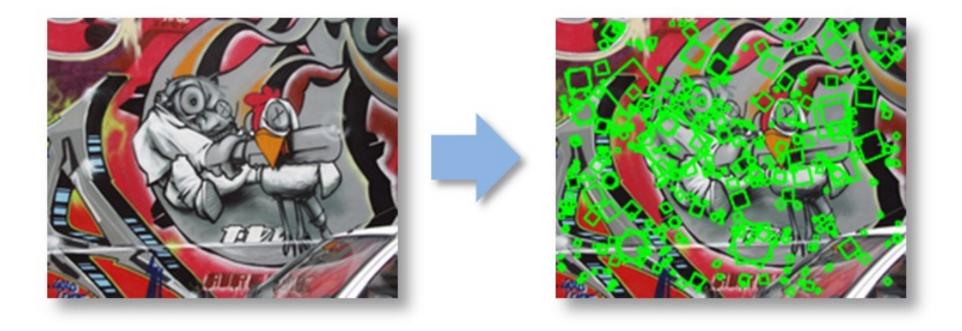
CS5670: Computer Vision Local features & Harris corner detection



Announcements

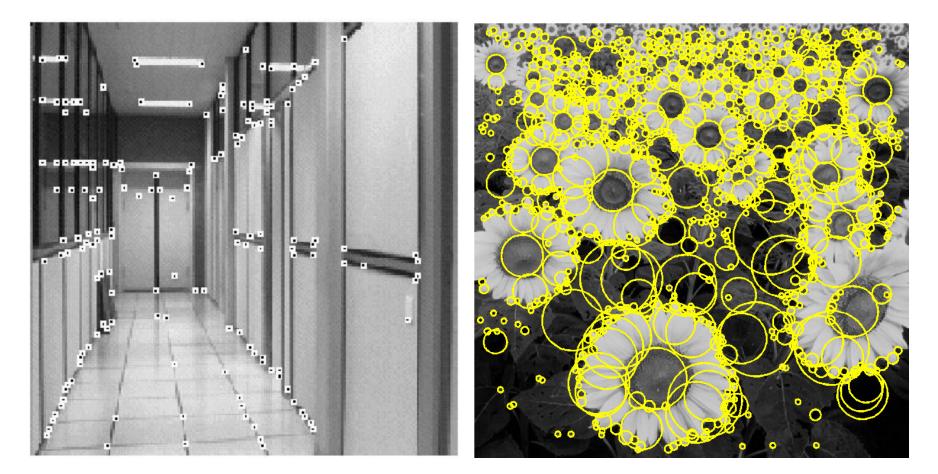
- Project 1 code due this Friday, February 10 at 8pm
 Turnin via Github Classroom
- Project 1 artifact due Monday, 2/13 at 8pm
- Quiz this Thursday via Canvas
- Project 2 will be released next Tuesday

