rendered image



- Volumetric rendering
- Neural networks as representations for spatial data
- Neural Radiance Fields (NeRF)

NeRF Overview

Toy problem: storing 2D image data

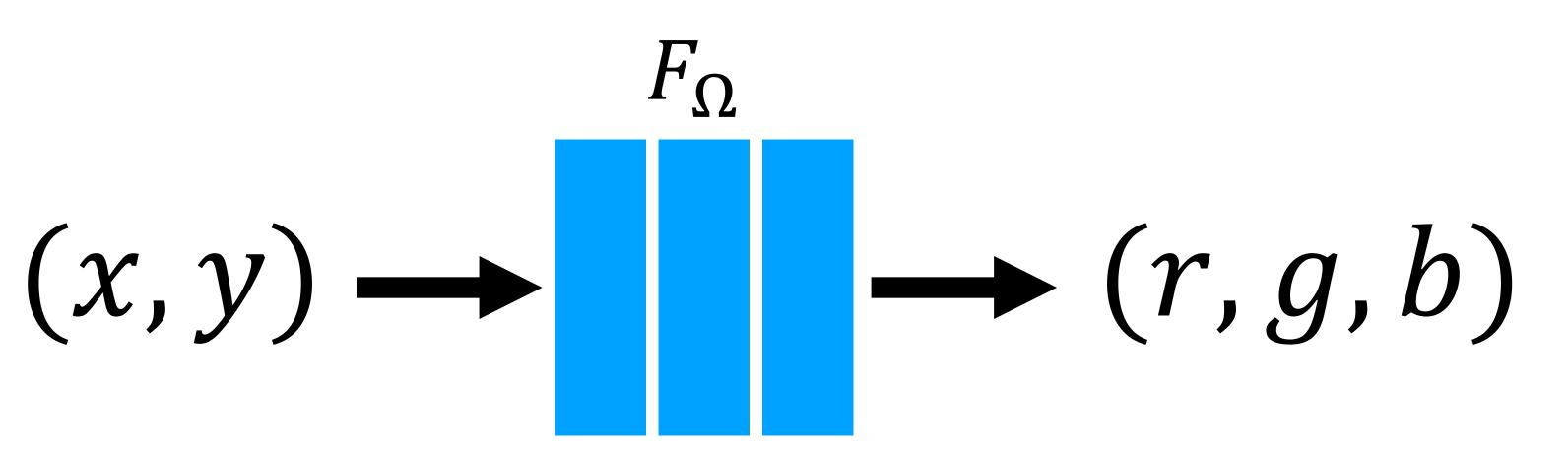


2D grid of RGB color values

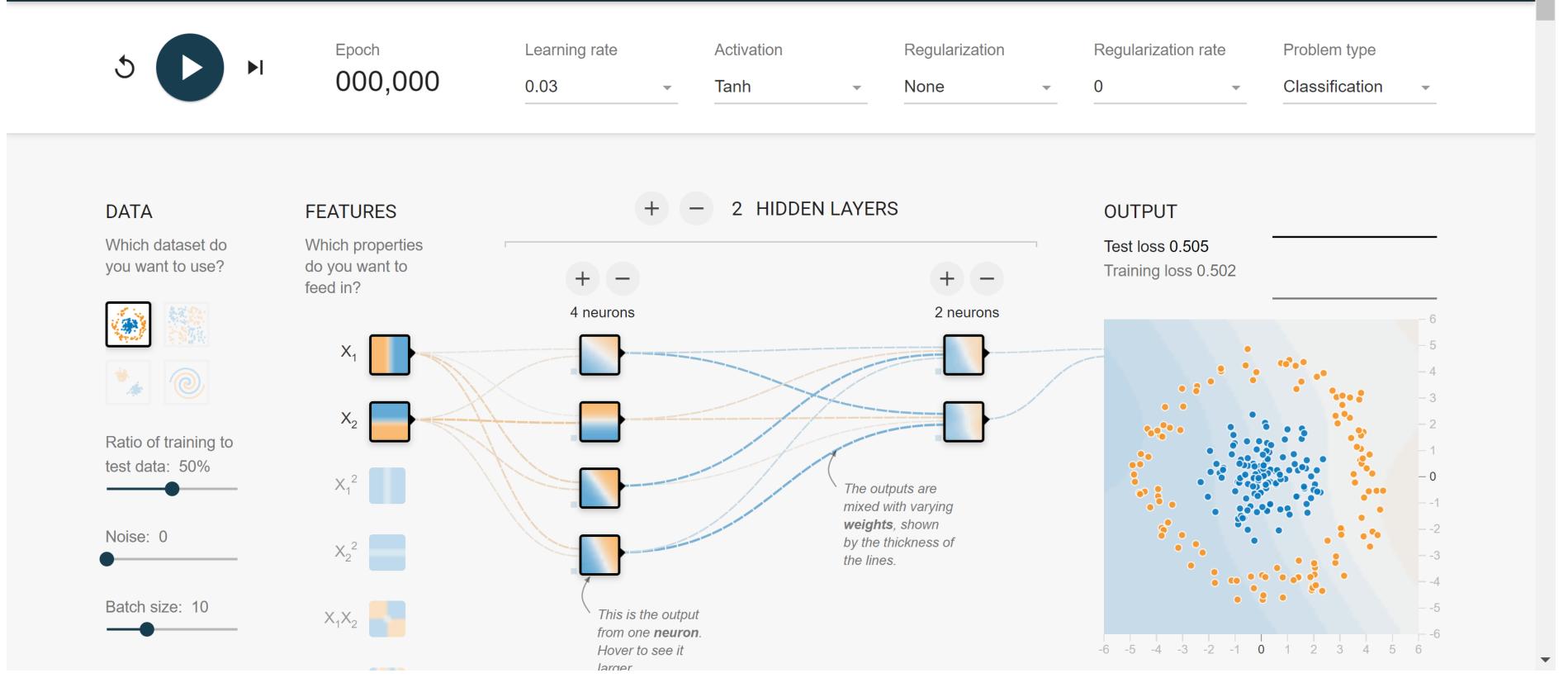
Usually we store an image as a

Toy problem: storing 2D image data

What if we train a simple fully-connected network (MLP) to do this instead?



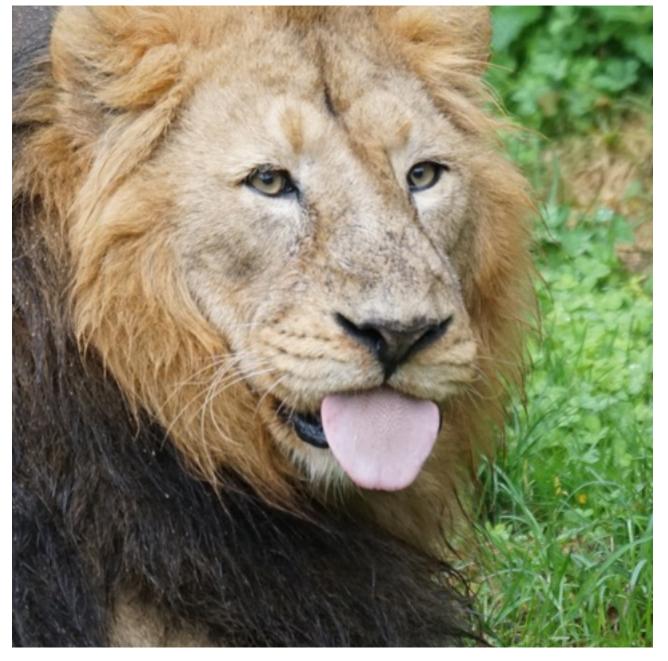
Recall the TensorFlow playground



Same concept as before, except we are computing an image, instead of a classifier!

Tinker With a **Neural Network** Right Here in Your Browser. Don't Worry, You Can't Break It. We Promise.

Naive approach fails!



