CS5670: Computer
 Two-view geometry

Reading

- Reading: Szeliski (2nd Edition), Chapter 11.3 and 12.1

Fundamental matrix song

http://danielwedge.com/fmatrix/

Announcements

- Project 4 (stereo) due this Friday, March 31, at 8pm
- Project 3 artifact voting will close on Wednesday

Back to stereo

- Where do epipolar lines come from?

Two-view geometry

-Where do epipolar lines come from?

Fundamental matrix

- This epipolar geometry of two views is described by a Very Special $\mathbf{F} \times 3$ matrix , called the fundamental matrix
- \mathbf{F} maps (homogeneous) points in image 1 to lines in image 2!
- The epipolar line (in image 2) of point p Fp
- Epipolar constraint on corresponding point $\mathbf{q}^{T} \mathbf{F} \mathbf{p}=0$

Fundamental matrix

- Two Special points: \mathbf{e}_{1} and \mathbf{e}_{2} (the epipoles): projection of one camera into the other

Fundamental matrix

- Two Special points: \mathbf{e}_{1} and \mathbf{e}_{2} (the epipoles): projection of one camera into the other
- All of the epipolar lines in an image pass through the epipole
- Epipoles may or may not be inside the image

Epipoles

Properties of the Fundamental Matrix

- Fp is the epipolar line associated witp
- $\mathbf{F}^{T} \mathbf{q}$ is the epipolar line associated wíq
- $\mathbf{F e}_{1}=\mathbf{0} \quad \mathrm{alF}^{T} \mathbf{e}_{2}=\mathbf{0}$
- \mathbf{F} is rank 2
- How many parameters do $\in \mathbf{F}$ have?

Example

Demo

https://www.cs.cornell.edu/courses/cs5670/2022sp/demos/
FundamentalMatrix/?demo=demo1

Fundamental matrix

- Why does F exist?
- Let's derive it...

Fundamental matrix - calibrated case

$\begin{array}{ll}\mathbf{K}_{1}: \text { intrinsics of camera } 1 & \mathbf{K}_{2}: \text { intrinsics of camera 2 } \\ & \mathbf{R}: \text { rotation of image } 2 \text { w.r.t. camera } 1\end{array}$
$\tilde{\mathbf{p}}=\mathbf{K}_{1}^{-1} \mathbf{p}$: ray through \mathbf{p} in camera 1's (and world) coordinate system
$\tilde{\mathbf{q}}=\mathbf{K}_{2}^{-1} \mathbf{q}:$ ray through \mathbf{q} in camera 2's coordinate system

Fundamental matrix - calibrated case

- $\tilde{\mathbf{p}}, \mathbf{R}^{T} \tilde{\mathbf{q}}$, ant are coplanar
- epipolar plane can be represented as with its norrt $\times \tilde{\mathbf{p}}$

$$
\left(\mathbf{R}^{T} \tilde{\mathbf{q}}\right)^{T}(\mathbf{t} \times \tilde{\mathbf{p}})=0
$$

Fundamental matrix - calibrated case

Fundamental matrix - calibrated case

- One more substitution:
- Cross product with \mathbf{t} (on left) can be represented as a 3×3 matrix

$$
[\mathbf{t}]_{\times}=\left[\begin{array}{ccc}
0 & -t_{z} & t_{y} \\
t_{z} & 0 & -t_{x}
\end{array}\right] \quad \mathbf{t} \times \tilde{\mathbf{p}}=[\mathbf{t}]_{\times} \tilde{\mathbf{p}}
$$

Fundamental matrix - calibrated case

$$
\tilde{\mathbf{q}}^{T} \mathbf{R}(\mathbf{t} \times \tilde{\mathbf{p}})=0
$$

$$
\tilde{\mathbf{q}}^{T} \mathbf{R}[\mathbf{t}]_{\times} \tilde{\mathbf{p}}=0
$$

Fundamental matrix - calibrated case

Cross-product as linear operator

Useful fact: Cross product with a vector \mathbf{t} can be represented as multiplication with a (skew-symmetric) 3×3 matrix

$$
\begin{gathered}
{[\mathbf{t}]_{\times}=\left[\begin{array}{ccc}
0 & -t_{z} & t_{y} \\
t_{z} & 0 & -t_{x} \\
-t_{y} & t_{x} & 0
\end{array}\right]} \\
\mathbf{t} \times \tilde{\mathbf{p}}=[\mathbf{t}]_{\times} \tilde{\mathbf{p}}
\end{gathered}
$$

