CS5670: Computer Vision

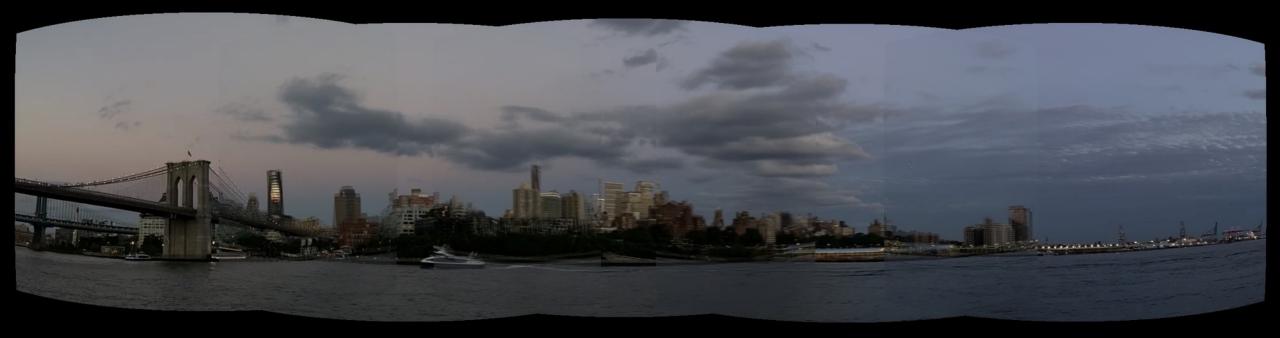
Image Classification

Some Slides from Fei-Fei Li, Justin Johnson, Serena Yeung <u>http://vision.stanford.edu/teaching/cs231n/</u>

Announcements

- One more project to go Project 5: Neural Radiance Fields
 - Tentative release date: Thursday, April 20
 - Tentative due date: Wednesday, May 3
- In-class Final Exam during the last lecture: Tuesday, May 9

Jinzhao Kang and Xianglin Chen



Wenqi Xiao and Zhuoyi Li

Shreyash Gupta and Srimoyee Mukhopadhyay

Last time: intro to recognition + classification

- Different problems: image classification, object detection
- Initial classification idea: k Nearest Neighbors

Image Classifiers in a Nutshell

- Input: an image
- Output: the class label for that image
- Label is generally one or more of the discrete labels used in training
 - e.g. {cat, dog, cow, toaster, apple, tomato, truck, ... }

def classifier(image):
 //Do some stuff
 return class_label;

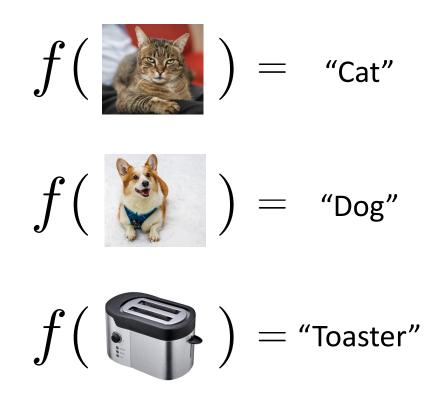
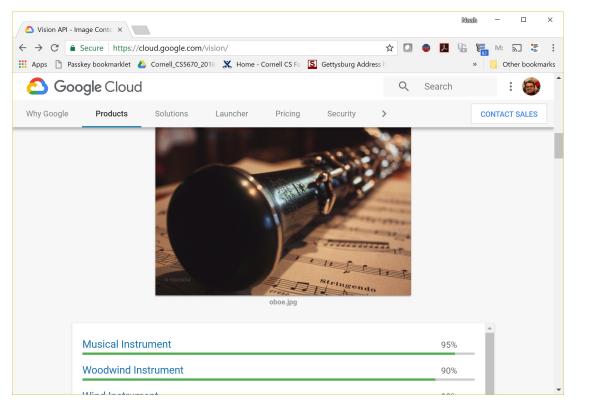


Image classification demo



https://cloud.google.com/vision/docs/drag-and-drop

See also:

https://aws.amazon.com/rekognition/

https://www.clarifai.com/

https://azure.microsoft.com/en-us/services/cognitive-services/computer-vision/

• • •

The Semantic Gap

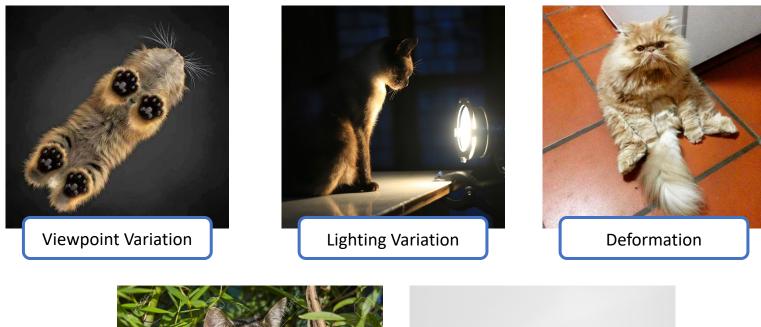
What we see

J7770 777070070777 PTOTOTIT TTOTOTOTO(J0J0J0JJJJ0JJJ0JJ(PTOOTTTTOOT T OT T(POT TTTOT TOOTOOTO] PODIJIJ JOODIJOO]]07007007007770007] 70000 J000JJ707J70(0110000001111 1][JOJJOOJ 0JOOJJ J(J. U J. J JTTT TOTOTO TOTTT]]00070707007070770] 7007 7777000070 77(JOTTTTOOOOTTTT TTO]

What the computer sees

Variation Makes Recognition Hard

• The same class of object can appear *very* differently in different images



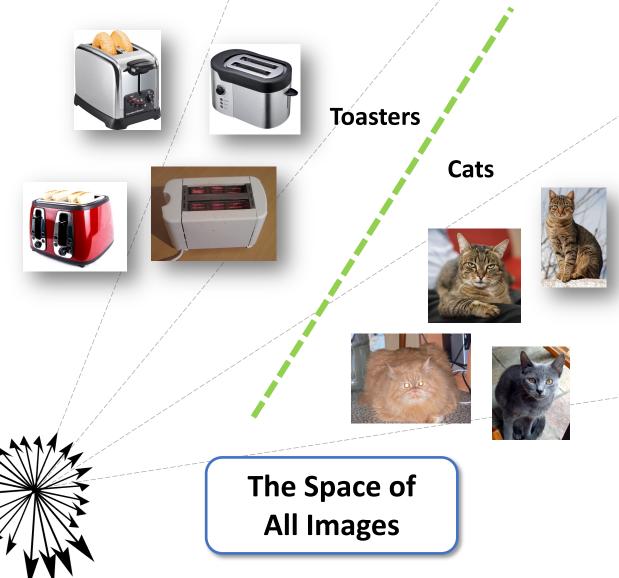
The Problem is Under-constrained

- Distinct realities can produce the same image...
- We generally can't compute the "right" answer, but we can compute the most likely one...
- We need some kind of prior to condition on. We can learn this prior from data:

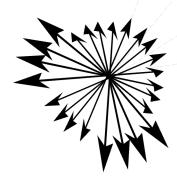
$$f(x) = \underset{\ell_x}{\operatorname{argmax}} P(\ell_x | data)$$

- An image is just a bunch of numbers
- Let's stack them up into a vector
 - Our training data is just a bunch of high-dimensional points now

- An image is just a bunch of numbers
- Let's stack them up into a vector
 - Our training data is just a bunch of high-dimensional points now
- Divide space into different regions for different classes



- An image is just a bunch of numbers
- Let's stack them up into a vector
 - Our training data is just a bunch of high-dimensional points now
- Divide space into different regions for different classes



The Space of All Images

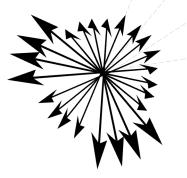
TOASTER CAT

YOUR ARGUMENT IS INVALID

- An image is just a bunch of numbers
- Let's stack them up into a vector
 - Our training data is just a bunch of high-dimensional points now
- Divide space into different regions for different classes

or

• Define a distribution over space for each class



Toasters

The Space of All Images Cats

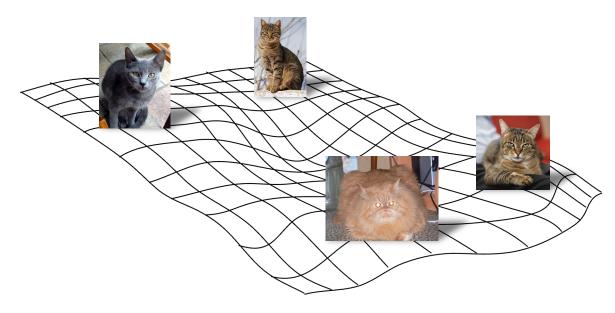
Image Features and Dimensionality Reduction

- How high-dimensional is an image?
 - Let's consider an iPhone X photo:
 - 4032 x 3024 pixels
 - Every pixel has 3 colors
 - 36,578,304 pixels (36.5 Mega pixels)
- In practice, images sit on a lowerdimensional manifold
- Think of image features and dimensionality reduction as ways to represent images by their location on such manifolds

The Space of All Images

Image Features and Dimensionality Reduction

- How high-dimensional is an image?
 - Let's consider an iPhone X photo:
 - 4032 x 3024 pixels
 - Every pixel has 3 colors
 - 36,578,304 pixels (36.5 Mega pixels)
- In practice, images sit on a lowerdimensional manifold
- Think of image features and dimensionality reduction as ways to represent images by their location on such manifolds



Side Note: This also lets us deal with images of different sizes, crops, etc.

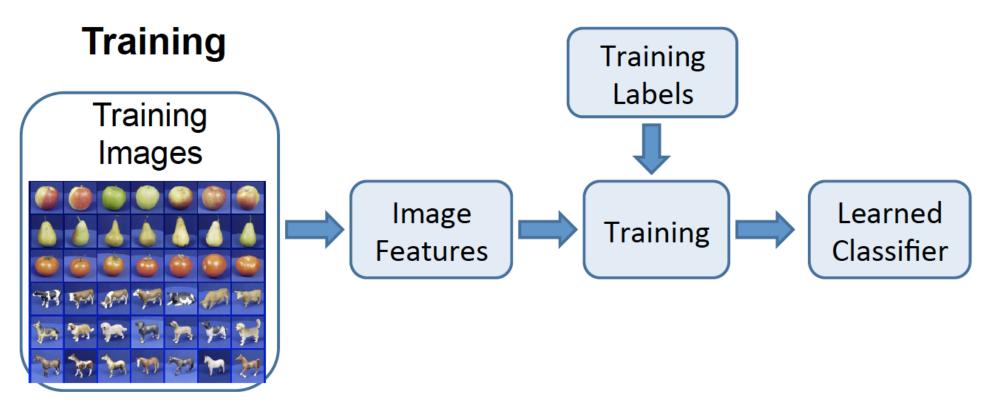
Training & Testing a Classifier

- Collect a database of images with labels
- Use ML to train an image classifier
- Evaluate the classifier on test images

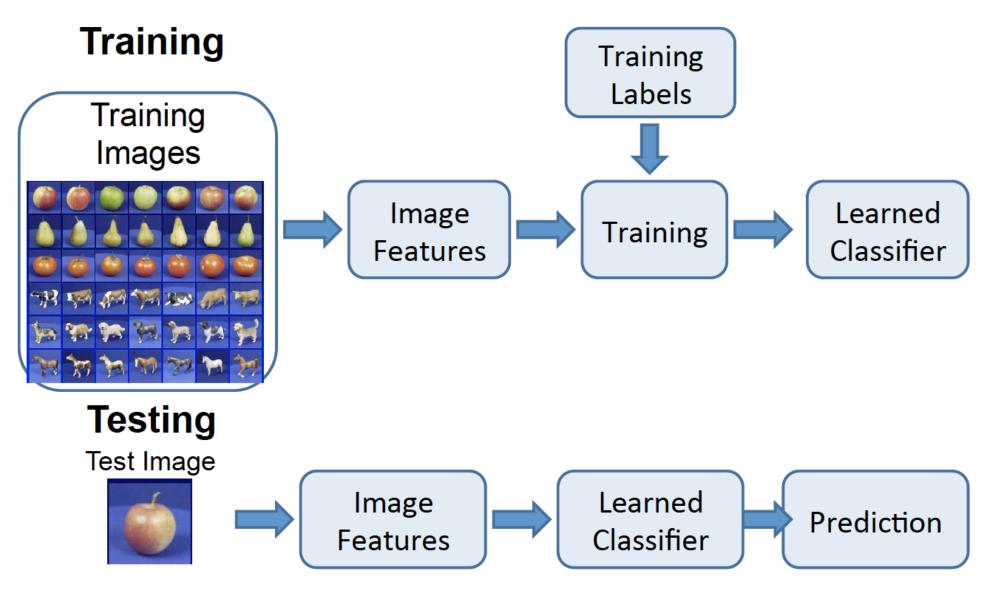
catdogmughatImage: Image: Image:

Example training set

Training & Testing a Classifier



Training & Testing a Classifier



Classifiers

- Nearest Neighbor
- kNN ("k-Nearest Neighbors")
- Linear Classifier
- Neural Network

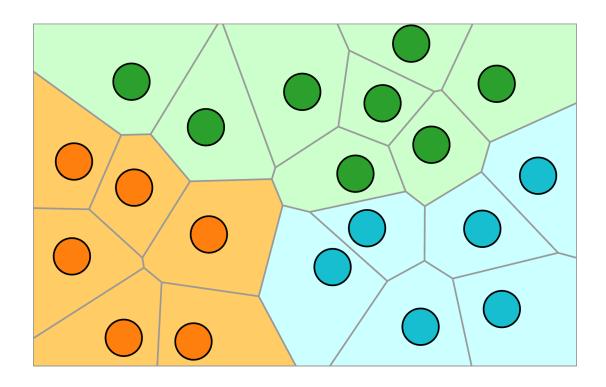
• • •

• Deep Neural Network

First idea: Nearest Neighbor (NN) Classifier

• Train

- Remember all training images and their labels
- Predict
 - Find the closest (most similar) training image
 - Predict its label as the true label



CIFAR-10 and NN results

Example dataset: CIFAR-10 10 labels 50,000 training images 10,000 test images.

airplane	🛁 🔤 🌌 📈 🍬 📼 🌌 🔐
automobile	🖶 🚭 🧟 🤮 🐸 🐸 🛸 🌾
bird	S 🗾 🖉 🕺 🚑 🔨 🌮 😒 💆
cat	lin 🐼 😂 🔤 🎇 🚾 🔀 😻 蒙
deer	NG 😭 💦 🥽 🧊 🌠 😭 🌠 🗱
dog	📆 📶 🦟 🐘 🎘 🎘 🏹 🕷 🔊
frog	Le co
horse	📲 🛠 ጅ 🔛 👘 📷 🖙 🛣 🌋 🗊
ship	🗃 🚰 😅 🚢 🚘 💋 🛷 💆 🗻
truck	i i i i i i i i i i i i i i i i i i i

CIFAR-10 and NN results

Example dataset: CIFAR-10 10 labels 50,000 training images 10,000 test images.

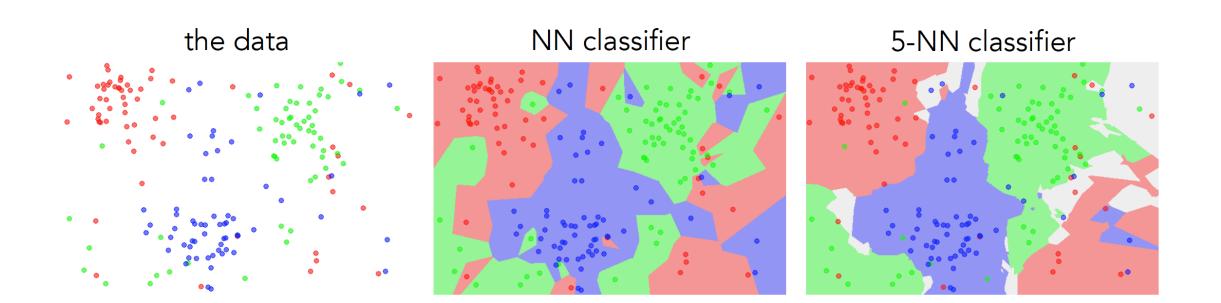
airplane	🛁 🔊 💒 📈 🏏 🐂 🌌 🏭 🛶
automobile	an a
bird	S. 🗾 💋 📢 🎥 🔍 🦻 🔛 💓
cat	in i
deer	NG 😪 😭 🥐 🧱 NG 😭 😪
dog	1973 📶 🙈 💓 🎘 🏹 👘 🎊 🎊
frog	NY 100 100 100 100 100 100 100 100 100 10
horse	📲 条 🛜 🚵 🥐 📷 🖙 🐲 🎆 📬
ship	🗃 😼 🚅 🛋 🚔 💋 🖉 💆 🐲
truck	i i i i i i i i i i i i i i i i i i i

For every test image (first column), examples of nearest neighbors in rows

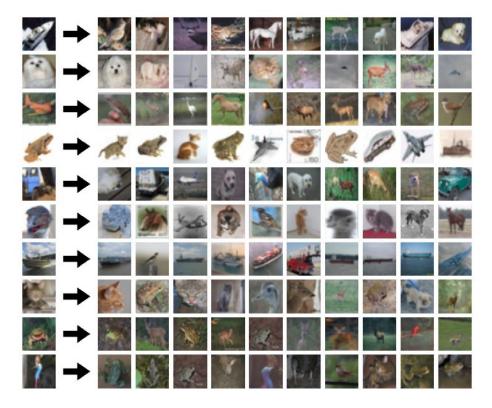
Slides from Andrej Karpathy and Fei-Fei Li http://vision.stanford.edu/teaching/cs231n/

k-nearest neighbor

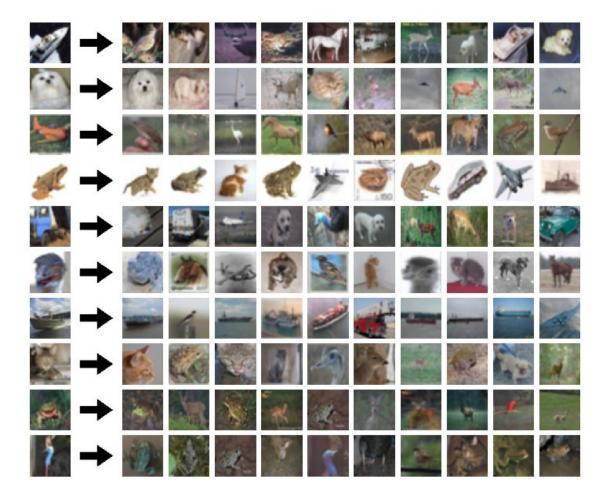
- Find the k closest points from training data
- Take majority vote from K closest points