Ground truth image

Neural network output fit with gradient descent

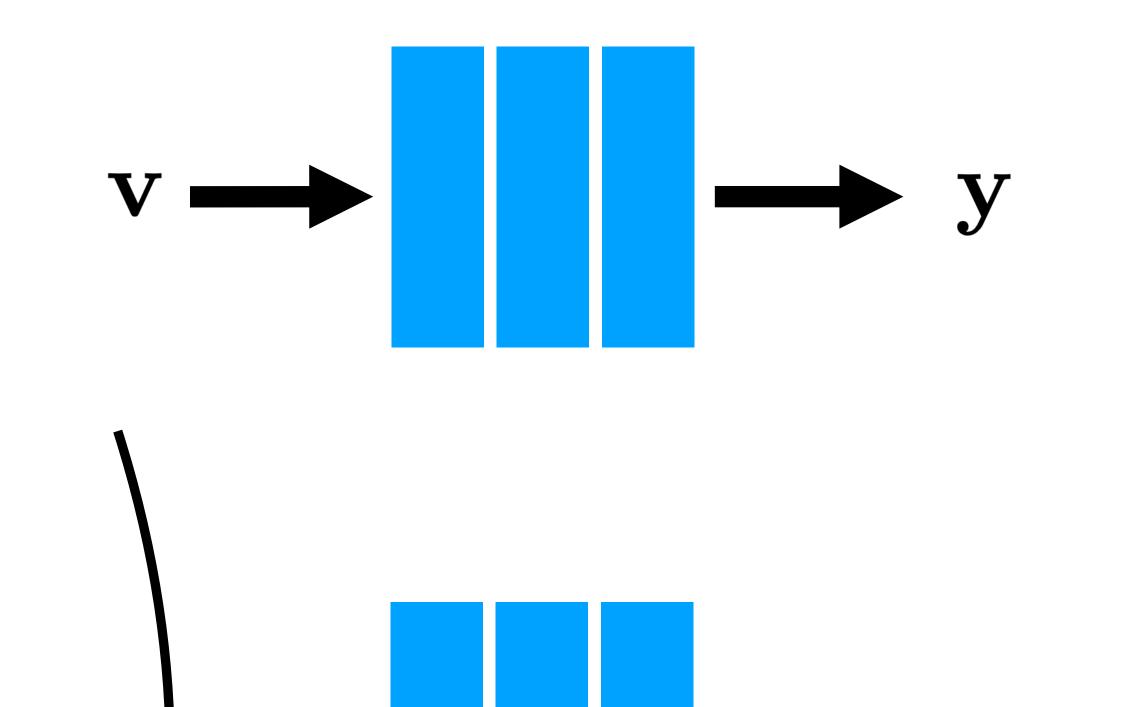
Problem:

"Standard" coordinate-based MLPs cannot represent high frequency functions

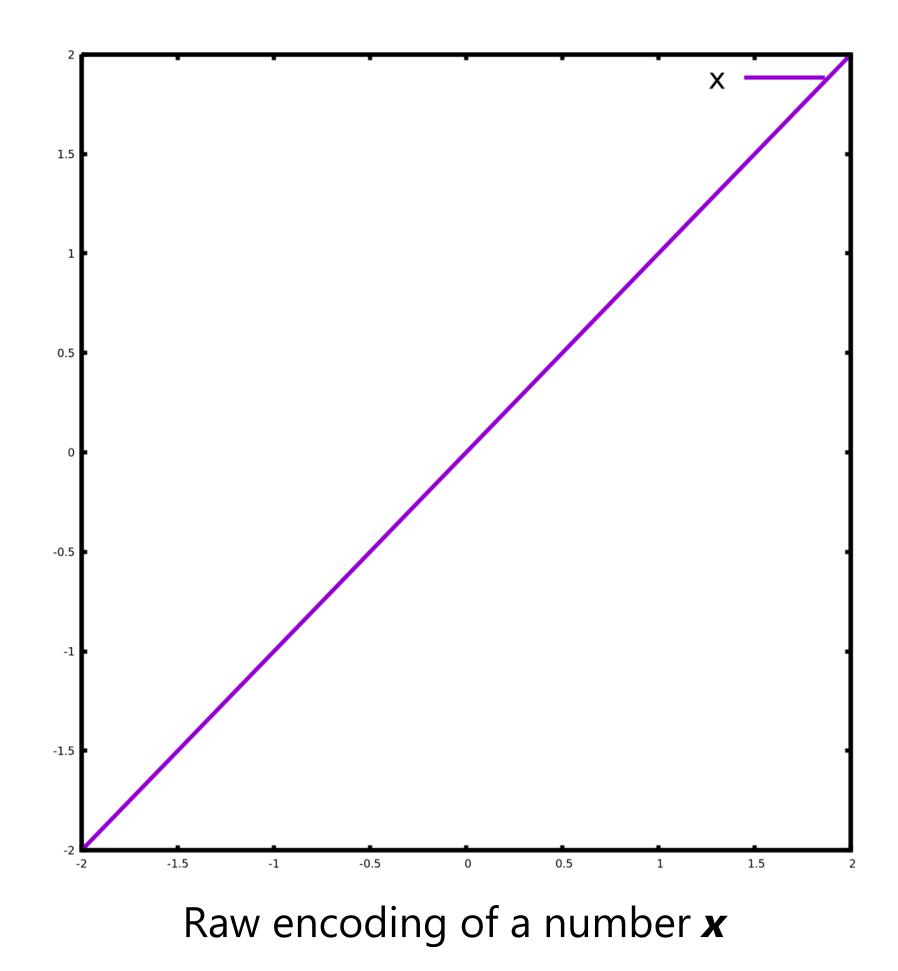
Solution: Pass input coordinates through a high frequency mapping first

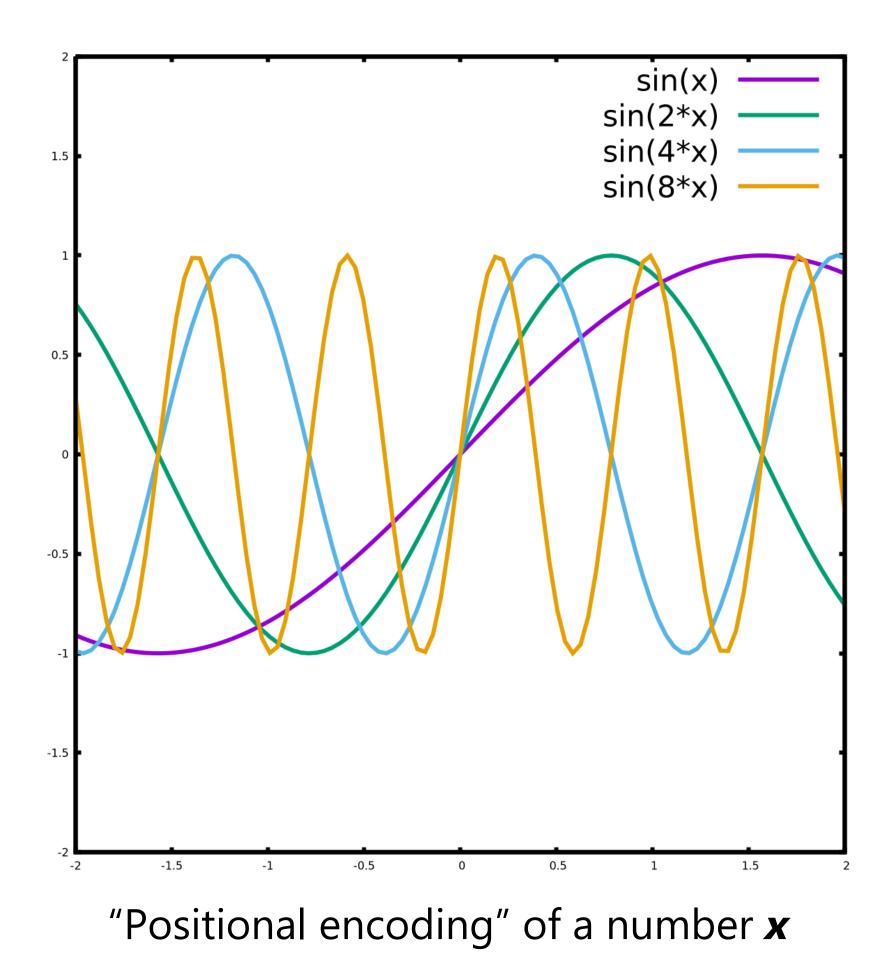
Example mapping: "positional encoding"

$\left\langle egin{array}{c} \sin(\mathbf{v}),\cos(\mathbf{v})\ \sin(2\mathbf{v}),\cos(2\mathbf{v})\ \sin(4\mathbf{v}),\cos(4\mathbf{v})\ \ldots\ \sin(2^{L-1}\mathbf{v}),\cos(2^{L-1}\mathbf{v}) ight angle$