Fundamental matrix - uncalibrated case

\mathbf{K}_{1} : intrinsics of camera $1 \quad \mathbf{K}_{2}$: intrinsics of camera 2
R : rotation of image 2 w.rt. camera 1

$$
\mathbf{q}^{T} \underbrace{\mathbf{K}_{2}^{-T} \mathbf{R}[\mathbf{t}]_{\times} \mathbf{K}_{1}^{-1}}_{\mathbf{K}} \mathbf{p}=0
$$

Rectified case

$$
\begin{aligned}
\mathbf{R} & =\mathbf{I}_{3 \times 3} \\
\mathbf{t} & =\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right]^{T}
\end{aligned} \quad \mathbf{E}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right]
$$

Working out the math

$$
\frac{\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
y
\end{array}\right]=\left(\left[\begin{array}{l}
0 \\
0 \\
-1 \\
y
\end{array}\right]\right)}{\left[\begin{array}{c}
x \\
y^{\prime} \\
1
\end{array}\right] \cdot\left[\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right]=0} \begin{gathered}
-y^{\prime}+y=0 \quad y^{\prime}=y
\end{gathered}
$$

Stereo image rectification

- reproject image planes onto a common plane
- plane parallel to the line between optical centers
- pixel motion is horizontal after this transformation
- two homographies, one for each input image reprojection
- C. Loop and Z. Zhang. Computing Rectifying Homographies for Stereo Vision. CVPR 1999.

Original stereo pair

Relationship between F matrix and homography?

Images taken from the same center of projection? Use a homography!

Questions?

Estimating F

- If we don't know $\mathbf{K}_{1}, \mathbf{K}_{2}, \mathbf{R}$, or \mathbf{t}, can we estimate \mathbf{F} for two images?
- Yes, given enough correspondences

Estimating F - 8-point algorithm

- The fundamental matrix \mathbf{F} is defined by

$$
\mathbf{x}^{\prime \mathrm{T}} \mathbf{F X}=0
$$

for any pair of matches x and x^{\prime} in two images.

- Let $\mathbf{x}=(u, v, 7)^{\top}$ and $\mathbf{x}^{\prime}=\left(u^{\prime}, v^{\prime}, 7\right)^{\top}, \quad \mathbf{F}=\left[\begin{array}{lll}f_{11} & f_{12} & f_{13} \\ f_{21} & f_{22} & f_{23} \\ f_{31} & f_{32} & f_{33}\end{array}\right]$ each match gives a linear equation

$$
u u^{\prime} f_{11}+v u^{\prime} f_{12}+u^{\prime} f_{13}+u v^{\prime} f_{21}+v v^{\prime} f_{22}+v^{\prime} f_{23}+u f_{31}+v f_{32}+f_{33}=0
$$

8-point algorithm

$$
\left[\begin{array}{cccccccc}
u_{1} u_{1}^{\prime} & v_{1} u_{1}^{\prime} & u_{1}^{\prime} & u_{1} v_{1}^{\prime} & v_{1} v_{1}^{\prime} & v_{1}^{\prime} & u_{1} & v_{1} \\
u_{2} u_{2}^{\prime} & v_{2} u_{2}^{\prime} & u_{2}^{\prime} & u_{2} v_{2}^{\prime} & v_{2} v_{2}^{\prime} & v_{2}^{\prime} & u_{2} & v_{2} \\
u^{\prime} \\
\vdots & \vdots \\
u_{n} u_{n}^{\prime} & v_{n} u_{n}^{\prime} & u_{n}^{\prime} & u_{n} v_{n}^{\prime} & v_{n} v_{n}^{\prime} & v_{n}^{\prime} & u_{n} & v_{n} \\
1
\end{array}\right]\left[\begin{array}{c}
f_{11} \\
f_{12} \\
f_{13} \\
f_{21} \\
f_{22} \\
f_{23} \\
f_{31} \\
f_{32} \\
f_{33}
\end{array}\right]=0
$$

- Like with homographies, instead of solvingf $=0 \quad$, we seek unit length \mathbf{f} to minilhaittle : least eigenvectar of

8-point algorithm - Problem?

