
Two-view geometry

CS5670: Computer 
Vision



Reading

• Reading: Szeliski (2nd Edition), Chapter 11.3 and 12.1



Fundamental matrix song

http://danielwedge.com/fmatrix/

http://danielwedge.com/fmatrix/


Announcements

• Project 4 (stereo) due this Friday, March 31, at 8pm

• Project 3 artifact voting will close on Wednesday



Back to stereo

• Where do epipolar lines come from?



Two-view geometry

• Where do epipolar lines come from?
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Fundamental matrix

• This epipolar geometry of two views is described by a Very 
Special 3x3 matrix      , called the fundamental matrix

• maps (homogeneous) points in image 1 to lines in image 2!
• The epipolar line (in image 2) of point p is:

• Epipolar constraint on corresponding points:

epipolar plane

epipolar line
epipolar line

0

(projection of ray)

Image 1 Image 2



Fundamental matrix

• Two Special points: e1 and e2 (the epipoles): projection of one camera 
into the other

epipolar plane

epipolar line
epipolar line

0

(projection of ray)



Fundamental matrix

0

• Two Special points: e1 and e2 (the epipoles): projection of one camera 
into the other

• All of the epipolar lines in an image pass through the epipole
• Epipoles may or may not be inside the image



Epipoles



Properties of the Fundamental Matrix
• is the epipolar line associated with

• is the epipolar line associated with 

• and 

• is rank 2

• How many parameters does have?

13

T



Example



Demo

https://www.cs.cornell.edu/courses/cs5670/2022sp/demos/
FundamentalMatrix/?demo=demo1

https://www.cs.cornell.edu/courses/cs5670/2022sp/demos/FundamentalMatrix/?demo=demo1
https://www.cs.cornell.edu/courses/cs5670/2022sp/demos/FundamentalMatrix/?demo=demo1


Fundamental matrix

• Why does F exist?
• Let’s derive it…

0



Fundamental matrix – calibrated case

0

: intrinsics of camera 1 : intrinsics of camera 2

: rotation of image 2 w.r.t. camera 1

: ray through p in camera 1’s (and world) coordinate system

: ray through q in camera 2’s coordinate system



Fundamental matrix – calibrated case

• ,         , and     are coplanar
• epipolar plane can be represented as with its normal 

0



Fundamental matrix – calibrated case

0



Fundamental matrix – calibrated case

• One more substitution:
– Cross product with t (on left) can be represented as a 3x3 matrix

0



Fundamental matrix – calibrated case

0



Fundamental matrix – calibrated case

0

: ray through p in camera 1’s (and world) coordinate system

: ray through q in camera 2’s coordinate system

{
the Essential matrix



Cross-product as linear operator

Useful fact: Cross product with a vector t can be represented as 
multiplication with a (skew-symmetric) 3x3 matrix



Fundamental matrix – uncalibrated case

0

the Fundamental matrix

: intrinsics of camera 1 : intrinsics of camera 2

: rotation of image 2 w.r.t. camera 1



Rectified case



Working out the math



Stereo image rectification

• reproject image planes onto a 
common plane
– plane parallel to the line between optical 

centers

• pixel motion is horizontal after 
this transformation

• two homographies, one for each 
input image reprojection
– C. Loop and Z. Zhang. Computing 

Rectifying Homographies for Stereo 
Vision. CVPR 1999.

http://research.microsoft.com/~zhang/Papers/TR99-21.pdf
http://research.microsoft.com/~zhang/Papers/TR99-21.pdf
http://research.microsoft.com/~zhang/Papers/TR99-21.pdf


Original stereo pair

After rectification



Relationship between F matrix and 
homography?

Images taken from the same center of projection?  Use a homography!



Questions?



Estimating F

• If we don’t know K1, K2, R, or t, can we estimate F for 
two images?

• Yes, given enough correspondences



• The fundamental matrix F is defined by
𝐱′!𝐅𝐱 = 0

for any pair of matches x and x’ in two images.

• Let x=(u,v,1)T and x’=(u’,v’,1)T, 𝐅 =
𝑓!! 𝑓!" 𝑓!#
𝑓"! 𝑓"" 𝑓"#
𝑓#! 𝑓#" 𝑓##

each match gives a linear equation

𝑢𝑢′𝑓!! + 𝑣𝑢′𝑓!" + 𝑢′𝑓!# + 𝑢𝑣′𝑓"! + 𝑣𝑣′𝑓"" + 𝑣′𝑓"# + 𝑢𝑓#! + 𝑣𝑓#" + 𝑓## = 0

Estimating F – 8-point algorithm



𝑢!𝑢!´ 𝑣!𝑢!´ 𝑢!´ 𝑢!𝑣!´ 𝑣!𝑣!´ 𝑣!´ 𝑢! 𝑣! 1
𝑢"𝑢"´ 𝑣"𝑢"´ 𝑢"´ 𝑢"𝑣"´ 𝑣"𝑣"´ 𝑣"´ 𝑢" 𝑣" 1
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝑢$𝑢$´ 𝑣$𝑢$´ 𝑢$´ 𝑢$𝑣$´ 𝑣$𝑣$´ 𝑣$´ 𝑢$ 𝑣$ 1

𝑓!!
𝑓!"
𝑓!#
𝑓"!
𝑓""
𝑓"#
𝑓#!
𝑓#"
𝑓##

= 0

• Like with homographies, instead of solving            , we seek 
unit length f to minimize          : least eigenvector of         .