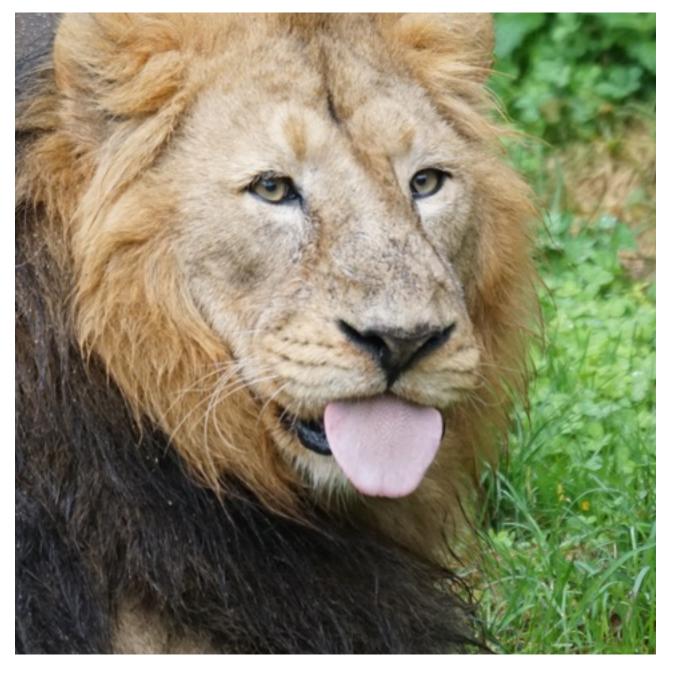


Positional encoding

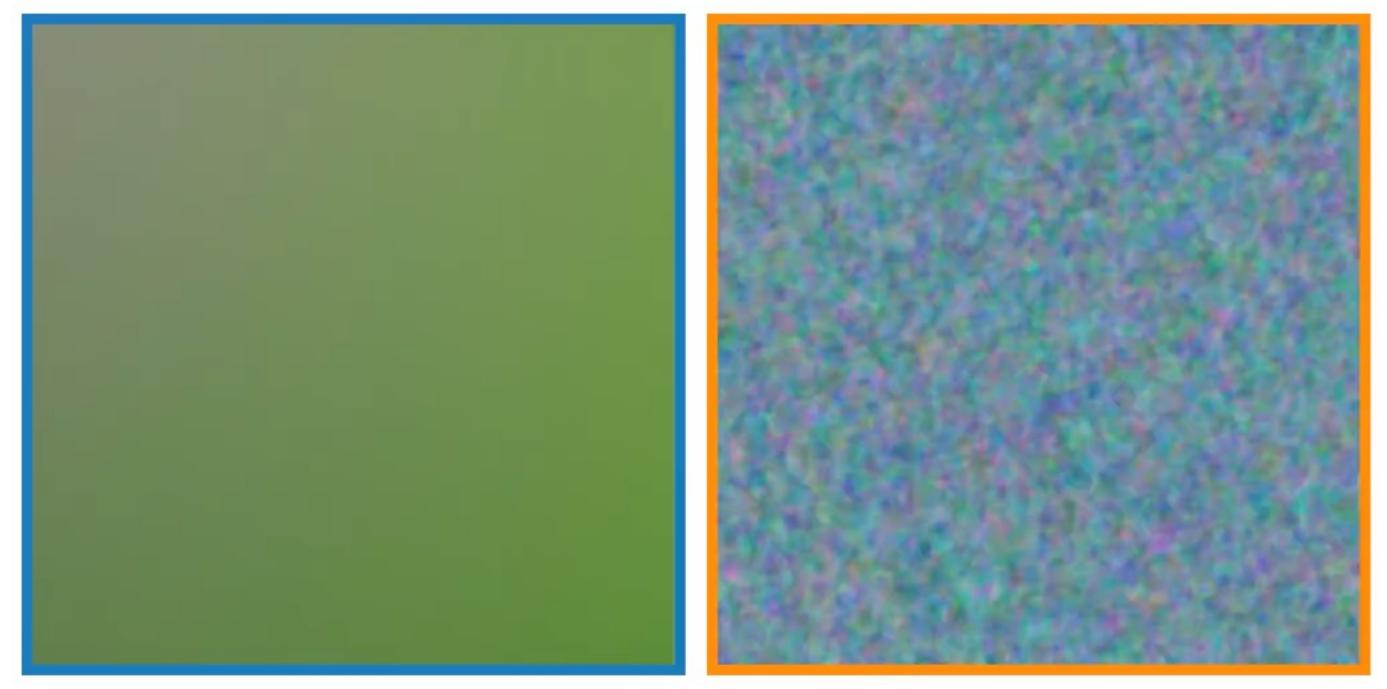




Problem solved!