- F should have rank 2
- To enforce that \mathbf{F} is of rank 2, \mathbf{F} is replaced by \mathbf{F}^{\prime} that minimizes $\left\|\mathbf{F}-\mathbf{F}^{\prime}\right\| \quad$ subject to the rank constraint.
- This is achieved by SVD. LeF = $\mathbf{U} \Sigma \mathbf{V}^{\mathrm{T}} \quad$, where

$$
\Sigma=\left[\begin{array}{ccc}
\sigma_{1} & 0 & 0 \\
0 & \sigma_{2} & 0 \\
0 & 0 & \sigma_{3}
\end{array}\right], \quad \quad \Sigma^{\prime} e^{\prime}=\left[\begin{array}{ccc}
\sigma_{1} & 0 & 0 \\
0 & \sigma_{2} & 0 \\
0 & 0 & 0
\end{array}\right]
$$

then $\mathbf{F}^{\prime}=\mathbf{U} \Sigma^{\prime} \mathbf{V}^{\mathbf{T}} \quad$ is the solution (closest rank-2 matrix to \mathbf{F})

8-point algorithm

```
% Build the constraint matrix
A = [x2(1,:)'.*x1(1,:)' x2(1,:)'.*x1(2,:)' x2(1,:)' ...
    x2(2,:)'.*x1(1,:)' x2(2,:)'.*x1(2,:)' x2(2,:)' ...
    x1(1,:)' x1(2,:)' ones(npts,1) ];
[U,D,V] = svd(A);
% Extract fundamental matrix from the column of V
% corresponding to the smallest singular value.
F = reshape(V (:,9),3,3)';
% Enforce rank2 constraint
[U,D,V] = svd(F);
F = U*diag([D(1,1) D(2,2) 0])*V';
```


8-point algorithm

- Pros: linear, easy to implement and fast
- Cons: susceptible to noise

Problem with 8-point algorithm

$$
\left[\begin{array}{ccccccccc}
u_{1} u_{1}^{\prime}, & v_{1} u_{1}^{\prime} & u_{1}^{\prime}, & u_{1} v_{1}^{\prime} & v_{1} v_{1}^{\prime} & v_{1}^{\prime}, & u_{1} & v_{1} & 1 \\
u_{2} u_{2}^{\prime} & v_{2} u_{2}^{\prime} & u_{2}^{\prime} & u_{2} v_{2}^{\prime} & v_{2} v_{2}^{\prime} & v_{2}^{\prime} & u_{2} & v_{2} & 1 \\
\vdots & \vdots \\
u_{n} u_{n}^{\prime} & v_{n} u_{n}^{\prime} & u_{n}^{\prime} & u_{n} v_{n}^{\prime} & v_{n} v_{n}^{\prime} & v_{n}^{\prime} & u_{n} & v_{n} & 1
\end{array}\right]\left[\begin{array}{l}
f_{12} \\
f_{13} \\
f_{21} \\
f_{22} \\
f_{23} \\
f_{31} \\
f_{32} \\
f_{33}
\end{array}\right]=0
$$

-

Orders of magnitude difference between column of data matrix
\rightarrow least-squares yields poor results

Normalized 8-point algorithm

normalized least squares yields good results
Transform image to $\sim[-1,1] \times[-1,1]$

Normalized 8-point algorithm

- Transform input by $\hat{\mathbf{x}}_{\mathbf{i}}=\mathbf{T} \mathbf{x}_{\mathbf{i}} \quad \hat{\mathbf{x}}_{\mathbf{i}}^{\prime},=\mathbf{T} \mathbf{x}_{\mathbf{i}}^{\prime}$
- Call 8-point or $\hat{\mathbf{x}}_{\mathbf{i}}, \hat{\mathbf{x}}_{\mathbf{i}}^{\prime}$ to obtâ̂n
- $\mathbf{F}=\mathbf{T}^{\mathbf{T}} \hat{\mathbf{F}} \mathbf{T}$

Normalized 8-point algorithm

```
[x1, T1] = normalise2dpts(x1);
[x2, T2] = normalise2dpts(x2);
A = [x2(1,:)'.*x1(1,:)' x2(1,:)'.*x1(2,:)' x2(1,:)' ...
        x2(2,:)'.*x1(1,:)' x2(2,:)'.*x1(2,:)' x2(2,:)' ...
        x1(1,:)' x1(2,:)' ones(npts,1) ];
[U,D,V] = svd(A);
F = reshape(V(:,9),3,3)';
[U,D,V] = svd(F);
F = U*diag([D(1,1) D(2,2) 0])*V';
% Denormalise
F = T2'*F*T1;
```


Results (ground truth)

Ground truth with standard stereo calibration

Results (ground truth)

- 8-point algorithm

Results (normalized 8-point algorithm)

What about more than two views?

- The geometry of three views is described by a $3 \times 3 \times 3$ tensor called the trifocal tensor
- The geometry of four views is described by a $3 \times 3 \times 3 \times 3$ tensor called the quadrifocal tensor
- After this it starts to get complicated...

Next time: Large-scale structure from motion

Dubrovnik, Croatia. 4,619 images (out of an initial 57,845).
Total reconstruction time: 23 hours
Number of cores: 352

Questions?

