
Image Classification
CS5670: Computer Vision

Some Slides from Fei-Fei Li, Justin Johnson, Serena Yeung
http://vision.stanford.edu/teaching/cs231n/

http://vision.stanford.edu/teaching/cs231n/

Announcements

• One more project to go – Project 5: Neural Radiance Fields
• Tentative release date: Thursday, April 20
• Tentative due date: Wednesday, May 3

• In-class Final Exam during the last lecture: Tuesday, May 9

Third Place

Jinzhao Kang and Xianglin Chen

Second Place

Wenqi Xiao and Zhuoyi Li

First Place

Shreyash Gupta and
Srimoyee Mukhopadhyay

Last time: intro to recognition +
classification
• Different problems: image classification, object detection

• Initial classification idea: k Nearest Neighbors

• Input: an image
• Output: the class label for that image

• Label is generally one or more of the
discrete labels used in training
• e.g. {cat, dog, cow, toaster, apple,

tomato, truck, … }

Image Classifiers in a Nutshell
def classifier(image):

//Do some stuff
return class_label;

“Toaster”

“Cat”

“Dog”

Image classification demo

https://cloud.google.com/vision/docs/drag-and-drop
See also:
https://aws.amazon.com/rekognition/
https://www.clarifai.com/
https://azure.microsoft.com/en-us/services/cognitive-services/computer-vision/

…

https://cloud.google.com/vision/docs/drag-and-drop
https://aws.amazon.com/rekognition/
https://www.clarifai.com/
https://azure.microsoft.com/en-us/services/cognitive-services/computer-vision/

11000 0010 111011001001 01011111 1101 110100010100100 1110 0010011 00110101 011100001001101111110
0111001100011 001010111110 00100010111 011001101111111000111011011011000110110 000100011110010100001
000011 1101001111011010001100111 111110010110100100 00 1001 11 10010010100100011 0 1101011010111 1
111001101 0011110110 1011010001101011000010 100110111010100 111111001010101101000111010 0 00110010
01110 111010010111 1010111110111000 001101111001 100 10110001 0 01101111011001110 111100 01 1010 1
11010111 1101010100100010111110100100 0 011 0010101111 111001100011111 0101101110010100 00100000110
1 01001 11110101110111000 00 0111110111000 11001011011 100101011 110001111110010110000 10001 11110 0
 101010111101110110 101111 100111000010 111 1001100111010000110 00100011100101 10101000010110001101
11001111001 1 01 1000010110100011101010111101 101010 11100100010000110010101001110101110 0100011100
1010111 11111011010110101111111000 11101011 01111101110110011 110001010111010 01110111 011 10001111
101 11101 100100101000111000011101 111110110011 11101010011011 1111 00010101101100011011011000011 10
10011111 10001110011100011111000011 11100111 1011110001111011000100011011101111110000111011111111011
0010010010011100011 1001 1101 0011110010 1011001010100001111011011011 0 100110 1111101 011110 10 1
10000 10001110111000 001000100000100000111010001000110001000000011 10 1 010 011001000011100001011 1
 0110000001111 1 1001100101111101001001 00100011000000011000 100100 1110000011010110111000111 111101
0 1011001 010011 10000101011001011010110110011001100001 1 11101 0 1 00111100110000 0010100001111011
11 10001 1111 101111101110111011101110011 1101111110111100111101111100111 01 111 01 011 001011 110
0111 101010 10111 1110 010111000011111 11110111101100101001011000 100101000111101011011011 101001 10
00001010100101011011 10 010 010011110111001111011 01010110000111110011000010101101011110001 11111111
1001 1111000010 110010111001001011111111110 001010001001 0100101111100110110 0001 001110 10110001 0
00111100001111 1101000111000100110010110100 1 111100 101 111100 001001001111011 110 01111 0110 01110
01110011111 00111001101010100000000 010011110110 1011100 11111111000101 001111101100 0010001111000
001011111 10011 011011100011010110011 101011111001000000 010 1111 111011 101111001110111000 0111110

The Semantic Gap

What we see What the computer sees

• The same class of
object can appear very
differently in different
images

Variation Makes Recognition Hard

Viewpoint Variation Lighting Variation Deformation

Background Clutter Occlusion

• Distinct realities can produce the same
image…
• We generally can’t compute the “right”

answer, but we can compute the most
likely one…
• We need some kind of prior to

condition on. We can learn this prior
from data:

The Problem is Under-constrained

I think there may be
a spy among us…

f(x) = argmax
`x

P (`x|data)

<latexit sha1_base64="8IkMdkTl92/e7GIx4RlV5DbAwQM=">AAACV3icbVBdaxNBFJ1dtcb4leiDD74MBiF9CbulYkEKRV98jGDaQnYJd2fvpkPnY5mZrQnT/Qv9NX3V/9Ffo5MPQdseGDiccw/3zilqwa1LkpsofvDw0c7jzpPu02fPX7zs9V8dW90YhhOmhTanBVgUXOHEcSfwtDYIshB4Upx/WfknF2gs1+q7W9aYS5grXnEGLkiz3rAaLnYPMzBzCQvtMxRitmizT3Q83HB6SUtwsDvrDZJRsga9S9ItGZAtxrN+9CYrNWskKscEWDtNk9rlHozjTGDbzRqLNbBzmOM0UAUSbe7XX2rp+6CUtNImPOXoWv034UFau5RFmJTgzuxtbyXe500bVx3knqu6cajYZlHVCOo0XfVDS26QObEMBJjh4VbKzsAAc6HF7r1rupnCH0xLCar0f6tsp2nus0aVIYbOD9LWb5y2DVWmt4u7S473Run+6MO3/cHR522pHfKWvCNDkpKP5Ih8JWMyIYxckWvyk/yKbqLf8U7c2YzG0TbzmvyHuP8Hgji1xw==</latexit>

• An image is just a bunch of
numbers
• Let’s stack them up into a vector
• Our training data is just a bunch of

high-dimensional points now

Images As High-Dimensional Vectors

The Space of
All Images

Toasters

Cats

• An image is just a bunch of
numbers
• Let’s stack them up into a vector
• Our training data is just a bunch of

high-dimensional points now

• Divide space into different regions
for different classes

Images As High-Dimensional Vectors

The Space of
All Images

Toasters

Cats

• An image is just a bunch of
numbers
• Let’s stack them up into a vector
• Our training data is just a bunch of

high-dimensional points now

• Divide space into different regions
for different classes

Images As High-Dimensional Vectors

The Space of
All Images

• Define a distribution over
space for each class

or

• An image is just a bunch of
numbers
• Let’s stack them up into a vector
• Our training data is just a bunch of

high-dimensional points now

• Divide space into different regions
for different classes

Images As High-Dimensional Vectors

The Space of
All Images

Toasters

Cats

• How high-dimensional is an image?
• Let’s consider an iPhone X photo:

• 4032 x 3024 pixels
• Every pixel has 3 colors
• 36,578,304 pixels (36.5 Mega pixels)

• In practice, images sit on a lower-
dimensional manifold
• Think of image features and

dimensionality reduction as ways to
represent images by their location
on such manifolds

Image Features and Dimensionality Reduction

The Space of
All Images

Side Note:
This also lets us deal with images

of different sizes, crops, etc.

Image Features and Dimensionality Reduction

• How high-dimensional is an image?
• Let’s consider an iPhone X photo:

• 4032 x 3024 pixels
• Every pixel has 3 colors
• 36,578,304 pixels (36.5 Mega pixels)

• In practice, images sit on a lower-
dimensional manifold
• Think of image features and

dimensionality reduction as ways to
represent images by their location
on such manifolds

• Collect a database of images with labels
• Use ML to train an image classifier
• Evaluate the classifier on test images

Training & Testing a Classifier

Slide from Andrej Karpathy and Fei-Fei Li http://vision.stanford.edu/teaching/cs231n/

Training & Testing a Classifier

Training & Testing a Classifier

• Nearest Neighbor
• kNN (“k-Nearest Neighbors”)
• Linear Classifier
• Neural Network
• Deep Neural Network
• …

Classifiers

First idea: Nearest Neighbor (NN) Classifier

• Train
• Remember all training

images and their labels

• Predict
• Find the closest (most

similar) training image
• Predict its label as the true

label

CIFAR-10 and NN results

Slides from Andrej Karpathy and Fei-Fei Li
http://vision.stanford.edu/teaching/cs231n/

CIFAR-10 and NN results

Slides from Andrej Karpathy and Fei-Fei Li
http://vision.stanford.edu/teaching/cs231n/

k-nearest neighbor

• Find the k closest points from training data
• Take majority vote from K closest points

How to Define Distance Between Images

Slides from Andrej Karpathy and Fei-Fei Li http://vision.stanford.edu/teaching/cs231n/

• Hyperparameter

Choice of distance metric

Slide composited from Andrej Karpathy and Fei-Fei Li http://vision.stanford.edu/teaching/cs231n/

Demo: http://vision.stanford.edu/teaching/cs231n-demos/knn/

http://vision.stanford.edu/teaching/cs231n-demos/knn/

Hyperparameters

• What is the best distance to use?
• What is the best value of k to use?