Reading

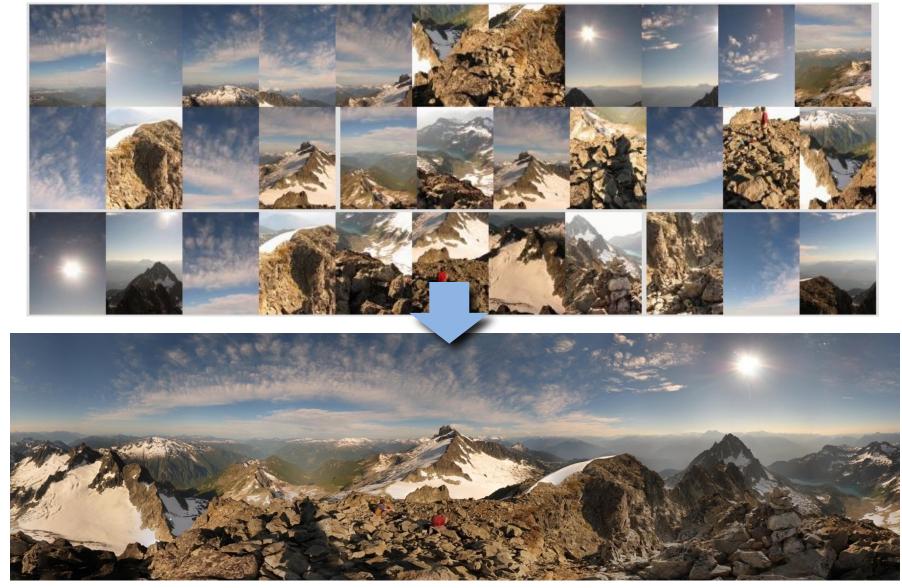
• Szeliski: 7.1

Quiz 1

Today: Feature extraction—Corners and blobs



Motivation: Automatic panoramas



Credit: Matt Brown

Motivation: Automatic panoramas

GigaPan: http://gigapan.com/

Also see Google Zoom Views:

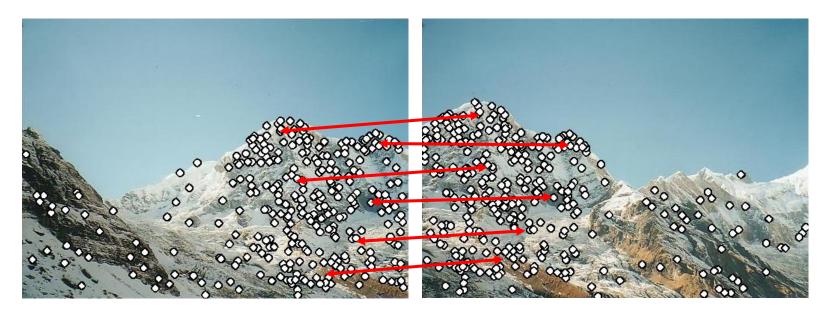
https://www.google.com/culturalinstitute/beta/project/gigapixels

Why extract features?

- Motivation: panorama stitching
 - We have two images how do we combine them?

Why extract features?

- Motivation: panorama stitching
 - We have two images how do we combine them?



Step 1: extract features Step 2: match features

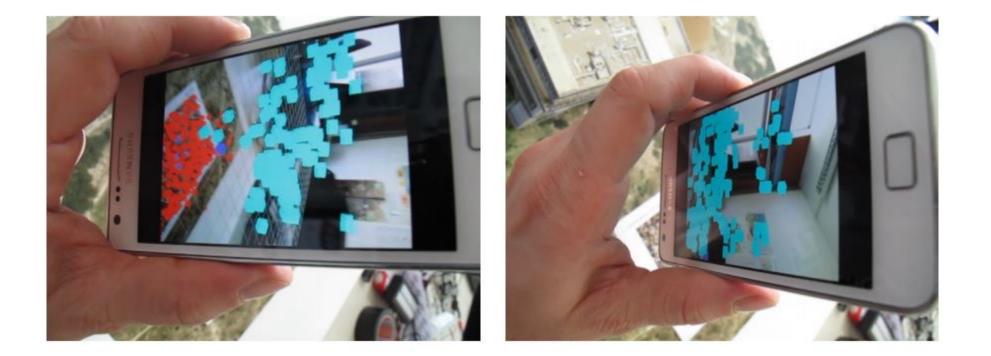
Why extract features?

- Motivation: panorama stitching
 - We have two images how do we combine them?

