CS5670: Computer Vision

Image transformations and image warping

Reading

• Szeliski: Chapter 3.6

Announcements

- Project 2 out, due Friday, February 24 by 8pm
 - Do be done in groups of 2 if you need help finding a partner, try Ed Discussions or let us know

Image alignment

Why don't these image line up exactly?

What is the geometric relationship between these two images?

Answer: Similarity transformation (translation, rotation, uniform scale)

What is the geometric relationship between these two images?

What is the geometric relationship between these two images?

Very important for creating mosaics!

First, we need to know what this transformation is. Second, we need to figure out how to compute it using feature matches.

Image Warping

• image filtering: change *range* of image

• image warping: change *domain* of image

Image Warping

• image filtering: change *range* of image

• image warping: change *domain* of image

•
$$g(x) = f(h(x))$$

h

Parametric (global) warping

• Examples of parametric warps:

translation

rotation

Parametric (global) warping

• Transformation T is a coordinate-changing machine:

$$\mathbf{p}' = T(\mathbf{p})$$

- What does it mean that *T* is global?
 - Is the same for any point **p**
 - can be described by just a few numbers (parameters)
- Let's consider *linear* xforms (can be represented by a 2x2 matrix):

$$\mathbf{p}' = \mathbf{T}\mathbf{p} \qquad \left[\begin{array}{c} x' \\ y' \end{array}\right] = \mathbf{T} \left[\begin{array}{c} x \\ y \end{array}\right]$$

Common linear transformations

• Uniform scaling by *s*:

$$\mathbf{S} = \left[\begin{array}{cc} s & 0 \\ 0 & s \end{array} \right]$$

What is the inverse?

Common linear transformations

• Rotation by angle θ (about the origin)

 $\mathbf{R} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$ What is the inv For rotations:

What is the inverse? $\mathbf{R}^{-1} = \mathbf{R}^T$

2x2 Matrices

 What types of transformations can be represented with a 2x2 matrix?
 2D mirror across Y axis?

$$\begin{array}{rcl} x' &=& -x \\ y' &=& y \end{array}$$

2D mirror across line y = x?

$$\begin{array}{rcl} x' &=& y\\ y' &=& x \end{array}$$

slido

Can a 2D mirror across the line y=x be represented with a 2x2 matrix transformation?

(i) Start presenting to display the poll results on this slide.

2x2 Matrices

 What types of transformations can be represented with a 2x2 matrix?
 2D mirror across Y axis?

$$\begin{aligned} x' &= -x \\ y' &= y \end{aligned} \mathbf{T} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \mathbf{T} \\ \mathbf{D} \end{bmatrix} \end{aligned}$$
2D mirror across line y = x?

$$\begin{aligned} x' &= y \\ y' &= x \end{aligned} \mathbf{T} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \mathbf{T} \end{bmatrix}$$

2x2 Matrices

• What types of transformations can be represented with a 2x2 matrix?

2D Translation?

$$\begin{array}{rccc} x' &=& x+t_x \\ y' &=& y+t_y \end{array}$$

Can a 2D translation by (u,v) be represented with a 2x2 matrix transformation?

(i) Start presenting to display the poll results on this slide.

2x2 Matrices

• What types of transformations can be represented with a 2x2 matrix?

2D Translation? $x' = x + t_x$ NO! $y' = y + t_y$

Translation is not a linear operation on 2D coordinates

All 2D Linear Transformations

- Linear transformations are combinations of ...
 - Scale,
 - Rotation,
 - Shear, and

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

- Properties of linear transformations:
 - Origin maps to origin
 - Lines map to lines
 - Parallel lines remain parallel
 - Ratios are preserved
 - Closed under composition

$$\begin{bmatrix} x'\\y'\end{bmatrix} = \begin{bmatrix} a & b\\c & d\end{bmatrix} \begin{bmatrix} e & f\\g & h\end{bmatrix} \begin{bmatrix} i & j\\k & l\end{bmatrix} \begin{bmatrix} x\\y\end{bmatrix}$$

Homogeneous coordinates •(x, y, w) W Trick: add one more coordinate: homogeneous plane $(x,y) \Rightarrow \left| \begin{array}{c} x \\ y \\ 1 \end{array} \right|$ **/**(x/w, y/w, w = 1 → x homogeneous image coordinates