• These are hyperparameters: choices about the algorithm that we set
rather than learn

• How do we set them?
• One option: try them all and see what works best

Slide composited from Andrej Karpathy and Fei-Fei Li http://vision.stanford.edu/teaching/cs231n/

Slide composited from Andrej Karpathy and Fei-Fei Li http://vision.stanford.edu/teaching/cs231n/

Slide composited from Andrej Karpathy and Fei-Fei Li http://vision.stanford.edu/teaching/cs231n/

Slide composited from Andrej Karpathy and Fei-Fei Li http://vision.stanford.edu/teaching/cs231n/

Slide composited from Andrej Karpathy and Fei-Fei Li http://vision.stanford.edu/teaching/cs231n/

Slide composited from Andrej Karpathy and Fei-Fei Li http://vision.stanford.edu/teaching/cs231n/

Hyperparameter Tuning

Recap: How to pick hyperparameters?

• Methodology
• Train and test
• Train, validate, test

• Train an initial model
• Validate to find hyperparameters
• Test to understand generalizability

• N training images, M test images

• Training: O(1)
• Testing: O(MN)

• We often need the opposite:
• Slow training is ok
• Fast testing is necessary

kNN – Complexity and Storage

k-Nearest Neighbors: Summary

• In image classification we start with a training set of images and
labels, and must predict labels on the test set

• The K-Nearest Neighbors classifier predicts labels based on nearest
training examples

• Distance metric and K are hyperparameters

• Choose hyperparameters using the validation set; only run on the
test set once at the very end!

Problems with KNN: Distance Metrics

• As the number of dimensions
increases, the same amount of data
becomes more sparse.
• Amount of data we need ends up

being exponential in the number of
dimensions

Problems with KNN: The Curse of Dimensionality

Animation from https://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/lecturenote02_kNN.html

https://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/lecturenote02_kNN.html

Linear Classifiers

• Nearest Neighbors
• Store every image
• Find nearest neighbors at test

time, and assign same class

Linear Classification vs. Nearest Neighbors

• Nearest Neighbors
• Store every image
• Find nearest neighbors at test

time, and assign same class

• Linear Classifier
• Store hyperplanes that best

separate different classes
• We can compute continuous

class score by calculating
(signed) distance from
hyperplane

Linear Classification vs. Nearest Neighbors

We can interpret this as a linear
"score function” for each class.

Score functions

Slide adapted from Andrej Karpathy and Fei-Fei Li http://vision.stanford.edu/teaching/cs231n/

Parametric Approach

Slide adapted from Andrej Karpathy and Fei-Fei Li http://vision.stanford.edu/teaching/cs231n/

Parametric Approach: Linear Classifier

Slide adapted from Andrej Karpathy and Fei-Fei Li http://vision.stanford.edu/teaching/cs231n/

Parametric Approach: Linear Classifier

Slide adapted from Andrej Karpathy and Fei-Fei Li http://vision.stanford.edu/teaching/cs231n/

Linear Classifier

Slide adapted from Andrej Karpathy and Fei-Fei Li http://vision.stanford.edu/teaching/cs231n/

Interpretation: Algebraic

Slide adapted from Andrej Karpathy and Fei-Fei Li http://vision.stanford.edu/teaching/cs231n/

• Parameters define a hyperplane
for each class:

• We can think of each class score
as defining a distribution that is
proportional to distance from
the corresponding hyperplane