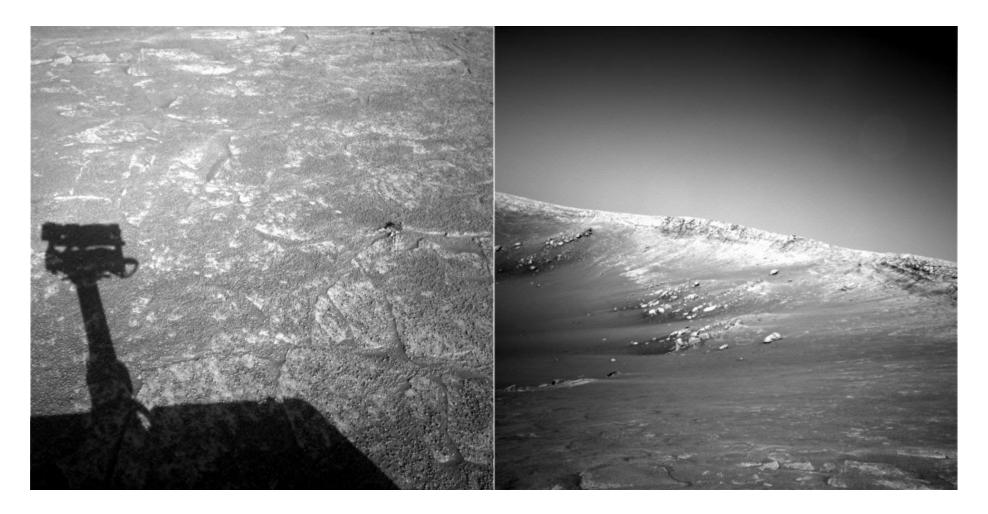
Step 1: extract features Step 2: match features Step 3: align images

Application: Visual SLAM

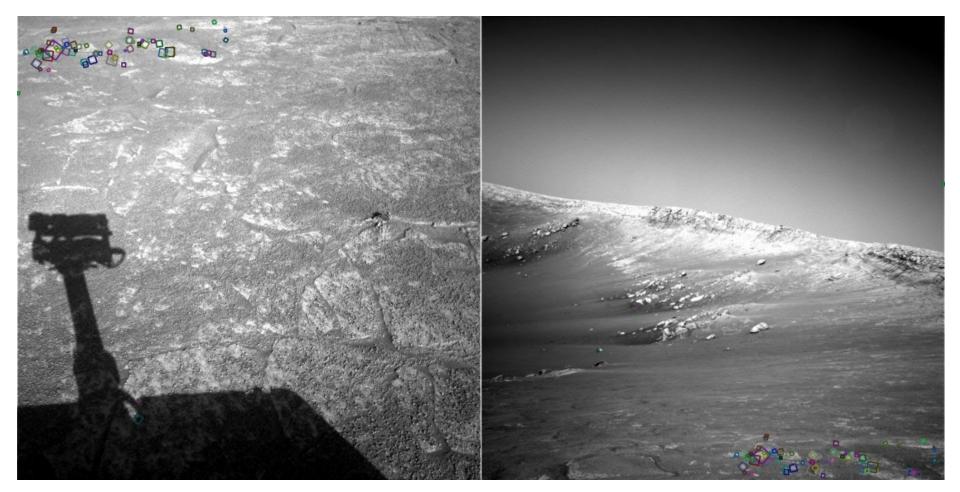
• (aka Simultaneous Localization and Mapping)



Do these images overlap?

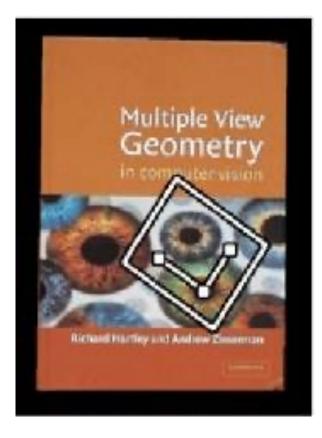


Answer below (look for tiny colored squares...)



NASA Mars Rover images with SIFT feature matches

Feature matching for object search

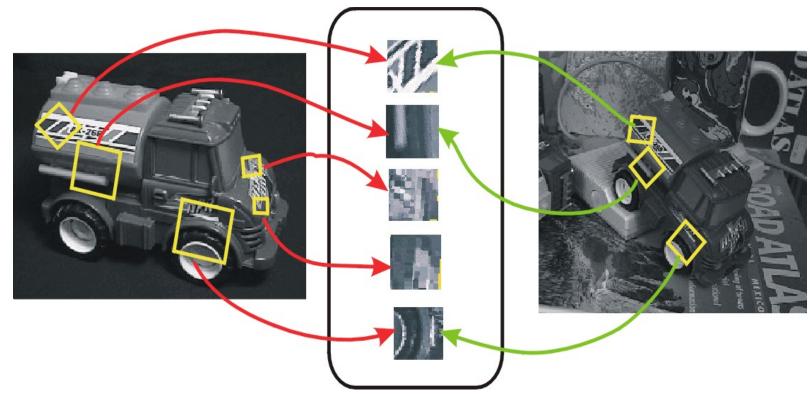


Feature matching

Invariant local features

Find features that are invariant to transformations

- geometric invariance: translation, rotation, scale
- photometric invariance: brightness, exposure, ...