Converting from homogeneous coordinates

$$\left[\begin{array}{c} x\\ y\\ w \end{array}\right] \Rightarrow (x/w, y/w)$$

Translation

• Solution: homogeneous coordinates to the rescue

$$\mathbf{T} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix}$$
$$\begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} x + t_x \\ y + t_y \\ 1 \end{bmatrix}$$

Affine transformations

 $\mathbf{T} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \xleftarrow{\text{any transformation}} \text{represented by a 3x3}$

matrix with last row [001] we call an *affine*

Basic affine transformations

Affine transformations

- Affine transformations are combinations of ...
 - Linear transformations, and
 - Translations

- Properties of affine transformations:
 - Origin does not necessarily map to origin
 - Lines map to lines
 - Parallel lines remain parallel
 - Ratios are preserved
 - Closed under composition

Is this an affine transformation?

Where do we go from here?

Projective Transformations *aka* **Homographies** *aka* **Planar Perspective Maps**

$$\mathbf{H} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & 1 \end{bmatrix}$$

Called a *homography* (or *planar perspective map*)

Homographies

Points at infinity

Image warping with homographies

Homographies

Homographies

- Homographies ...
 - Affine transformations, and
 - Projective warps

$$\left[\begin{array}{c} x'\\y'\\w'\end{array}\right] = \left[\begin{array}{ccc}a&b&c\\d&e&f\\g&h&1\end{array}\right] \left[\begin{array}{c}x\\y\\w\end{array}\right]$$

- Properties of projective transformations:
 - Origin does not necessarily map to origin
 - Lines map to lines
 - Parallel lines do not necessarily remain parallel
 - Ratios are not preserved
 - Closed under composition

Alternate formulation for homographies

$$\begin{bmatrix} x'_i \\ y'_i \\ 1 \end{bmatrix} \cong \begin{bmatrix} h_{00} & h_{01} & h_{02} \\ h_{10} & h_{11} & h_{12} \\ h_{20} & h_{21} & h_{22} \end{bmatrix} \begin{bmatrix} x_i \\ y_i \\ 1 \end{bmatrix}$$

where the length of the vector $[h_{00} h_{01} \dots h_{22}]$ is 1

2D image transformations

Name	Matrix	# D.O.F.	Preserves:	Icon
translation	$igg[egin{array}{c c c c c c c c c c c c c c c c c c c $	2	orientation $+\cdots$	
rigid (Euclidean)	$\left[egin{array}{c c c c c c c c c c c c c c c c c c c $	3	lengths $+\cdots$	\bigcirc
similarity	$\left[\left. \left. s oldsymbol{R} \right t ight. ight]_{2 imes 3}$	4	angles $+ \cdots$	\bigcirc
affine	$\left[egin{array}{c} oldsymbol{A} \end{array} ight]_{2 imes 3}$	6	parallelism $+\cdots$	
projective	$\left[egin{array}{c} ilde{m{H}} \end{array} ight]_{3 imes 3}$	8	straight lines	

These transformations are a nested set of groups

• Closed under composition and inverse is a member

Implementing image warping

Given a coordinate xform (x',y') = T(x,y) and a source image f(x,y), how do we compute a transformed image g(x',y') = f(T(x,y))?

Forward Warping

- Send each pixel (x,y) to its corresponding location (x',y')
 = T(x,y) in g(x',y')
 - What if pixel lands "between" two pixels?

Forward Warping

- Send each pixel (x,y) to its corresponding location (x',y')
 = T(x,y) in g(x',y')
 - What if pixel lands "between" two pixels?
 - Answer: add "contribution" to several pixels, normalize later (*splatting*)
 - Can still result in holes

Inverse Warping

- Get each pixel g(x',y') from its corresponding location $(x,y) = T^{-1}(x,y)$ in f(x,y)
 - Requires taking the inverse of the transform
 - What if pixel comes from "between" two pixels?

Inverse Warping

- Get each pixel g(x',y') from its corresponding location
 (x,y) = T⁻¹(x',y') in f(x,y)
 - What if pixel comes from "between" two pixels?
 - Answer: *resample* color value from *interpolated* (*prefiltered*) source image

Interpolation

- Possible interpolation filters:
 - nearest neighbor
 - bilinear
 - bicubic
 - sinc
- Needed to prevent "jaggies" and "texture crawl"

(with prefiltering)

Questions?