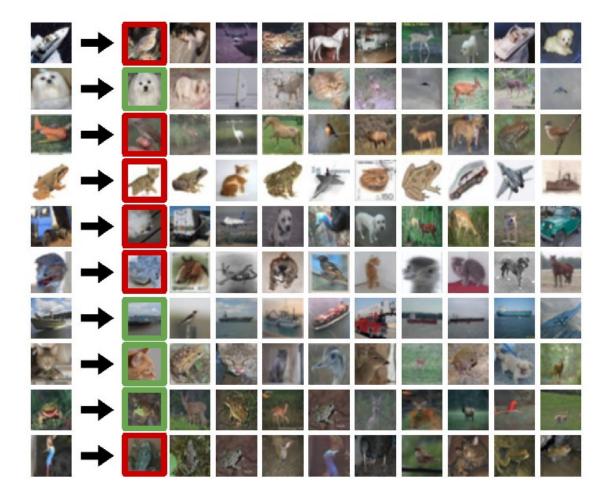
What does this look like?



What does this look like?



What does this look like?



How to Define Distance Between Images

L1 distance:

$$d_1(I_1,I_2) = \sum_p |I_1^p - I_2^p|$$

Where I_1 denotes image 1, and p denotes each pixel

test image								
56	32	10	18					
90	23	128	133					
24	26	178	200					
2	0	255	220					

training image

pixel-wise absolute value differences

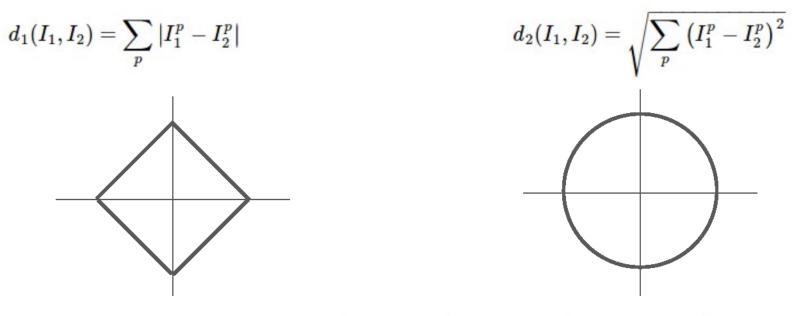
	46	12	14	1	
	82	13	39	33	. 450
-	12	10	0	30	→ 456
	2	32	22	108	

Choice of distance metric

• Hyperparameter

L1 (Manhattan) distance

L2 (Euclidean) distance

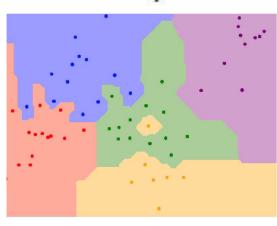


- Two most commonly used special cases of p-norm $\left|\left|x\right|\right|_{p} = \left(\left|x_{1}\right|^{p} + \cdots + \left|x_{n}\right|^{p}\right)^{\frac{1}{p}} \quad p \geq 1, x \in \mathbb{R}^{n}$

Slide composited from Andrej Karpathy and Fei-Fei Li http://vision.stanford.edu/teaching/cs231n/

K-Nearest Neighbors: Distance Metric

L1 (Manhattan) distance $d_1(I_1, I_2) = \sum |I_1^p - I_2^p|$



K = 1

L2 (Euclidean) distance

$$d_2(I_1,I_2) = \sqrt{\sum_p \left(I_1^p - I_2^p
ight)^2}$$



K = 1

Demo: <u>http://vision.stanford.edu/teaching/cs231n-demos/knn/</u>

Hyperparameters

- What is the **best distance** to use?
- What is the **best value of k** to use?
- These are hyperparameters: choices about the algorithm that we set rather than learn
- How do we set them?
 - One option: try them all and see what works best

Setting Hyperparameters

Idea #1: Choose hyperparameters that work best on the data

Your Dataset

Idea #1: Choose hyperparameters that work best on the data

BAD: K = 1 always works perfectly on training data

Your Dataset

Idea #1: Choose hyperparameters that work best on the data

BAD: K = 1 always works perfectly on training data

Your Dataset

Idea #2: Split data into train and test, choose hyperparameters that work best on test data

train test

Idea #1: Choose hyperparameters that work best on the data

BAD: K = 1 always works perfectly on training data

Your Dataset			
Idea #2: Split data into train and test , choose hyperparameters that work best on test data	BAD : No idea how algori will perform on new data		
train		test	

Idea #1: Choose hyperparameters that work best on the data

BAD: K = 1 always works perfectly on training data

Your Dataset

Idea #2: Split data into train and test, chooseBAD: No idea how algorithmhyperparameters that work best on test datawill perform on new data

train test

Idea #3: Split data into train, val, and test; choose	Better!
hyperparameters on val and evaluate on test	Detteri

train	validation	test
-------	------------	------

Your Dataset

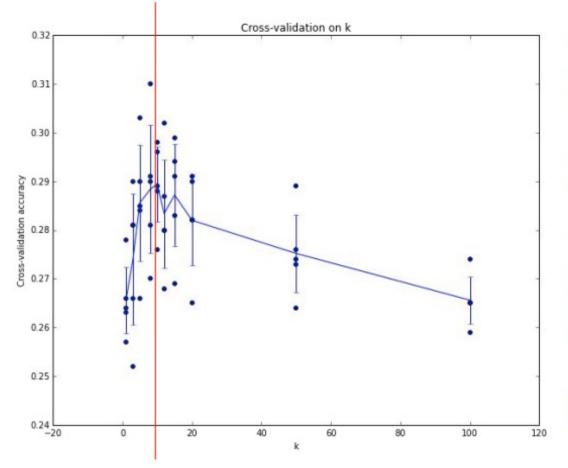
Idea #4: Cross-Validation: Split data into folds,

try each fold as validation and average the results

fold 1	fold 2	fold 3	fold 4	fold 5	test
fold 1	fold 2	fold 3	fold 4	fold 5	test
fold 1	fold 2	fold 3	fold 4	fold 5	test

Useful for small datasets, but not used too frequently in deep learning

Hyperparameter Tuning



Example of 5-fold cross-validation for the value of **k**.