Feature Descriptors

Advantages of local features

Locality

- features are local, so robust to occlusion and clutter

Quantity

– hundreds or thousands in a single image

Distinctiveness:

- can differentiate a large database of objects

Efficiency

real-time performance achievable

More motivation...

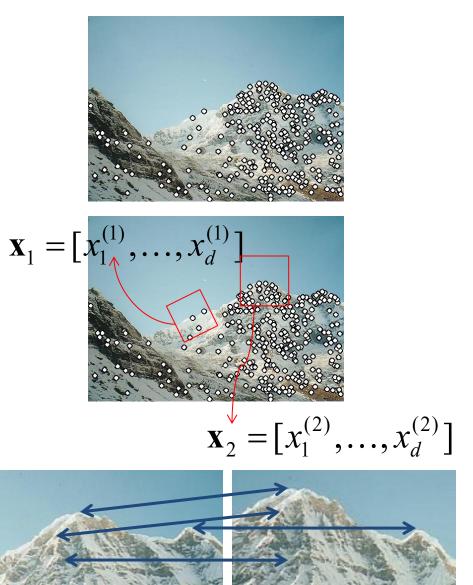
Feature points are used for:

- Image alignment (e.g., mosaics)
- 3D reconstruction
- Motion tracking (e.g. for AR)
- Object recognition
- Image retrieval
- Robot/car navigation
- ... other

Local features: main components

1) **Detection**: Identify the interest points

- 2) **Description**: Extract vector feature descriptor surrounding each interest point
- 3) Matching: Determine correspondence between descriptors in two views



Credit: Kristen Grauman

What makes a good feature?

delicious vit-hydration to revive

公TDI

mind.

Want uniqueness

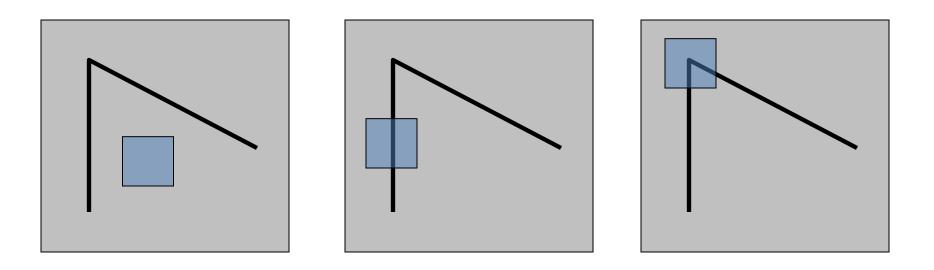
Look for image regions that are unusual – Lead to unambiguous matches in other images

How to define "unusual"?

Local measures of uniqueness

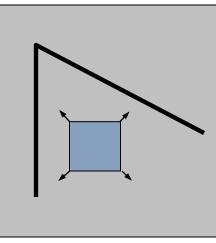
Suppose we only consider a small window of pixels

– What defines whether a feature is a good or bad candidate?

