CS5670: Computer Vision

Cameras

Announcements

- Take-home midterm will be handed out at the end of class
- Due Tuesday, March 7, by 1pm (beginning of class)
- Project 2 Report due tonight by 8pm
- Project 3: Panorama Stitching
- To be released next Tuesday, March 7
- Tentative due date: Friday, March 17

Can we use homographies to create a 360 panorama?

- In order to figure this out, we need to learn what a camera is

Image formation

Let's design a camera

- Idea 1: put a piece of film in front of an object
- Do we get a reasonable image?
- No. This is a bad camera.

Pinhole camera

Add a barrier to block off most of the rays

- This reduces blurring
- The opening known as the aperture
- How does this transform the image?

Camera Obscura

- Basic principle known to Mozi (470-390 BC), Aristotle (384-322 BC)
- Drawing aid for artists: described by Leonardo da Vinci (1452-1519)

Camera Obscura

Home-made pinhole camera

Why so blurry?

Pinhole photography

Justin Quinnell, The Clifton Suspension Bridge. December 17th 2007 - June 21st 2008 6-month exposure

Shrinking the aperture

- Why not make the aperture as small as pogejblath ghts through
- Diffraction effects...

Shrinking the aperture

Adding a lens

A lens focuses light onto the film

- There is a specific distance at which objects are "in focus"
- other points project to a "circle of confusion" in the image
- Changing the shape of the lens changes this distance

The eye

The human eye is a camera

- Iris - colored annulus with radial muscles
- Pupil - the hole (aperture) whose size is controlled by the iris
- What's the "film"?
- photoreceptor cells (rods and cones) in the retina

http://www.telegraph.co.uk/news/earth/earthpicturegalleries/7598120/Animal-eyes-quiz-Can-you-work-out-which-creatures-these-are-from-theireyes.html?image=25

http://www.telegraph.co.uk/news/earth/earthpicturegalleries/7598120/Animal-eyes-quiz-Can-you-work-out-which-creatures-these-are-from-theireyes.html?image=25

Eyes in nature: eyespots to pinhole camera

Projection

Projection

Müller-Lyer Illusion

https://en.wikipedia.org/wiki/Müller-Lyer illusion

Geometric Model: A Pinhole Camera

Modeling projection

- The coordinate system
- We use the pinhole model as an approximation
- Put the optical center (aka Center of Projection, or COP) at the origin
- Put the Image Plane (aka Projection Plane) in front of the COP (Why)?
- The camera looks down the positive z-axis, and the y-axis points down
- we like this if we want right-handed-
 coordinates
- other versions are possible (e.g., OpenGL)

Modeling projection

- Projection equations
- Compute intersection with PP of ray from (x, y, z) to COP
- Derived using similar triangles

$$
(x, y, z) \rightarrow\left(f \frac{x}{z}, f \frac{y}{z}, f\right)
$$

- We get the projection by throwing out the last coordinate:

$$
(x, y, z) \rightarrow\left(f \frac{x}{z}, f \frac{y}{z}\right)
$$

Modeling projection

- Is this a linear transformation?
- no-division by z is nonlinear

Homogeneous coordinates to the rescue-again!

$$
\begin{array}{cc}
(x, y) \Rightarrow\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right] & (x, y, z) \Rightarrow\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right] \\
\text { homogeneous image } & \text { homogeneous scene } \\
\text { coordinates } & \text { coordinates }
\end{array}
$$

Converting from homogeneous coordinates

$$
\left[\begin{array}{l}
x \\
y \\
w
\end{array}\right] \Rightarrow(x / w, y / w) \quad\left[\begin{array}{l}
x \\
y \\
z \\
w
\end{array}\right] \Rightarrow(x / w, y / w, z / w)
$$

Perspective Projection

Projection is a matrix multiply using homogeneous coordinates:

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 / f & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]=\underset{\text { divide by third coordinate }}{\left[\begin{array}{c}
x \\
y \\
z / f
\end{array}\right] \Rightarrow\left(f \frac{x}{z}, f \frac{y}{z}\right)}
$$

This is known as perspective projection

- The matrix is the projection matrix
- (Can also represent as a 4×4 matrix - OpenGL does something like this)

Perspective Projection

How does scaling the projection matrix change the transformation?

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 / f & 0
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right]=\left[\begin{array}{c}
x \\
y \\
z / f
\end{array}\right] \Rightarrow\left(f \frac{x}{z}, f \frac{y}{z}\right) } \\
& \text { Scale by } f:\left[\begin{array}{llll}
f & 0 & 0 & 0 \\
0 & f & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right]=\left[\begin{array}{c}
f x \\
f y \\
z
\end{array}\right] \Rightarrow\left(f \frac{x}{z}, f \frac{y}{z}\right)
\end{aligned}
$$

Scaling a projection matrix produces an equivalent projection matrix!