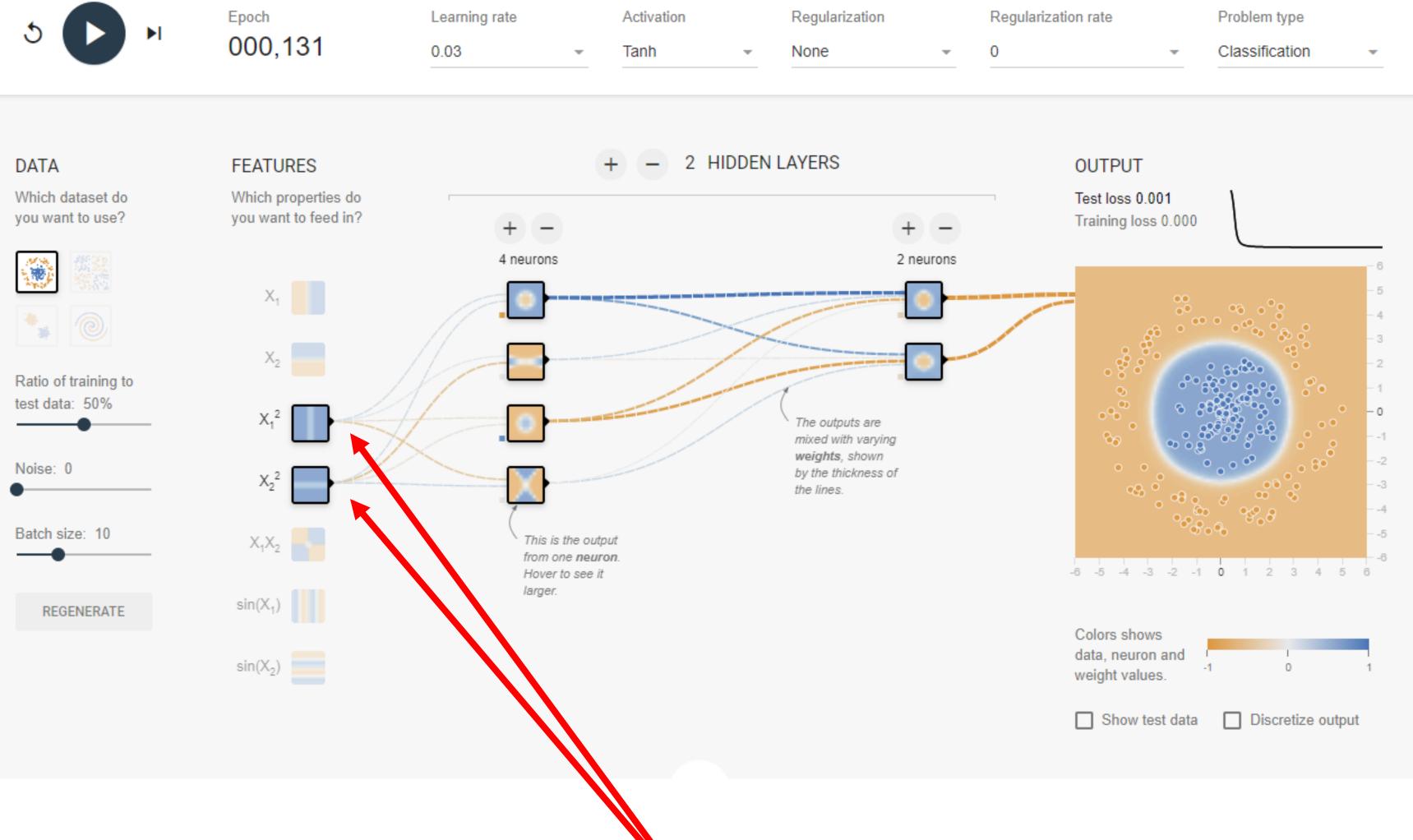
Ground truth image



Neural network output without high frequency mapping

Neural network output with high frequency mapping

Sometimes a better input encoding is all you need

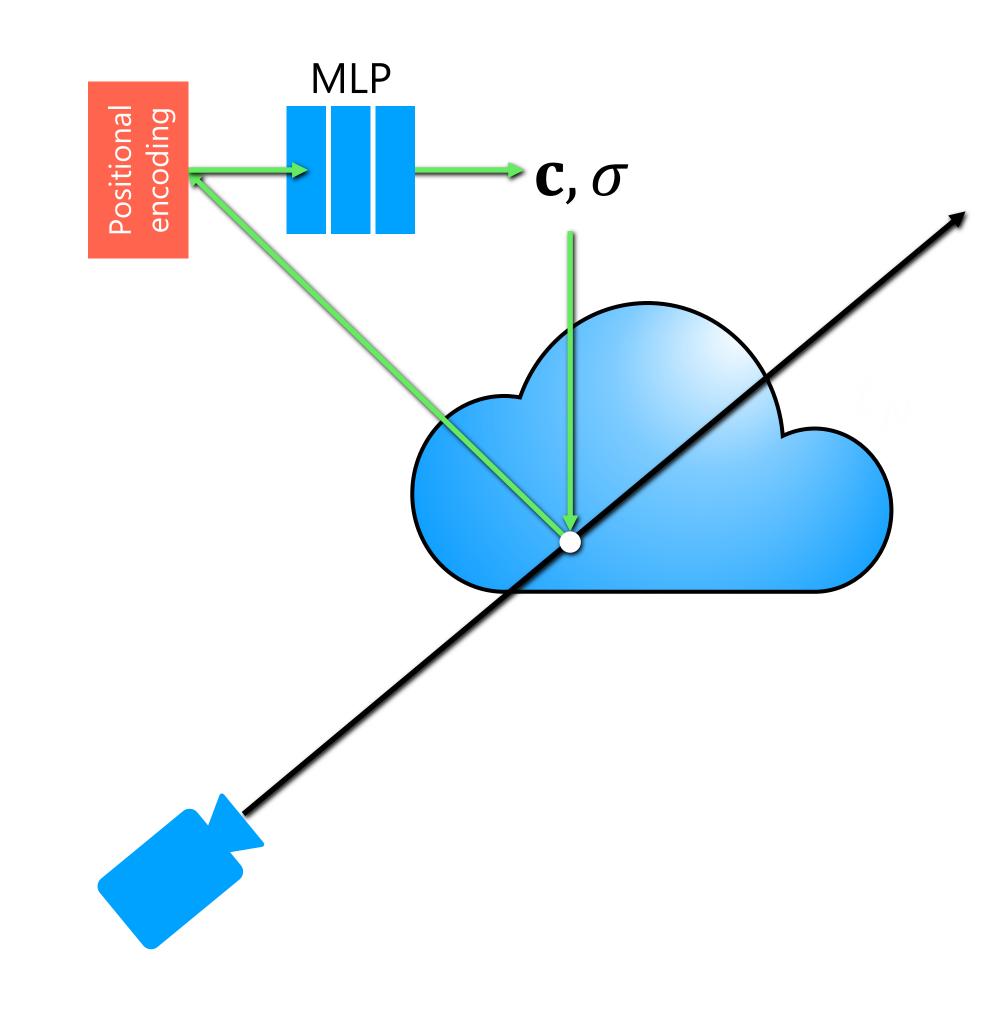


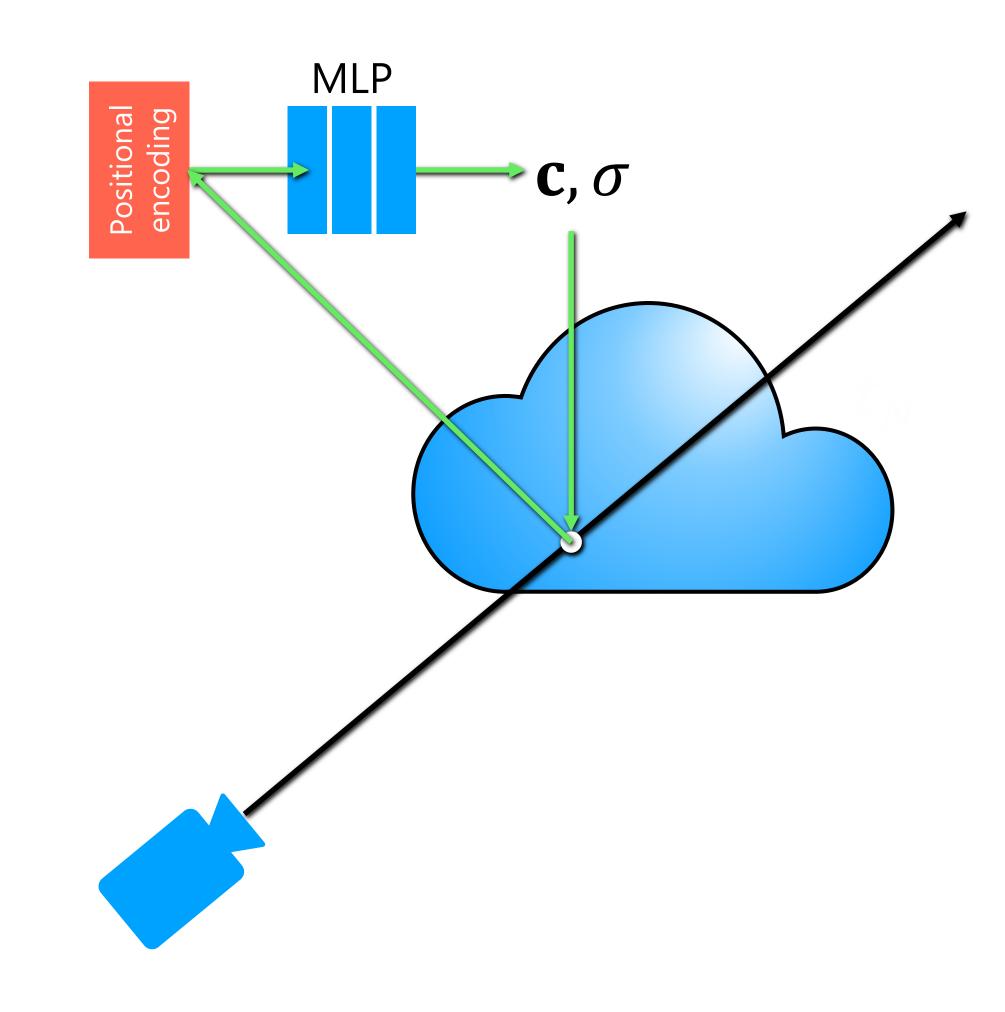
Recall "squared" encoding in TensorFlow Playground

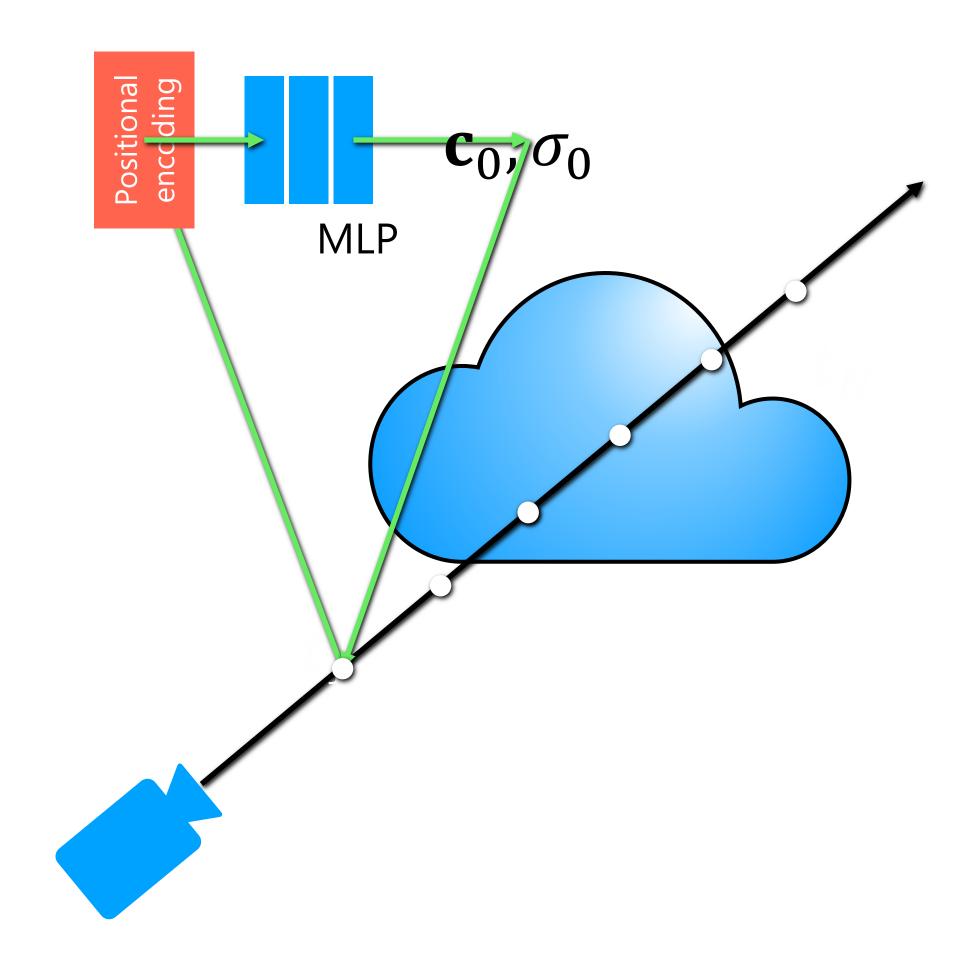
- Volumetric rendering
- Neural networks as representations for spatial data
- Neural Radiance Fields (NeRF)