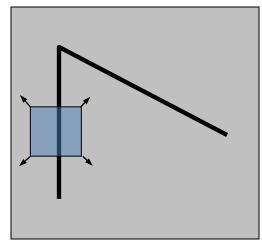


Local measures of uniqueness

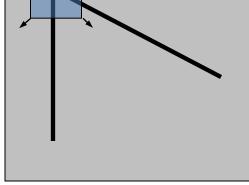
- How does the window change when you shift it?
- Shifting the window in any direction causes a big change



"flat" region: no change in all directions



"edge": no change along the edge direction



"corner": significant change in all directions

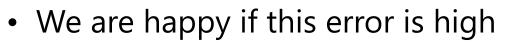
Credit: S. Seitz, D. Frolova, D. Simakov

Harris corner detection: the math

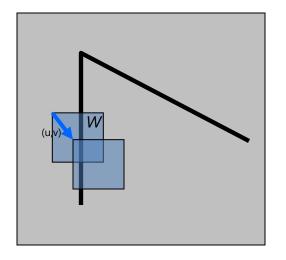
Consider shifting the window W by (u,v)

- how do the pixels in W change?
- compare each pixel before and after by summing up the squared differences (SSD)
- this defines an SSD "error" *E*(*u*,*v*):

$$E(u,v) = \sum_{(x,y)\in W} \left[I(x+u,y+v) - I(x,y) \right]^2$$



- We are very happy if this error is high *for all offsets* (*u*,*v*)
- Slow to compute exactly for each pixel and each Chris Harris and Mike Stephens (1988). "A Combine Corner and Edge Detector". Alvey Vision Conference



Small motion assumption

Taylor Series expansion of *I*:

$$I(x+u, y+v) = I(x, y) + \frac{\partial I}{\partial x}u + \frac{\partial I}{\partial y}v + higher order terms$$

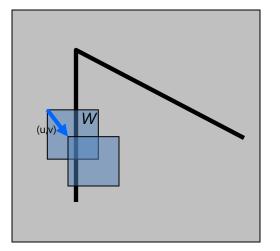
If the motion (u, v) is small, then first order approximation is good

$$I(x + u, y + v) \approx I(x, y) + \frac{\partial I}{\partial x}u + \frac{\partial I}{\partial y}v$$
$$\approx I(x, y) + [I_x \ I_y] \begin{bmatrix} u \\ v \end{bmatrix}$$
shorthand: $I_x = \frac{\partial I}{\partial x}$

Plugging this into the formula on the previous slide...

Consider shifting the window W by (u,v)

• define an SSD "error" *E(u,v)*:



$$E(u,v) = \sum_{\substack{(x,y) \in W \\ (x,y) \in W}} [I(x+u,y+v) - I(x,y)]^2$$

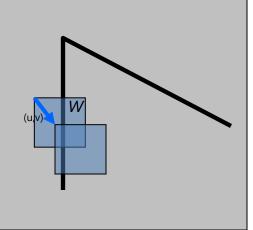
$$\approx \sum_{\substack{(x,y) \in W \\ (x,y) \in W}} [I(x,y) + I_x u + I_y v - I(x,y)]^2$$

Consider shifting the window W by (u,v)

• define an SSD "error" *E(u,v)*:

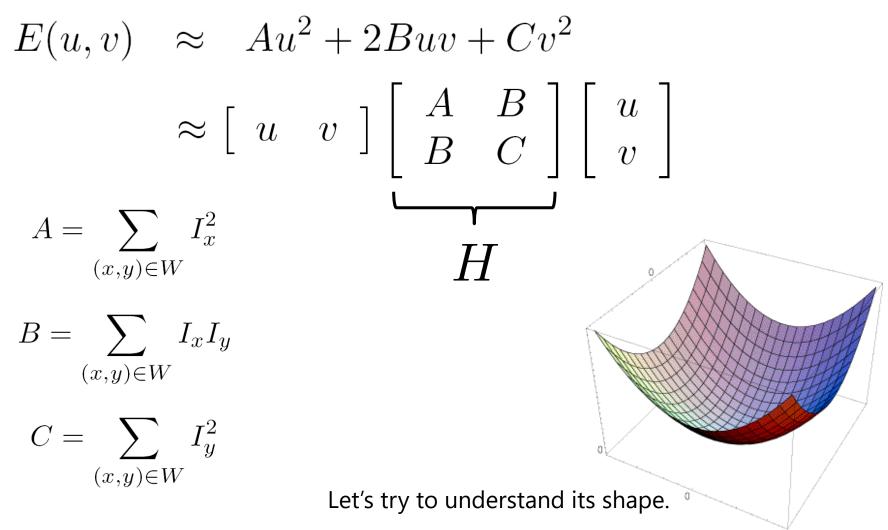
$$E(u,v) \approx \sum_{\substack{(x,y) \in W}} [I_x u + I_y v]^2$$
$$\approx Au^2 + 2Buv + Cv^2$$
$$A = \sum_{\substack{(x,y) \in W}} I_x^2 \quad B = \sum_{\substack{(x,y) \in W}} I_x I_y \quad C = \sum_{\substack{(x,y) \in W}} I_y^2$$