Each point: single outcome.

The line goes through the mean, bars indicated standard deviation

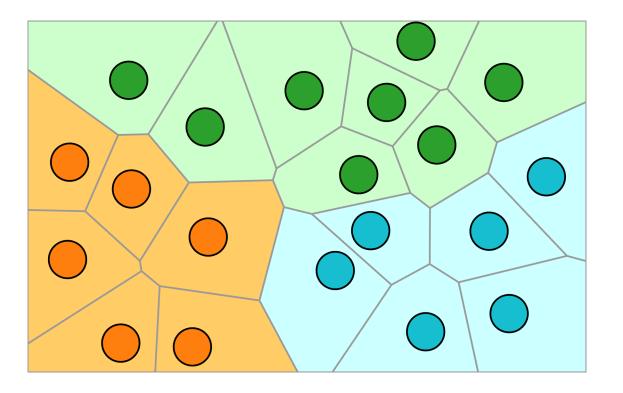
(Seems that k ~= 7 works best for this data)

Recap: How to pick hyperparameters?

- Methodology
 - Train and test
 - Train, validate, test
- Train an initial model
- Validate to find hyperparameters
- Test to understand generalizability

kNN – Complexity and Storage

- N training images, M test images
- Training: O(1)
- Testing: O(MN)
- We often need the opposite:
 - Slow training is ok
 - Fast testing is necessary

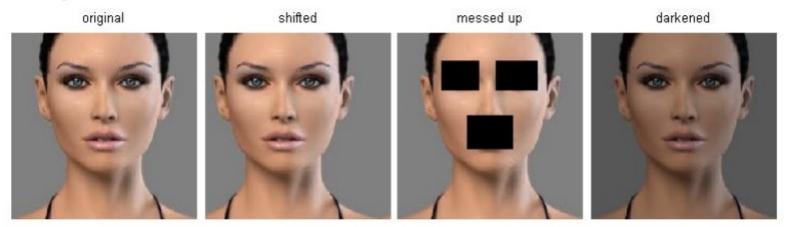


k-Nearest Neighbors: Summary

- In image classification we start with a training set of images and labels, and must predict labels on the test set
- The **K-Nearest Neighbors** classifier predicts labels based on nearest training examples
- Distance metric and K are **hyperparameters**
- Choose hyperparameters using the **validation set**; only run on the test set once at the very end!

Problems with KNN: Distance Metrics

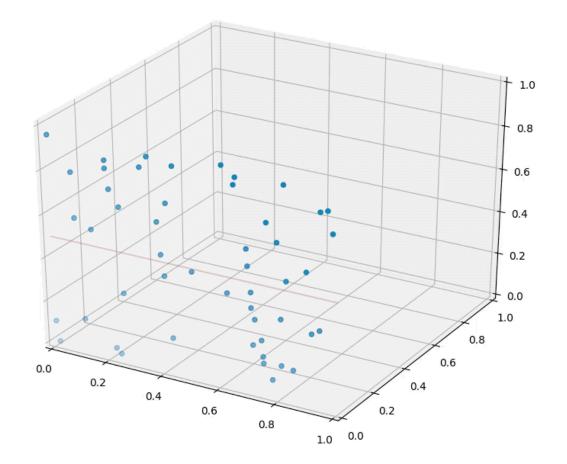
- terrible performance at test time
- distance metrics on level of whole images can be very unintuitive



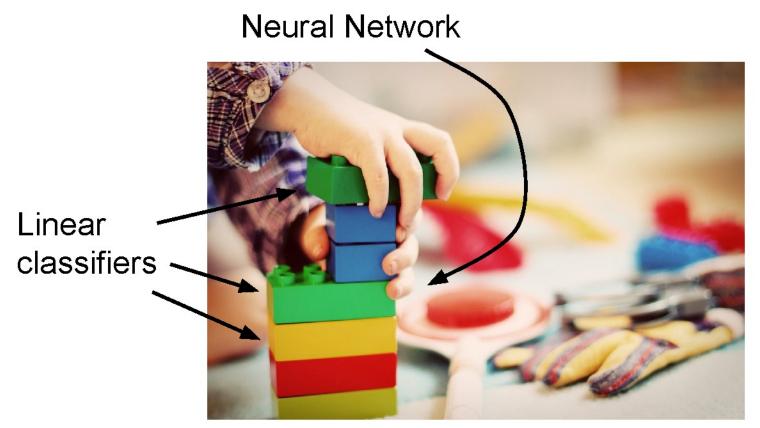
(all 3 images have same L2 distance to the one on the left)

Problems with KNN: The Curse of Dimensionality

- As the number of dimensions increases, the same amount of data becomes more sparse.
- Amount of data we need ends up being exponential in the number of dimensions



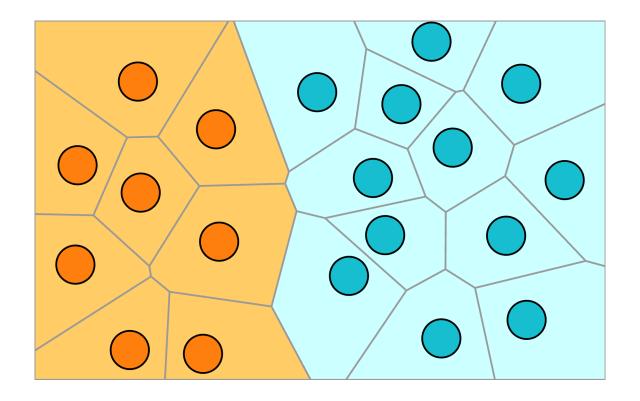
Linear Classifiers



This image is <u>CC0 1.0</u> public domain

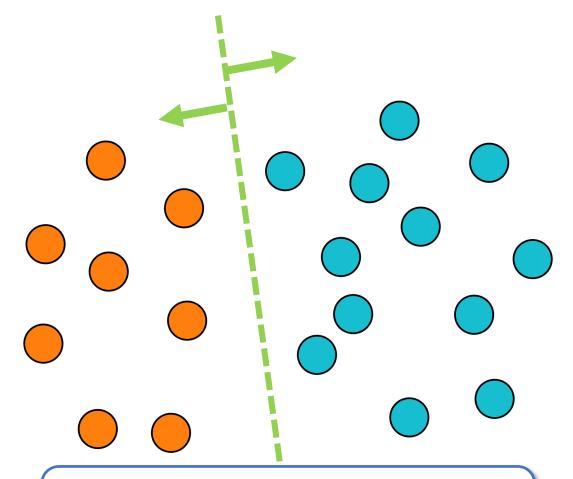
Linear Classification vs. Nearest Neighbors

- Nearest Neighbors
 - Store every image
 - Find nearest neighbors at test time, and assign same class



Linear Classification vs. Nearest Neighbors

- Nearest Neighbors
 - Store every image
 - Find nearest neighbors at test time, and assign same class
- Linear Classifier
 - Store hyperplanes that best separate different classes
 - We can compute continuous class score by calculating (signed) distance from hyperplane



We can interpret this as a linear "score function" for each class.