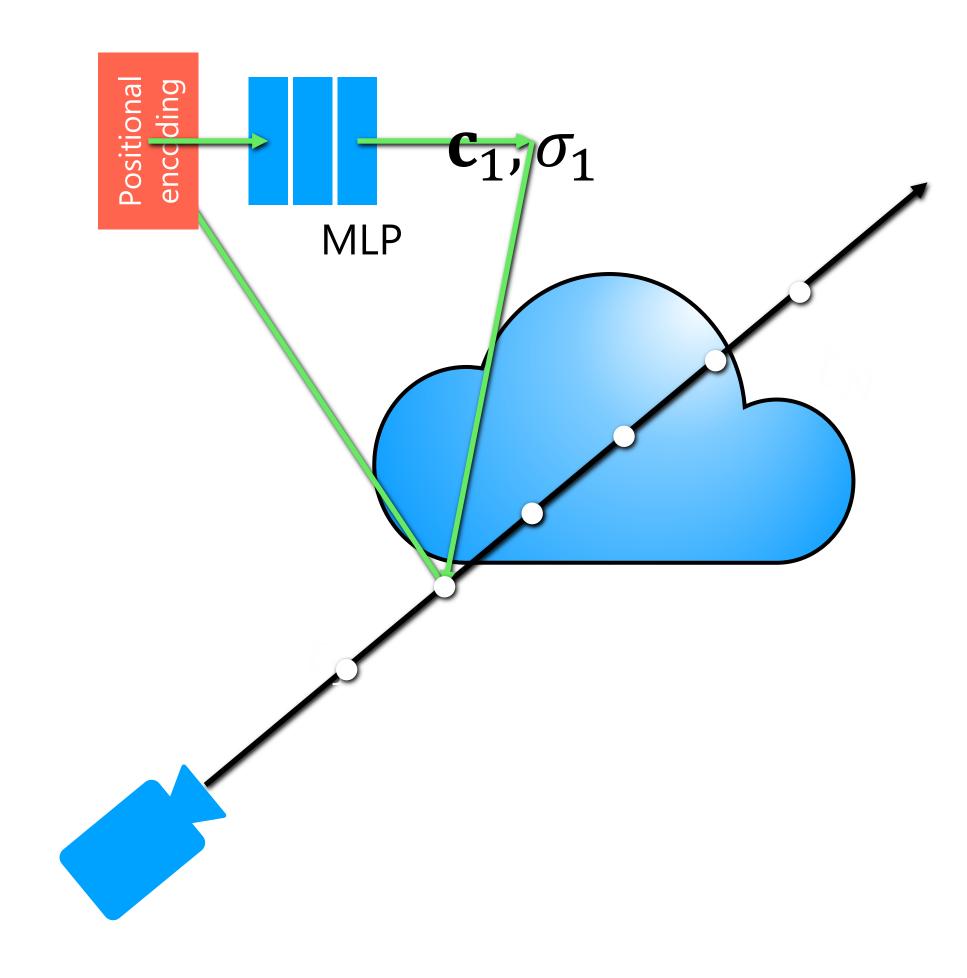
NeRF Overview

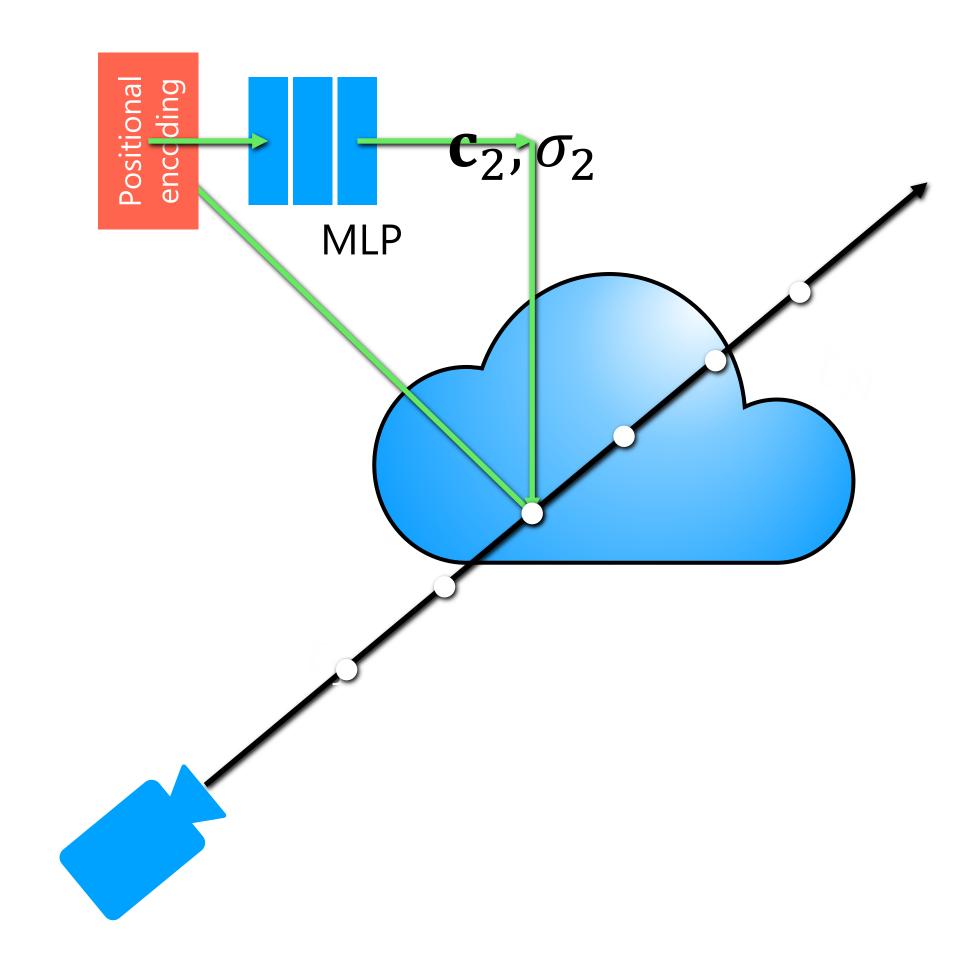
NeRF = volume rendering + coordinate-based network