• Thus, E(u,v) is locally approximated as a quadratic error function



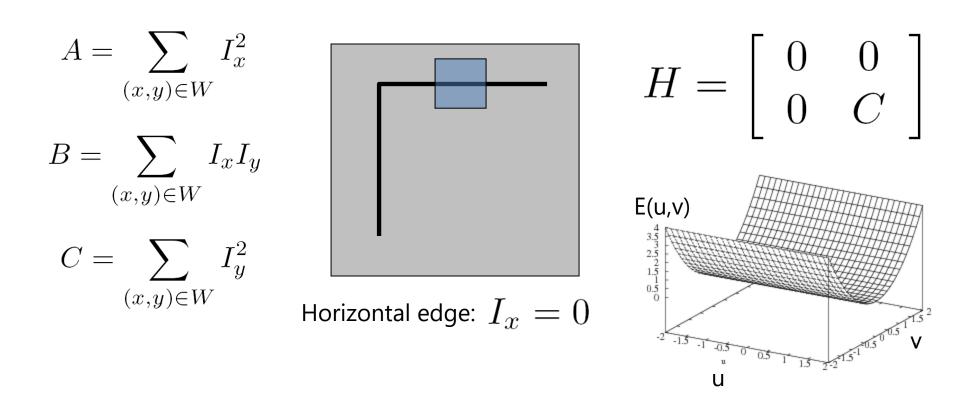
The second moment matrix

The surface E(u,v) is locally approximated by a quadratic form.

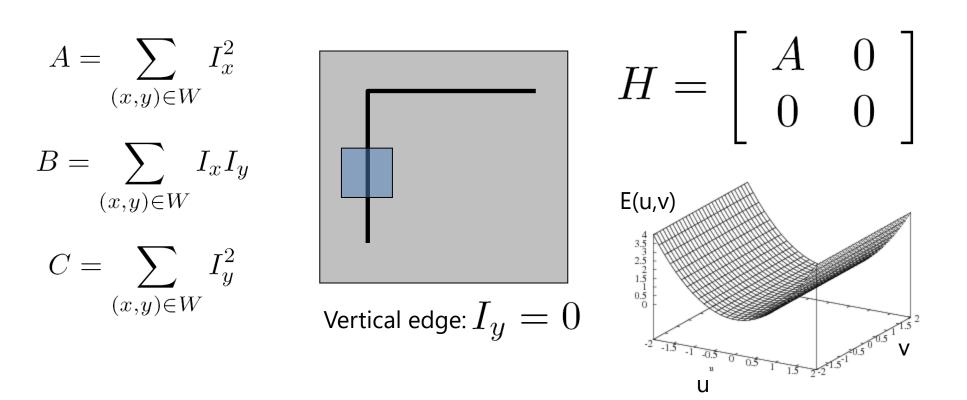


$$E(u,v) \approx \begin{bmatrix} u & v \end{bmatrix} \begin{bmatrix} A & B \\ B & C \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix}$$