Score functions

class scores

Slide adapted from Andrej Karpathy and Fei-Fei Li http://vision.stanford.edu/teaching/cs231n/

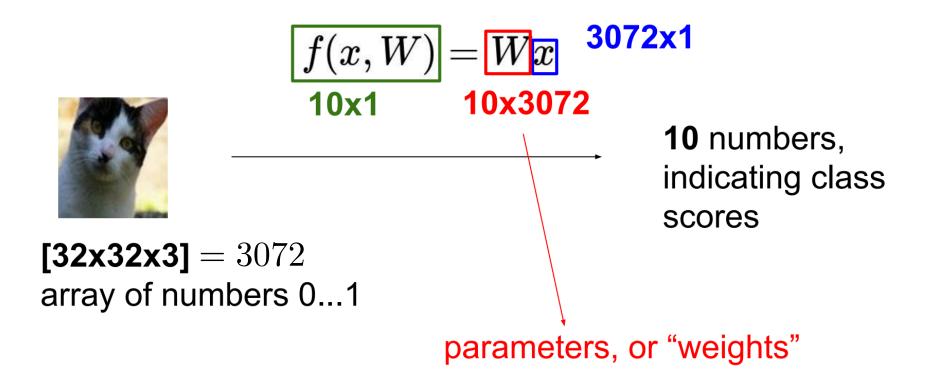
Parametric Approach

image parameters f(x,W)

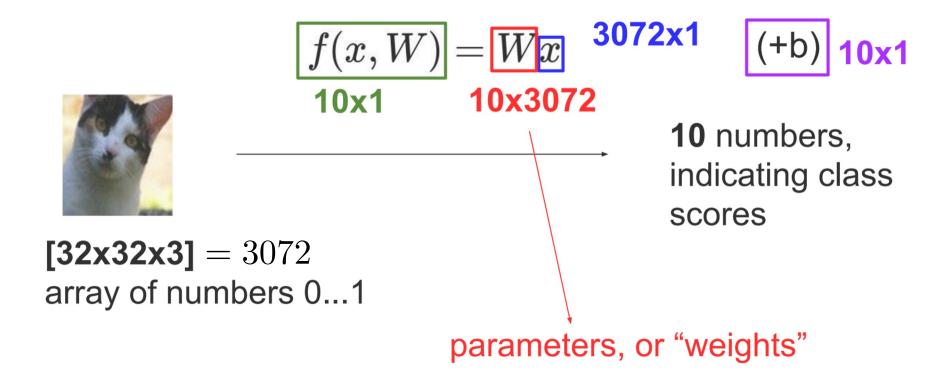
10 numbers, indicating class scores

[32x32x3] = 3072array of numbers 0...1 (3072 numbers total)

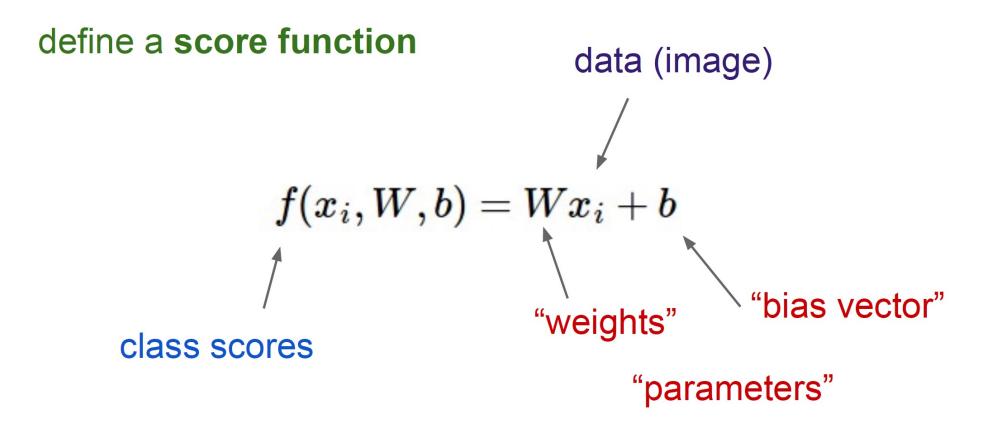
Parametric Approach: Linear Classifier



Parametric Approach: Linear Classifier

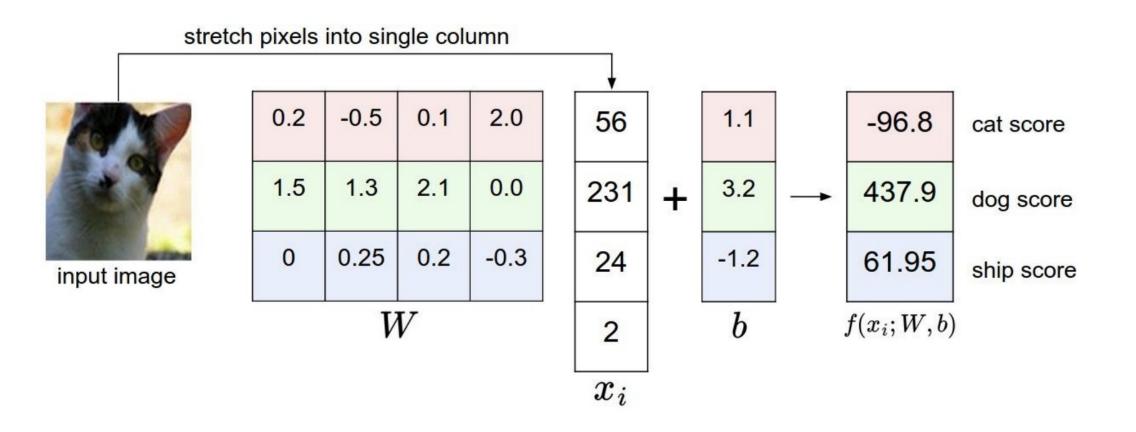


Linear Classifier



Interpretation: Algebraic

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)