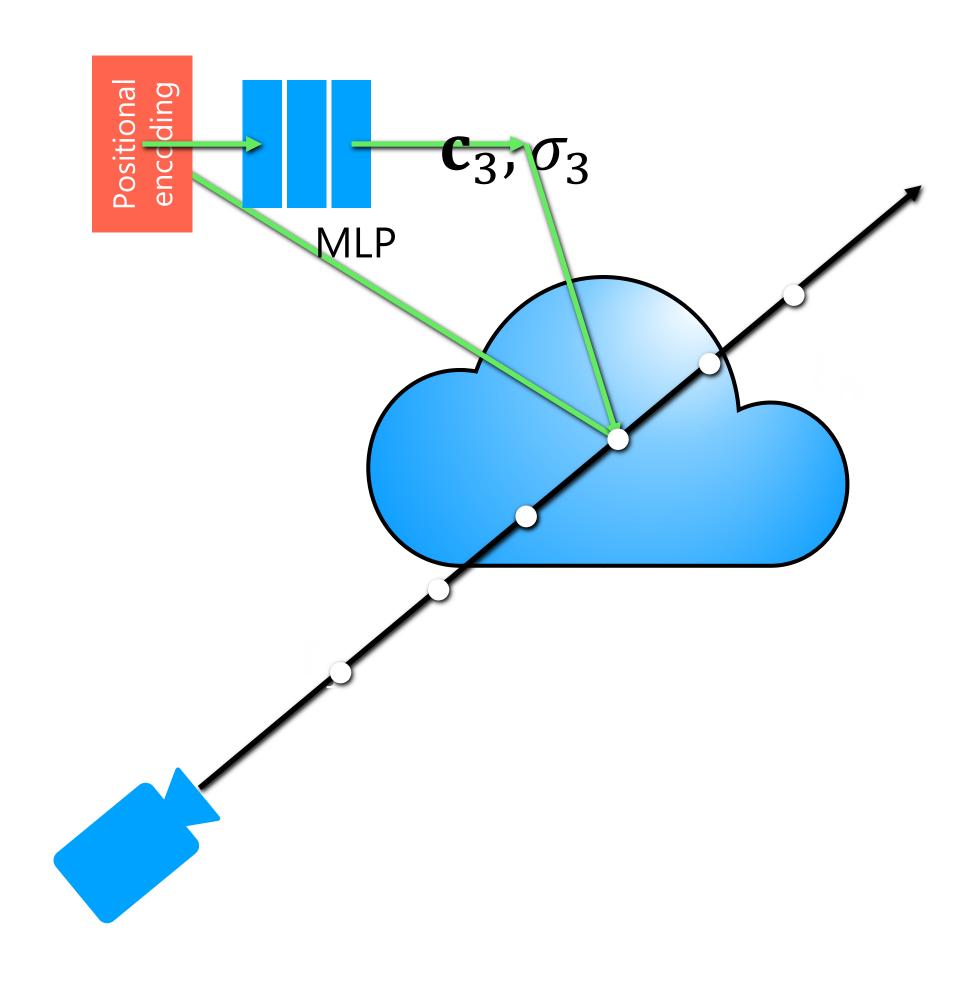


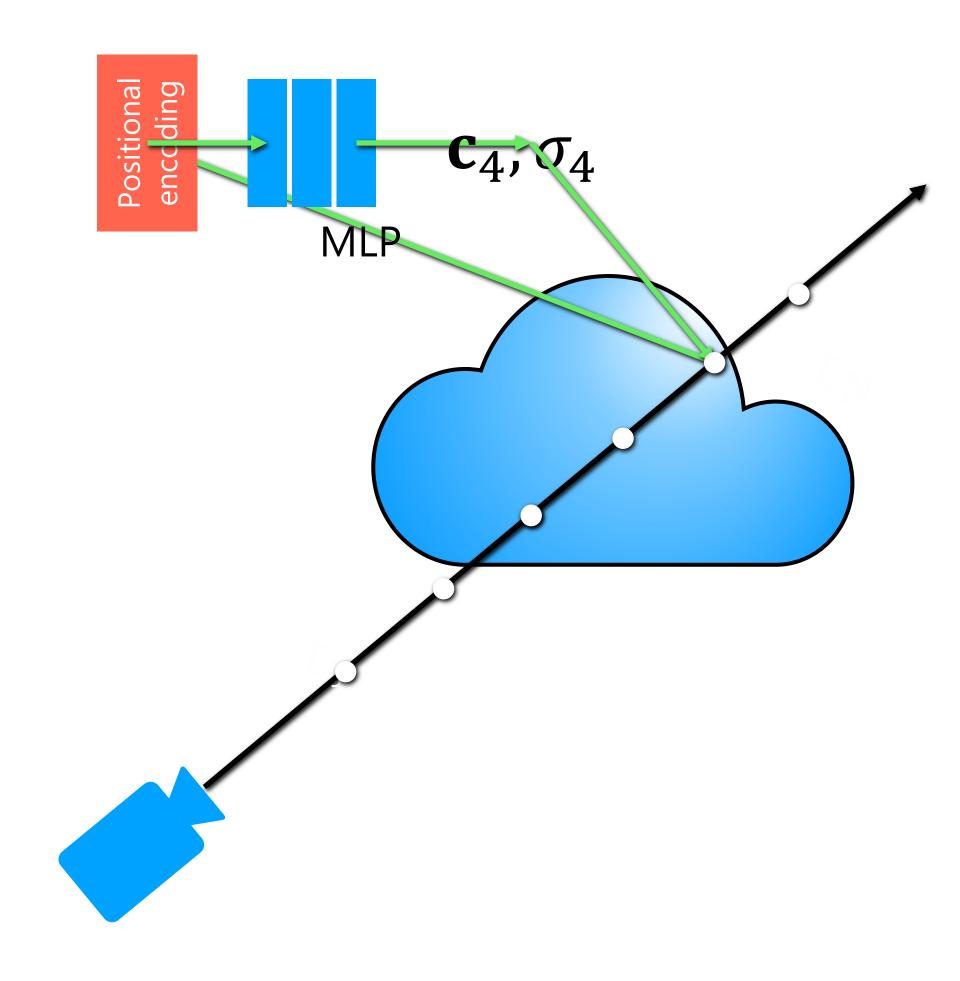


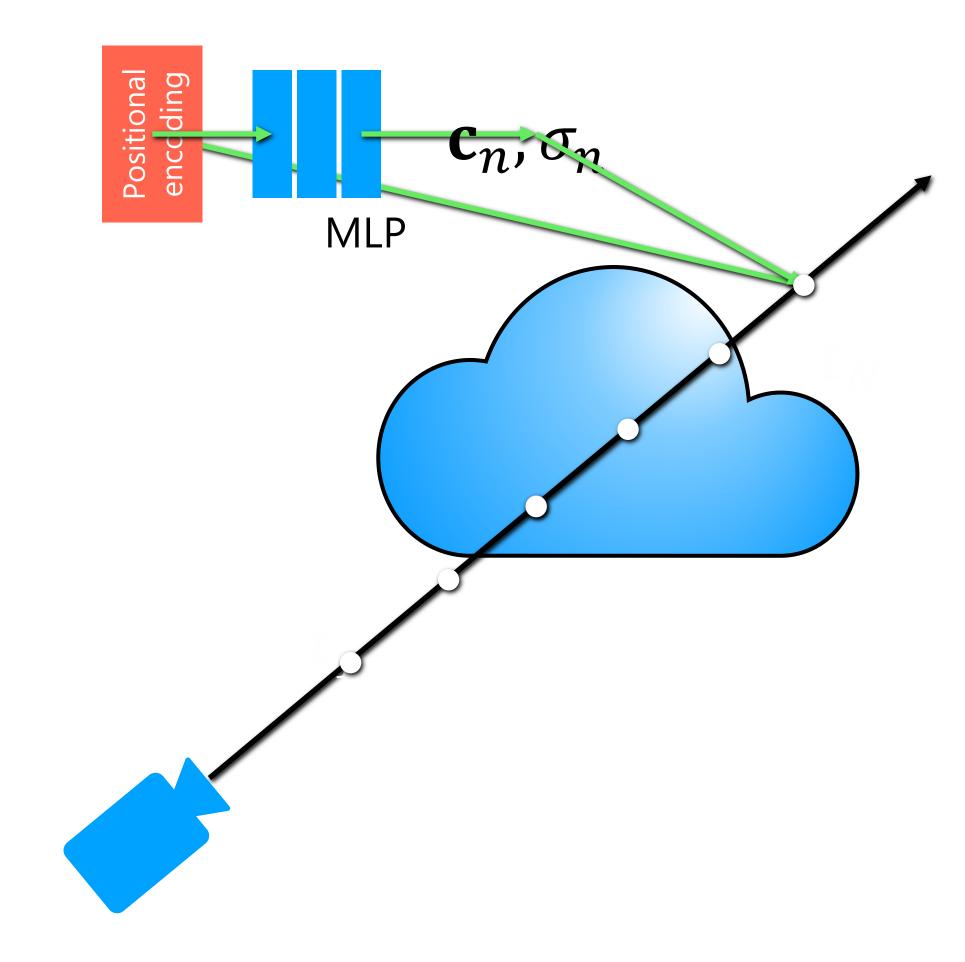




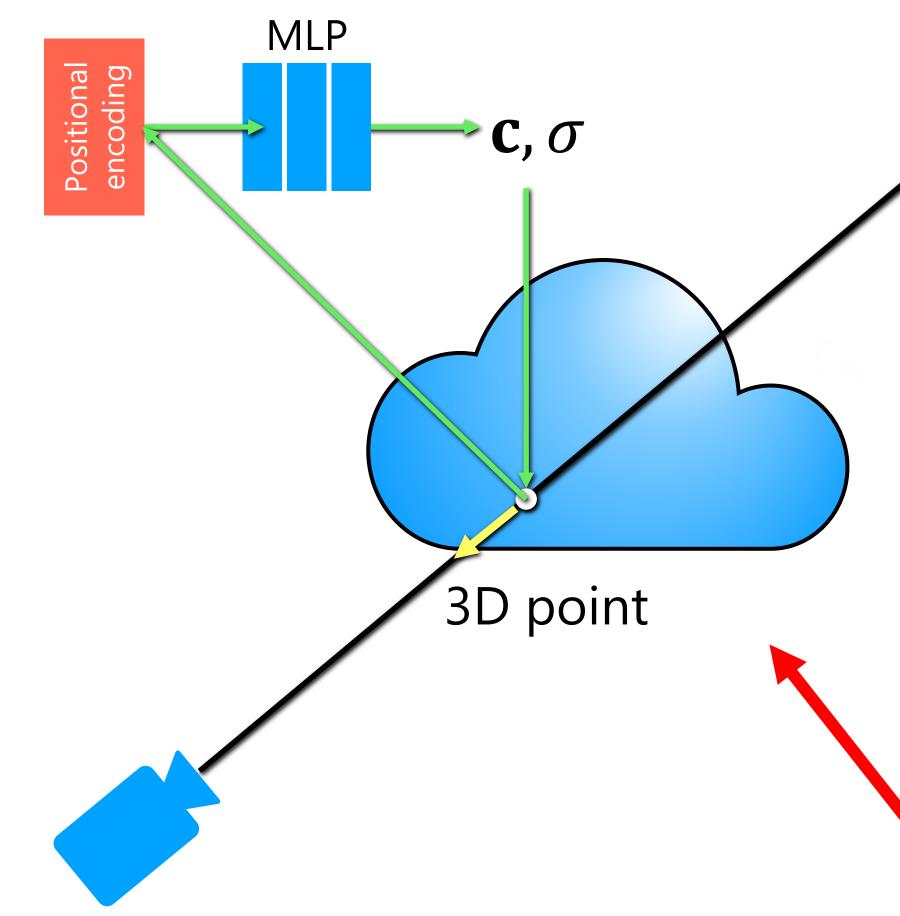






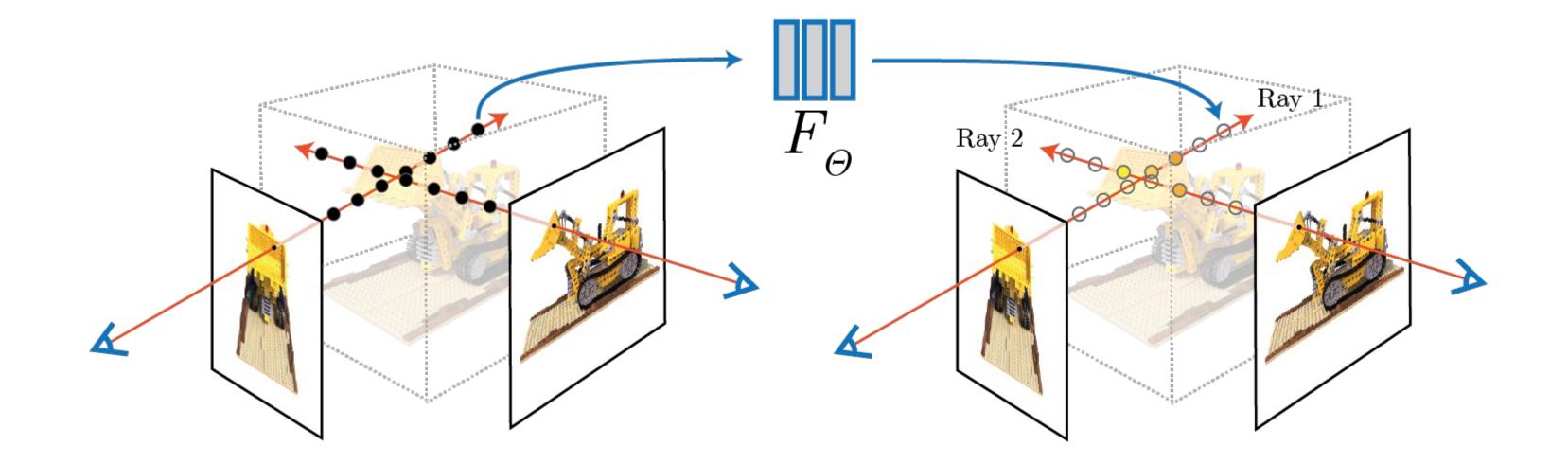