𝐀𝐟 = 0
𝐀𝐟 𝐀$𝐀

8-point algorithm



8-point algorithm – Problem?

• F should have rank 2
• To enforce that F is of rank 2, F is replaced by F’ that 

minimizes                subject to the rank constraint. 𝐅 − 𝐅′
• This is achieved by SVD. Let                     , where 

,               let 

then                      is the solution (closest rank-2 matrix to F)

𝐅 = 𝐔Σ𝐕$

Σ =
𝜎! 0 0
0 𝜎" 0
0 0 𝜎#

Σ′ =
𝜎! 0 0
0 𝜎" 0
0 0 0

𝐅′ = 𝐔Σ′𝐕%



8-point algorithm
% Build the constraint matrix
A = [x2(1,:)'.*x1(1,:)'  x2(1,:)'.*x1(2,:)'  x2(1,:)' ...

x2(2,:)'.*x1(1,:)'  x2(2,:)'.*x1(2,:)'  x2(2,:)' ...
x1(1,:)'            x1(2,:)'          ones(npts,1) ];       

[U,D,V] = svd(A);

% Extract fundamental matrix from the column of V 
% corresponding to the smallest singular value.
F = reshape(V(:,9),3,3)';

% Enforce rank2 constraint 
[U,D,V] = svd(F);
F = U*diag([D(1,1) D(2,2) 0])*V';



8-point algorithm

• Pros: linear, easy to implement and fast
• Cons: susceptible to noise



𝑢!𝑢!´ 𝑣!𝑢!´ 𝑢!´ 𝑢!𝑣!´ 𝑣!𝑣!´ 𝑣!´ 𝑢! 𝑣! 1
𝑢"𝑢"´ 𝑣"𝑢"´ 𝑢"´ 𝑢"𝑣"´ 𝑣"𝑣"´ 𝑣"´ 𝑢" 𝑣" 1
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝑢$𝑢$´ 𝑣$𝑢$´ 𝑢$´ 𝑢$𝑣$´ 𝑣$𝑣$´ 𝑣$´ 𝑢$ 𝑣$ 1

𝑓!!
𝑓!"
𝑓!#
𝑓"!
𝑓""
𝑓"#
𝑓#!
𝑓#"
𝑓##

= 0

Problem with 8-point algorithm

~10000 ~10000 ~10000 ~10000~100 ~100 1~100 ~100

Orders of magnitude difference
between column of data matrix
® least-squares yields poor results



Normalized 8-point algorithm

(0,0)

(700,500)

(700,0)

(0,500)

(1,-1)

(0,0)

(1,1)(-1,1)

(-1,-1)

2
700 0 −1

2
500

−1

1

normalized least squares yields good results
Transform image to ~[-1,1]x[-1,1]



Normalized 8-point algorithm

• Transform input by                ,
• Call 8-point on           to obtain
•

0𝐱𝐢 = 𝐓𝐱𝐢 ,𝐱𝐢& = 𝐓𝐱𝐢&

,𝐱𝐢, ,𝐱𝐢&

𝐅 = 𝐓′! &𝐅𝐓

0𝐅

𝐱′$𝐅𝐱 = 0

,𝐱′$𝐓′'$𝐅𝐓'! ,𝐱 = 0

0𝐅



A = [x2(1,:)'.*x1(1,:)'   x2(1,:)'.*x1(2,:)'  x2(1,:)' ...
x2(2,:)'.*x1(1,:)'   x2(2,:)'.*x1(2,:)'  x2(2,:)' ...
x1(1,:)'             x1(2,:)'          ones(npts,1) ];       

[U,D,V] = svd(A);

F = reshape(V(:,9),3,3)';

[U,D,V] = svd(F);
F = U*diag([D(1,1) D(2,2) 0])*V';

% Denormalise
F = T2'*F*T1;

[x1, T1] = normalise2dpts(x1);
[x2, T2] = normalise2dpts(x2);

Normalized 8-point algorithm



Results (ground truth)



Results (ground truth)



Results (normalized 8-point algorithm)



What about more than two views?

• The geometry of three views is described by a 3 x 3 x 3 
tensor called the trifocal tensor

• The geometry of four views is described by a 3 x 3 x 3 x 3 
tensor called the quadrifocal tensor

• After this it starts to get complicated…



Next time: Large-scale structure from 
motion

Dubrovnik, Croatia. 4,619 images (out of an initial 57,845).
Total reconstruction time: 23 hours
Number of cores: 352



Questions?