Interpretation: Geometric

• Parameters define a hyperplane for each class:

$$f(x_i, W, b) = Wx_i + b$$

• We can think of each class score as defining a distribution that is proportional to distance from the corresponding hyperplane

Interpretation: Template matching

• We can think of the rows in $\!W$

as templates for each class

Rows of W in $f(x_i, W, b) = Wx_i + b$

Hard Cases for a Linear Classifier

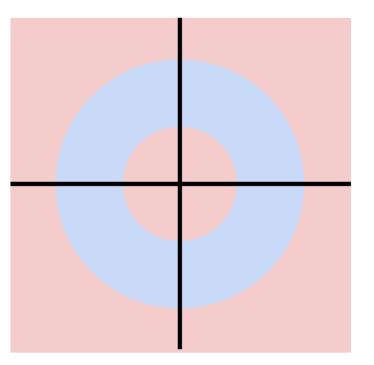
Class 1:

First and third quadrants

Class 2: Second and fourth quadrants

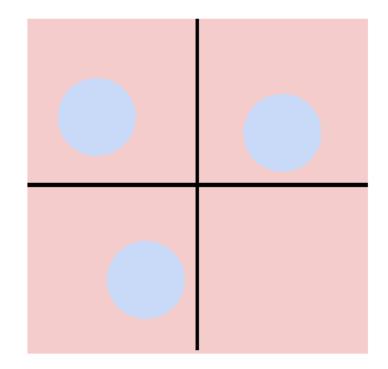
Class 1: 1 <= L2 norm <= 2

Class 2: Everything else



Class 1: Three modes

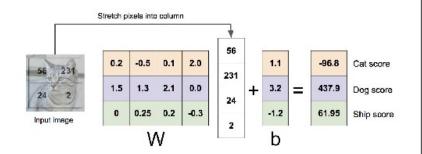
Class 2: Everything else



Linear Classifier: Three Viewpoints

f(x,W) = Wx

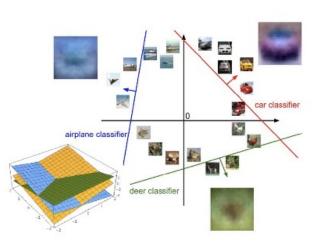
Algebraic Viewpoint



<u>Visual Viewpoint</u> One template per class

<u>Geometric Viewpoint</u> Hyperplanes

cutting up space



So far: Defined a (linear) <u>score function</u> f(x,W) = Wx + b

Example class scores for 3 images for some W:

How can we tell whether this W is good or bad?

Cat image by <u>Nikita</u> is licensed under <u>CC-BY 2.0</u> Car image is <u>CCO 1.0</u> public domain <u>Frog image</u> is in the public domain

airplane	-3.45	-0.51	3.42
automobile	-8.87	6.04	4.64
bird	0.09	5.31	2.65
cat	2.9	-4.22	5.1
deer	4.48	-4.19	2.64
dog	8.02	3.58	5.55
frog	3.78	4.49	-4.34
horse	1.06	-4.37	-1.5
ship	-0.36	-2.09	-4.79
truck	-0.72	-2.93	6.14

Recap

- Learning methods
 - k-Nearest Neighbors
 - Linear classification
- Classifier outputs a **score function** giving a score to each class
- How do we define how good a classifier is based on the training data? (Spoiler: define a *loss function*)

Linear classification

airplane	-3.45	-0.51	3.42
automobile	-8.87	6.04	4.64
bird	0.09	5.31	2.65
cat	2.9	-4.22	5.1
deer	4.48	-4.19	2.64
dog	8.02	3.58	5.55
frog	3.78	4.49	-4.34
horse	1.06	-4.37	-1.5
ship	-0.36	-2.09	-4.79
truck	-0.72	-2.93	6.14

Cat image by Nikita is licensed under CC-BY 2.0; Car image is CC0 1.0 public domain; Frog image is in the public domain

Output scores

TODO:

- Define a loss function that quantifies our unhappiness with the scores across the training data.
- 2. Come up with a way of efficiently finding the parameters that minimize the loss function.
 (optimization)

Loss functions

cat

car

frog

Suppose: 3 training examples, 3 classes. With some W the scores f(x, W) = Wx are:

3.2

5.1

-1.7

1.3

4.9

2.0

2.2

2.5

-3.1

A **loss function** tells how good our current classifier is

Given a dataset of examples $\{(x_i, y_i)\}_{i=1}^N$

Where $oldsymbol{x_i}$ is image and $oldsymbol{y_i}$ is (integer) label

Loss over the dataset is a sum of loss over examples:

$$L = \frac{1}{N} \sum_{i} L_i(f(x_i, W), y_i)$$

Loss function, cost/objective function

- Given ground truth labels (y_i) , scores $f(x_i, \mathbf{W})$
 - how unhappy are we with the scores?
- Loss function or objective/cost function measures unhappiness
- During training, want to find the parameters W that minimize the loss function

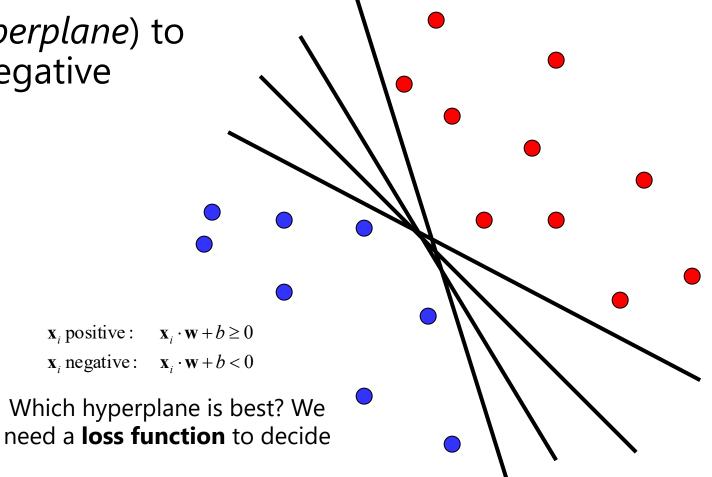
Simpler example: binary classification

- Two classes (e.g., "cat" and "not cat")
 - AKA "positive" and "negative" classes