Orthographic projection

- Special case of perspective projection
- Distance from the COP to the PP is infinite

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]=\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right] \Rightarrow(x, y)
$$

Orthographic projection

Perspective projection

Variants of orthographic projection

- Scaled orthographic
- Also called "weak perspective"

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 / d
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]=\left[\begin{array}{c}
x \\
y \\
1 / d
\end{array}\right] \Rightarrow(d x, d y)
$$

- Affine projection
- Also called "paraperspective"

$$
\left[\begin{array}{llll}
a & b & c & d \\
e & f & g & h \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]
$$

Dimensionality Reduction Machine (3D to 2D)

Point of observation

What have we lost?

- Angles
- Distances (lengths)

Projection properties

- Many-to-one: any points along same ray map to same point in image
- Points \rightarrow points
- Lines \rightarrow lines (collinearity is preserved)
- But line through focal point projects to a point
- Planes \rightarrow planes (or half-planes)
- But plane through focal point projects to line

Projection properties

- Parallel lines converge at a vanishing point
- Each direction in space has its own vanishing point
- But parallel lines parallel to the image plane remain parallel

Questions?

Camera parameters

- How can we model the geometry of a camera?

Three important coordinate systems:

1. World coordinates
2. Camera coordinates
3. Image coordinates

How do we project a given world point (x, y, z) to an image point?

Coordinate frames

Camera parameters

To project a point (x, y, z) in world coordinates into a camera

- First transform (x, y, z) into camera coordinates
- Need to know
- Camera position (in world coordinates)
- Camera orientation (in world coordinates)
- Then project into the image plane to get image (pixel) coordinates
- Need to know camera intrinsics

Camera parameters

A camera is described by several parameters

- Translation T of the optical center from the origin of world coords
- Rotation R of the image plane
- focal length f, principal point (c_{x}, c_{y}), pixel aspect size α
- blue parameters are called "extrinsics," red are "intrinsics"

Projection equation

$$
\mathbf{x}=\left[\begin{array}{c}
s x \\
s y \\
s
\end{array}\right]=\left[\begin{array}{llll}
* & * & * & * \\
* & * & * & * \\
* & * & * & *
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]=\boldsymbol{\Pi X}
$$

- The projection matrix models the cumulative effect of all parameters
- Useful to decompose into a series of operations
identity matrix

$$
\boldsymbol{\Pi}=\underset{\text { intrinsics }}{\left[\begin{array}{ccc}
f & s & c_{x} \\
0 & \alpha f & c_{y} \\
0 & 0 & 1
\end{array}\right]} \underset{\text { projection }}{\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]} \underset{\text { rotation }}{\left[\begin{array}{cc}
\mathbf{R}_{3 \times 3} & \mathbf{0}_{3 \times 1} \\
\mathbf{0}_{1 \times 3} & 0
\end{array}\right]} \underset{\text { translation }}{\left[\begin{array}{cc}
\mathbf{I}_{3 \times 3} & \mathbf{T}_{3 \times 1} \\
\mathbf{0}_{1 \times 3} & 0
\end{array}\right]}
$$

- The definitions of these parameters are not completely standardized
- especially intrinsics-varies from one book to another

Projection matrix

Extrinsics

- How do we get the camera to "canonical form"?
- Canonical form: Center of projection at the origin, x-axis points right, y-axis points down, z-axis points forwards

Step 1: Translate by -c

Extrinsics

- How do we get the camera to "canonical form"?
- Canonical form: Center of projection at the origin, x-axis points right, y-axis points down, z-axis points forwards

Step 1: Translate by -c
How do we represent translation as a
matrix multiplication?

Extrinsics

- How do we get the camera to "canonical form"?
- Canonical form: Center of projection at the origin, x-axis points right, y-axis points down, z-axis points forwards

Step 1: Translate by -c
Step 2: Rotate by R

3×3 rotation matrix

Extrinsics

- How do we get the camera to "canonical form"?
- Canonical form: Center of projection at the origin, x-axis points right, y-axis points down, z-axis points forwards

> Step 1: Translate by -c Step 2: Rotate by \mathbf{R}

Perspective projection

$$
\text { (intrinsics) } \begin{aligned}
& \text { (converts from 3D rays in camera } \\
& \text { coordinate system to pixel coordinates) }
\end{aligned}
$$

α : aspect ratio (1 unless pixels are not square)
S : skew (0 unless pixels are shaped like rhombi/parallelograms)
$\left(c_{x}, c_{y}\right):$ principal point $((\mathrm{w} / 2, \mathrm{~h} / 2)$ unless optical axis doesn't intersect projection plane at image center)

Typical intrinsics matrix

$$
\mathbf{K}=\left[\begin{array}{ccc}
f & 0 & c_{x} \\
0 & f & c_{y} \\
0 & 0 & 1
\end{array}\right]
$$

- 2D affine transform corresponding to a scale by f (focal length) and a translation by ($c_{x} c_{y}$) (principal point)
- Maps 3D rays to 2D pixels

Focal length

- Can think of as "zoom"

50 mm

200 mm

- Also related to field of view

Field of view

APS-C Crop Body Measurement Table

Lens	After 1.62 Multiplier	APS-C Sensor (1.62 lens multiplier) Canon 60D, 7D, 70D, T3i, T4i	Hand Positions
18 mm	29.16 mm	Three hands wide at full arms length.	
28 mm	45.36 mm	Slightly less than two hands wide at full arms length.	
35 mm	56.7 mm	One hand + width of one fist at full arms length.	
50mm	81mm	One hand wide + width of thumb at full arms length.	
55 mm	89.1mm	Slightly less than one hand wide at full arms length.	
85 mm	137.7 mm	Inside edge of thumb to tip of forefinger wide with hand in "L" shape, thumb up.	