Interpretation: Geometric

f(xi,W, b) = Wxi + b

<latexit sha1_base64="Fyp5bDMhtZDA0Ksosbmyu6Y617s=">AAACQHicbVDLSuRAFK34GLXHmenWhQs3YRpBGWmSQdGNILpxqWDbQic0N5WbtrAeoaqiNiGf4lb/w7/wD9yJW1dWPxa+Dlw4nHMP93KSnDNjg+DRm5qemf0xN79Q+7n46/efemPpzKhCU2xTxZU+T8AgZxLbllmO57lGEAnHTnJ5OPQ7V6gNU/LUDnKMBfQlyxgF66RevZGt3/TYZmcz2djrOPYv6dWbQSsYwf9KwglpkgmOew1vJUoVLQRKSzkY0w2D3MYlaMsox6oWFQZzoJfQx66jEgSauBz9XvlrTkn9TGk30voj9X2iBGHMQCRuU4C9MJ+9ofid1y1sthuXTOaFRUnHh7KC+1b5wyL8lGmklg8cAaqZ+9WnF6CBWldX7dsztUjiNVVCgEzLCHRfwI2qumFcRoVMXQxt2QyrcuxUlasy/FzcV3L2vxVutbZPtpr7B5NS58kq+UvWSUh2yD45IsekTSi5Jrfkjtx7D96T9+y9jFenvElmmXyA9/oGrOGvCg==</latexit>

The Space of
All Images

• We can think of the rows in as templates for each class

Interpretation: Template matching

f(xi,W, b) = Wxi + b

<latexit sha1_base64="Fyp5bDMhtZDA0Ksosbmyu6Y617s=">AAACQHicbVDLSuRAFK34GLXHmenWhQs3YRpBGWmSQdGNILpxqWDbQic0N5WbtrAeoaqiNiGf4lb/w7/wD9yJW1dWPxa+Dlw4nHMP93KSnDNjg+DRm5qemf0xN79Q+7n46/efemPpzKhCU2xTxZU+T8AgZxLbllmO57lGEAnHTnJ5OPQ7V6gNU/LUDnKMBfQlyxgF66RevZGt3/TYZmcz2djrOPYv6dWbQSsYwf9KwglpkgmOew1vJUoVLQRKSzkY0w2D3MYlaMsox6oWFQZzoJfQx66jEgSauBz9XvlrTkn9TGk30voj9X2iBGHMQCRuU4C9MJ+9ofid1y1sthuXTOaFRUnHh7KC+1b5wyL8lGmklg8cAaqZ+9WnF6CBWldX7dsztUjiNVVCgEzLCHRfwI2qumFcRoVMXQxt2QyrcuxUlasy/FzcV3L2vxVutbZPtpr7B5NS58kq+UvWSUh2yD45IsekTSi5Jrfkjtx7D96T9+y9jFenvElmmXyA9/oGrOGvCg==</latexit>

Rows of W in

Hard Cases for a Linear Classifier

• Learning methods
• k-Nearest Neighbors
• Linear classification

• Classifier outputs a score function giving a score to each class
• How do we define how good a classifier is based on the training data?

(Spoiler: define a loss function)

Recap

Linear classification

Output scores

Loss functions

• Given ground truth labels (yi), scores f(xi, W)
• how unhappy are we with the scores?

• Loss function or objective/cost function measures unhappiness

• During training, want to find the parameters W that minimize
the loss function

Loss function, cost/objective function

• Two classes (e.g., “cat” and “not cat”)
• AKA “positive” and “negative” classes

Simpler example: binary classification

cat not cat

0:negative
0:positive

<+×
³+×
b
b

ii

ii

wxx
wxx

Linear classifiers

Which hyperplane is best? We
need a loss function to decide

• Find linear function (hyperplane) to
separate positive and negative
examples

• One possibility: Number of misclassified examples
• Problems: discrete, can’t break ties
• We want the loss to lead to good generalization
• We want the loss to work for more than 2 classes

What is a good loss function?

Loss: 2 Loss: 0 Loss: 0

• Interpret Scores as
unnormalized log
probabilities of classes

Softmax classifier

Squashes values into probabilities
ranging from 0 to 1

(score function)

Example with three classes:

Softmax classifier

0.06

0.82

0.12

Softmax
“probabilities”

Cross-entropy loss

(score function)

We call Li cross-
entropy loss

Cross-entropy loss

(score function)

We call Li cross-
entropy loss

fyi : score of correct class

Cross-entropy loss

(score function)

We call Li cross-
entropy loss

• Cross-entropy loss is just one possible loss function
• One nice property is that it reinterprets scores as probabilities, which have a

natural meaning

• SVM (max-margin) loss functions also used to be popular
• But currently, cross-entropy is the most common classification loss

Losses

• Have score function and loss function
• Currently, score function is based on linear classifier
• Next, will generalize to convolutional neural networks

• Find W and b to minimize loss

Summary

Average of cross-entropy loss
over all training examples{ Regularization term

(will talk about this later)

Questions?