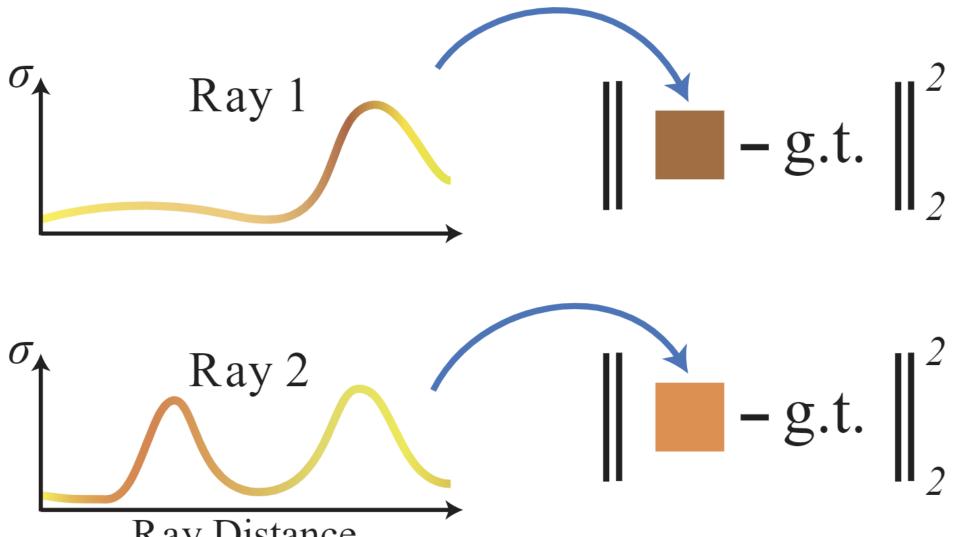
Extension: view-dependent field

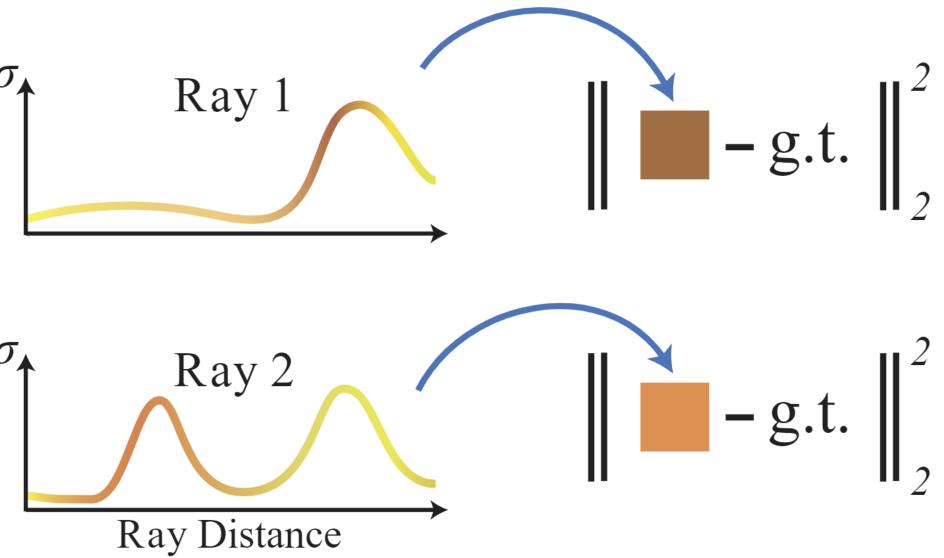


Include the ray direction in the input to the MLP \rightarrow allows for capturing and rendering view-dependent effects (e.g., shiny surfaces)