Focal length in practice

135mm

Focal length = cropping

24 mm

135 mm

Focal length vs. viewpoint

- Telephoto makes it easier to select background (a small change in viewpoint is a big change in background.

Grand-angulaire 24 mm

Normal 50 mm

Wide angle

Standard

Telephoto

http://petapixel.com/2013/01/11/how-focal-length-affects-your-subjects-apparent-weight-as-seen-with-a-cat/

Projection matrix

Projection matrix

$$
\begin{aligned}
& {\left[\begin{array}{l|l}
\mathbf{R} \mid \underbrace{-\mathbf{R c}}]
\end{array}\right.} \\
& \text { (t in book's } \\
& \text { notation) } \\
& \boldsymbol{\Pi}=\mathbf{K}[\mathbf{R} \mid-\mathbf{R c}]
\end{aligned}
$$

Projection matrix

Questions?

Perspective distortion

- Problem for architectural photography: converging verticals

Perspective distortion

- Problem for architectural photography: converging verticals

Tilting the camera upwards results in converging verticals

Keeping the camera level, with an ordinary lens, captures only the bottom portion of the building

Shifting the lens upwards results in a picture of the entire subject

- Solution: view camera (lens shifted w.r.t. film)

http://en.wikipedia.org/wiki/ Perspective_correction_lens

Perspective distortion

- Problem for architectural photography: converging verticals
- Result:

Perspective distortion

- What does a sphere project to?

Perspective distortion

- The exterior columns appear bigger
- The distortion is not due to lens flaws
- Problem pointed out by Da Vinci

https://aaronhertzmann.com/2022/02/28/how-does-perspective-work.html

Perspective distortion: People

Distortion-Free Wide-Angle Portraits on Camera Phones

(a) A wide-angle photo with distortions on subjects' faces.

(b) Distortion-free photo by our method.

YiChang Shih, Wei-Sheng Lai, and Chia-Kai Liang, Distortion-Free WideAngle Portraits on Camera Phones, SIGGRAPH 2019 https://people.csail.mit.edu/yichangshih/wide_angle_portrait/

Distortion

- Radial distortion of the image
- Caused by imperfect lenses
- Deviations are most noticeable for rays that pass through the edge of the lens

Radial distortion

- Arrows show motion of projected points relative to an ideal (distortionfree lens)
[Image credit: J. Bouguet http://www.vision.caltech.edu/bouguetj/calib doc/htmls/example.html]

Correcting radial distortion

from Helmut Dersch

Distortion

Modeling distortion

$$
\begin{array}{cl}
\begin{array}{cl}
\text { Project }(\hat{x}, \widehat{y}, \hat{z}) \\
\text { to "normalized" } \\
\text { image coordinates }
\end{array} & x_{n}^{\prime}=\widehat{x} / \widehat{z} \\
& y_{n}^{\prime}=\widehat{y} / \widehat{z} \\
& r^{2}=x_{n}^{\prime 2}+y_{n}^{\prime 2} \\
\text { Apply radial distortion } & x_{d}^{\prime}=x_{n}^{\prime}\left(1+\kappa_{1} r^{2}+\kappa_{2} r^{4}\right) \\
& y_{d}^{\prime}=y_{n}^{\prime}\left(1+\kappa_{1} r^{2}+\kappa_{2} r^{4}\right) \\
& x^{\prime}=f x_{d}^{\prime}+x_{c} \\
\text { Apply focal length } \\
\text { translate image center } & y^{\prime}=f y_{d}^{\prime}+y_{c}
\end{array}
$$

- To model lens distortion
- Use above projection operation instead of standard projection matrix multiplication

Other types of projection

- Lots of intriguing variants...
- (I'll just mention a few fun ones)

360 degree field of view...

- Basic approach
- Take a photo of a parabolic mirror with an orthographic lens (Nayar)
- Or buy one a lens from a variety of omnicam manufacturers...
- See http://www.cis.upenn.edu/~kostas/omni.html

Tilt-shift

http://www.northlight-images.co.uk/article pages/tilt and shift ts-e.html

Rotating sensor (or object)

K1219

Rollout Photographs © Justin Kerr
http://research.famsi.org/kerrmaya.html

Also known as "cyclographs", "peripheral images"

Questions?