not cat

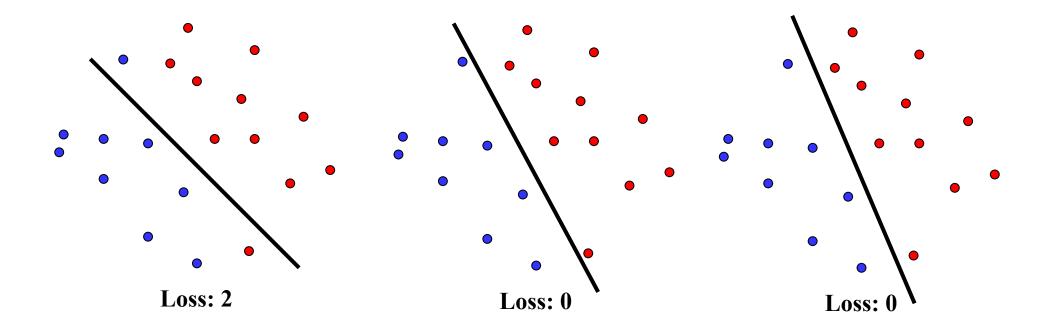
Linear classifiers

• Find linear function (*hyperplane*) to separate positive and negative examples



What is a good loss function?

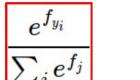
- One possibility: Number of misclassified examples
 - Problems: discrete, can't break ties
 - We want the loss to lead to good generalization
 - We want the loss to work for more than 2 classes



Softmax classifier

 Interpret Scores as unnormalized log probabilities of classes

$$f(x_i, W) = Wx_i$$
 (score function)



softmax function

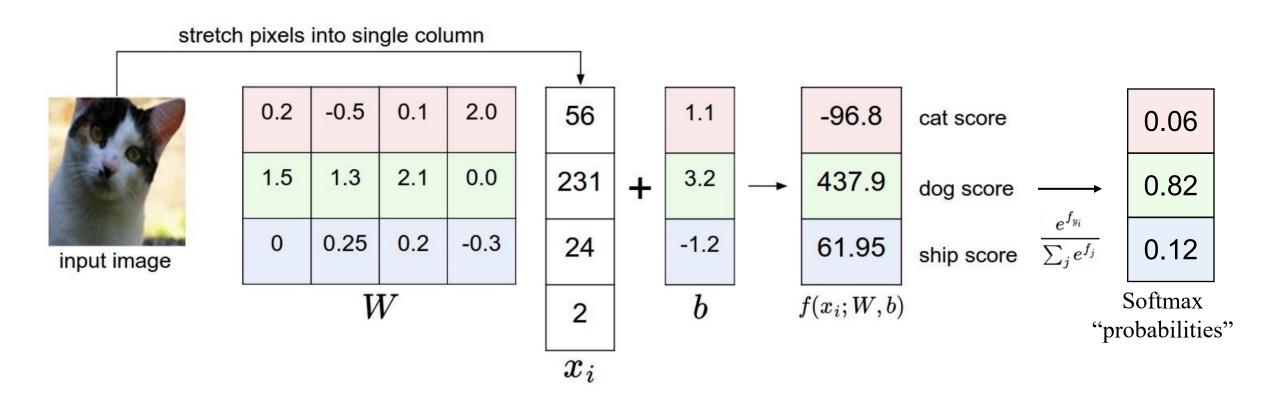
Squashes values into *probabilities* ranging from 0 to 1

 $P(y_i \mid x_i; W)$

Example with three classes: $[1,-2,0] \rightarrow [e^1, e^{-2}, e^0] = [2.71, 0.14, 1] \rightarrow [0.7, 0.04, 0.26]$

Softmax classifier

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

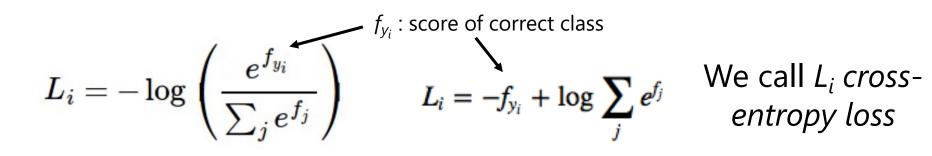


Cross-entropy loss

 $f(x_i, W) = Wx_i$ (score function)

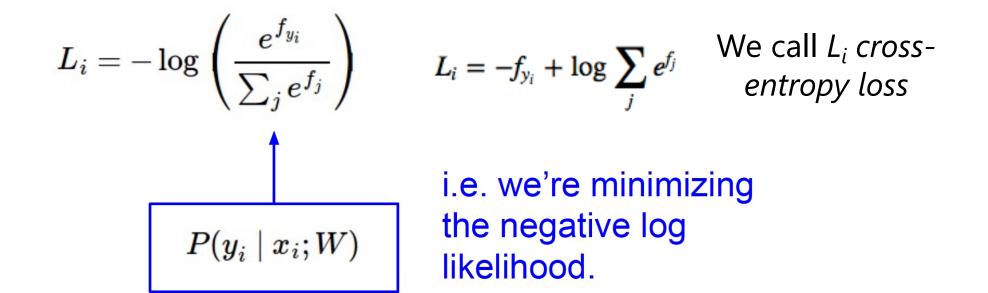
Cross-entropy loss

 $f(x_i, W) = W x_i$ (score function)



Cross-entropy loss

 $f(x_i, W) = W x_i$ (score function)



Losses

- Cross-entropy loss is just one possible loss function
 - One nice property is that it reinterprets scores as probabilities, which have a natural meaning
- SVM (max-margin) loss functions also used to be popular
 - But currently, cross-entropy is the most common classification loss

Summary

- Have score function and loss function
 - Currently, score function is based on linear classifier
 - Next, will generalize to convolutional neural networks
- Find W and b to minimize loss

$$L = \frac{1}{N} \sum_{i} -\log\left(\frac{e^{f_{y_i}}}{\sum_{j} e^{f_j}}\right) + \lambda \sum_{k} \sum_{l} W_{k,l}^2$$

Average of cross-entropy loss
over all training examples

Questions?