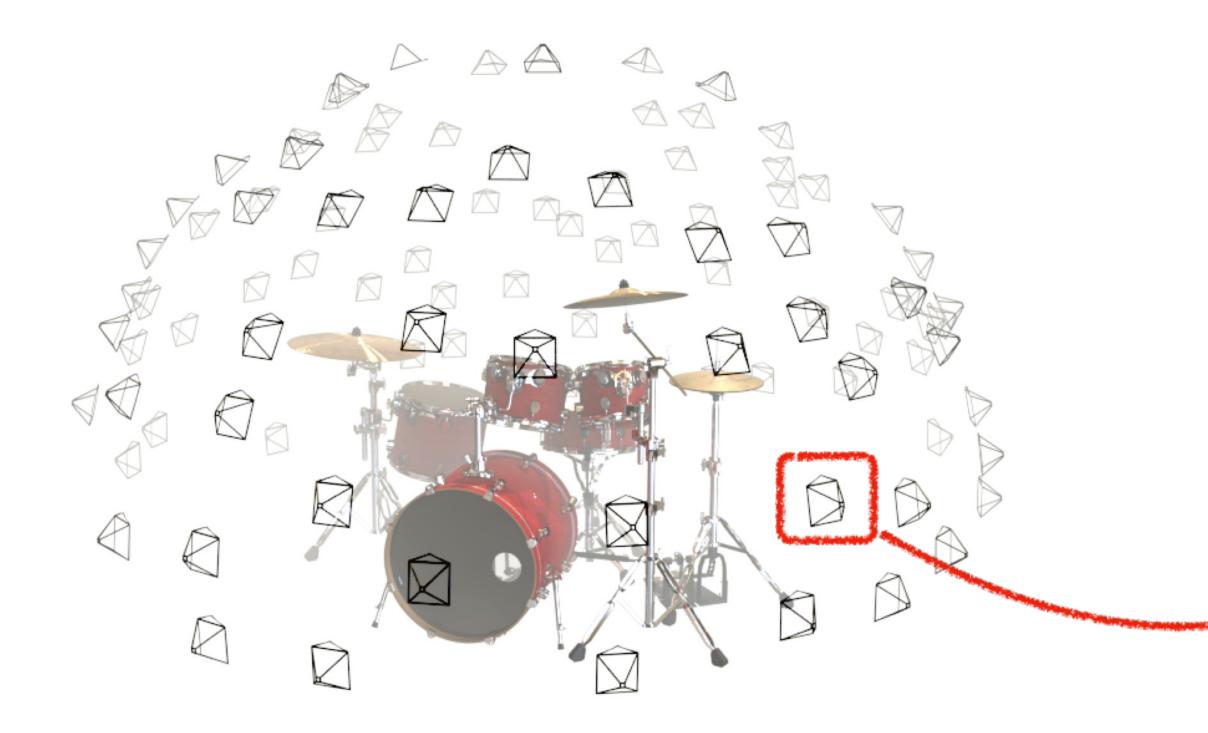
Putting it all together

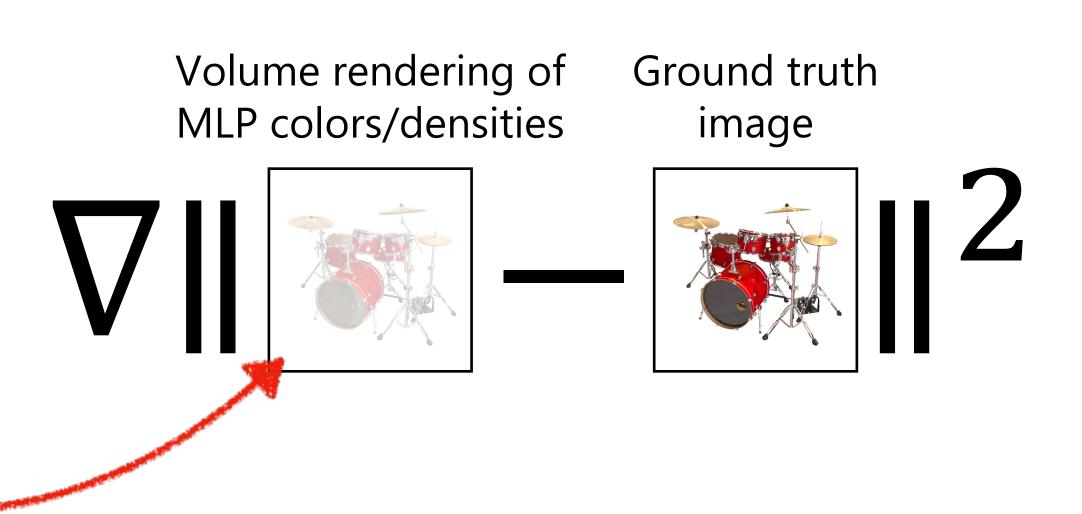






Train network using gradient descent to reproduce all input views of scene





Results

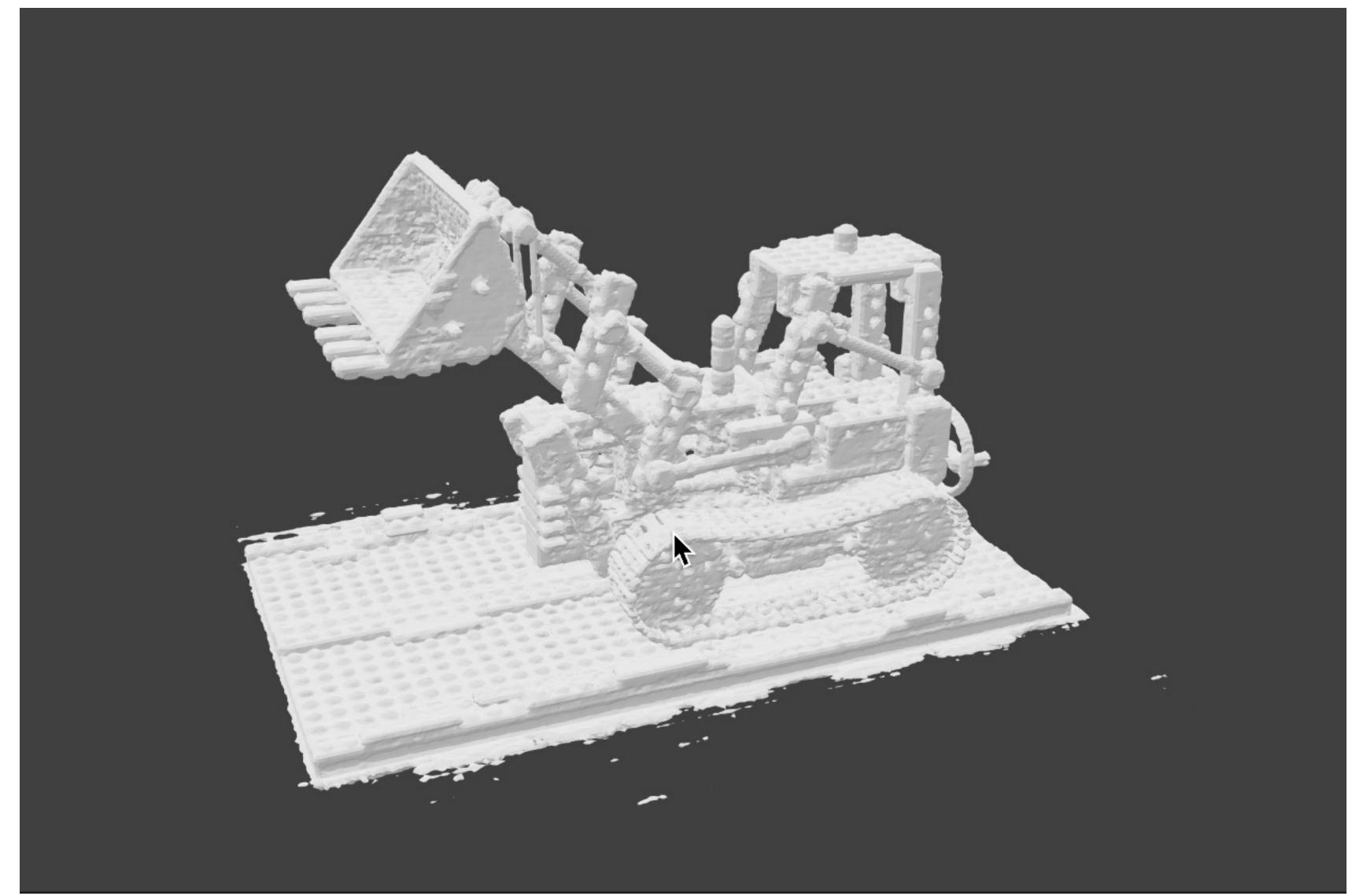
NeRF encodes convincing view-dependent effects using directional dependence



NeRF encodes convincing view-dependent effects using directional dependence

NeRF encodes detailed scene geometry with occlusion effects

NeRF encodes detailed scene geometry



Summary

- Represent the scene as volumetric colored "fog"
- mapping 3D position (x, y, z) to color c and density σ
- pixel
- viewpoints and comparing to ground truth images

 Store the fog color and density at each point as an MLP Render image by shooting a ray through the fog for each

Optimize MLP parameters by rendering to a set of known

Extension: NeRF in the Wild (NeRF-W)

Brandenburg Gate

Martin-Brualla*, Radwan*, Sajjadi*, Barron, Dosovitskiy, Duckworth. NeRF in the Wild. CVPR 2021. https://www.youtube.com/watch?v=mRAKVQj5LRA

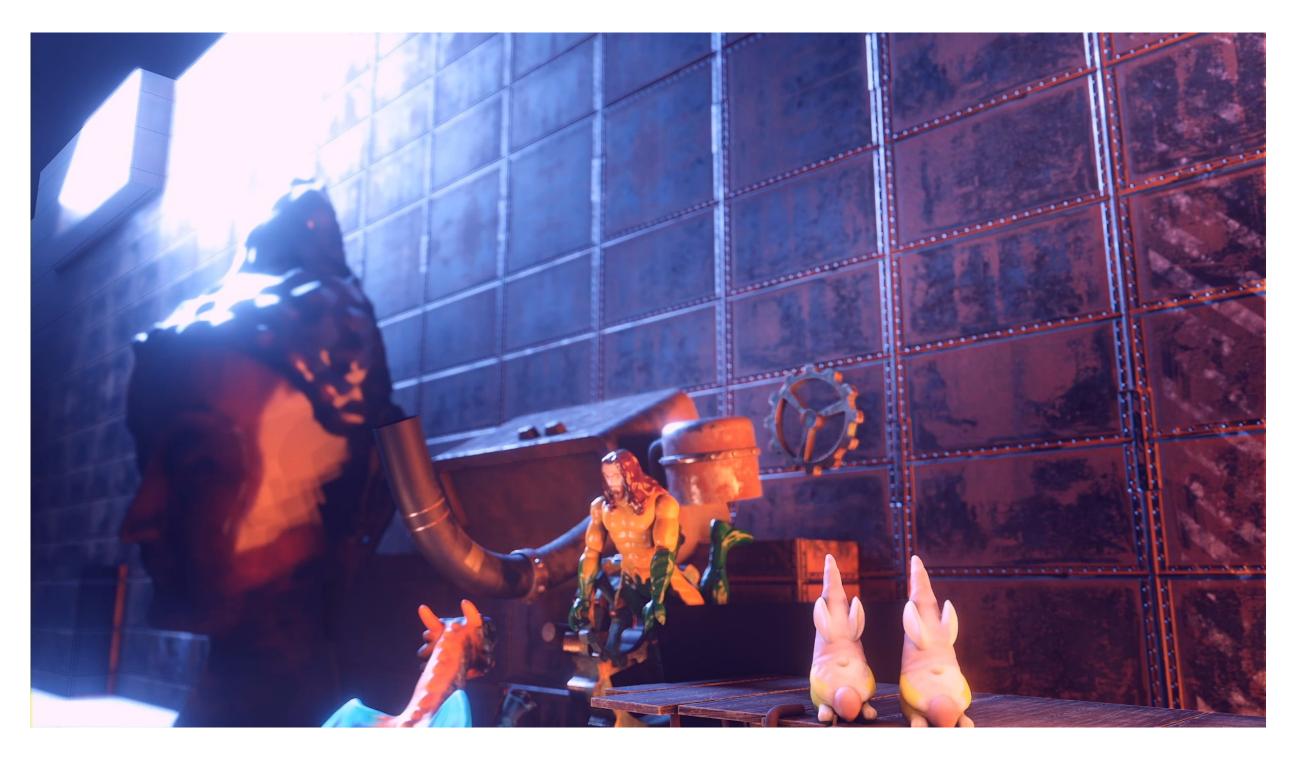
Sacre Coeur

Trevi Fountain

Inverse graphics beyond shape and color

Reconstructed shape, albedo, and materials

Input images of an object



Reconstructed models inserted into scene with new lighting

Zhang, Luan, Li, Snavely. CVPR

Questions?