$$H$$

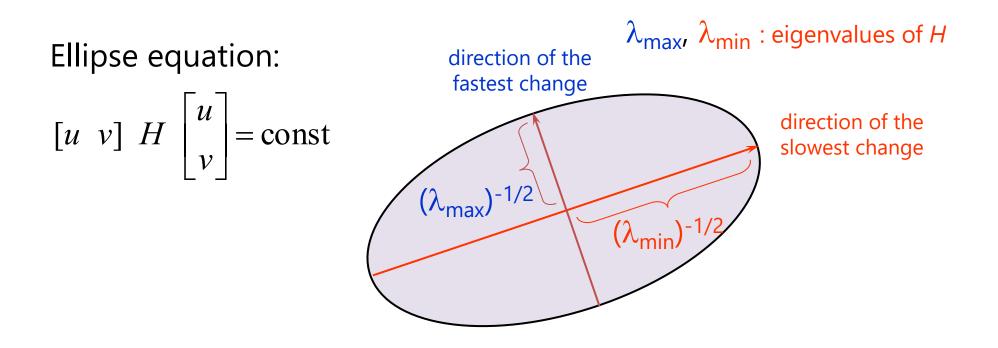


$$E(u, v) \approx \begin{bmatrix} u & v \end{bmatrix} \begin{bmatrix} A & B \\ B & C \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix}$$
$$H$$



General case

We can visualize *H* as an ellipse with axis lengths determined by the *eigenvalues* of *H* and orientation determined by the *eigenvectors* of *H*



Quick eigenvalue/eigenvector review

The **eigenvectors** of a matrix **A** are the vectors **x** that satisfy:

$$Ax = \lambda x$$

The scalar λ is the **eigenvalue** corresponding to \boldsymbol{x}

- The eigenvalues are found by solving:

$$det(A - \lambda I) = 0$$

- In our case, $\mathbf{A} = \mathbf{H}$ is a 2x2 matrix, so we have

$$det \left[\begin{array}{cc} h_{11} - \lambda & h_{12} \\ h_{21} & h_{22} - \lambda \end{array} \right] = 0$$

– The solution:

$$\lambda_{\pm} = \frac{1}{2} \left[(h_{11} + h_{22}) \pm \sqrt{4h_{12}h_{21} + (h_{11} - h_{22})^2} \right]$$

Once you know λ , you find **x** by solving

$$\begin{bmatrix} h_{11} - \lambda & h_{12} \\ h_{21} & h_{22} - \lambda \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = 0$$

$$E(u,v) \approx \begin{bmatrix} u & v \end{bmatrix} \begin{bmatrix} A & B \\ B & C \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix}$$

$$I = \sum_{max} x_{max} x_{max}$$

$$Hx_{min} = \lambda_{min} x_{min}$$

Eigenvalues and eigenvectors of H

- Define shift directions with the smallest and largest change in error
- x_{max} = direction of largest increase in *E*
- λ_{max} = amount of increase in direction x_{max}
- x_{min} = direction of smallest increase in *E*
- λ_{min} = amount of increase in direction x_{min}

How are λ_{max} , x_{max} , λ_{min} , and x_{min} relevant for feature detection?

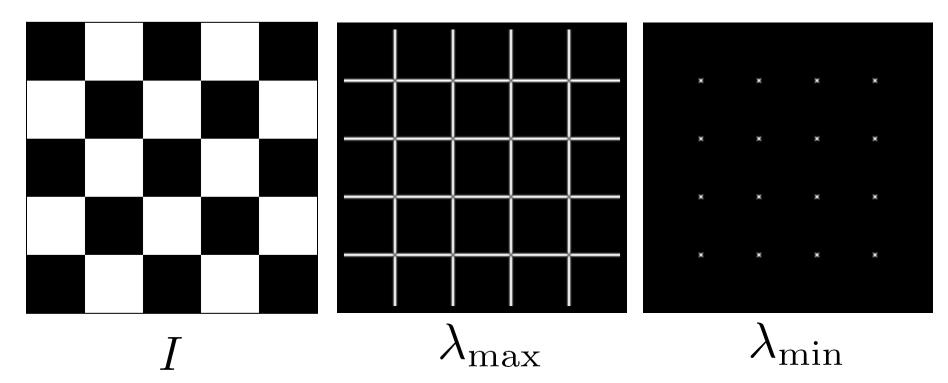
• What's our feature scoring function?

How are λ_{max} , x_{max} , λ_{min} , and x_{min} relevant for feature detection?

• What's our feature scoring function?

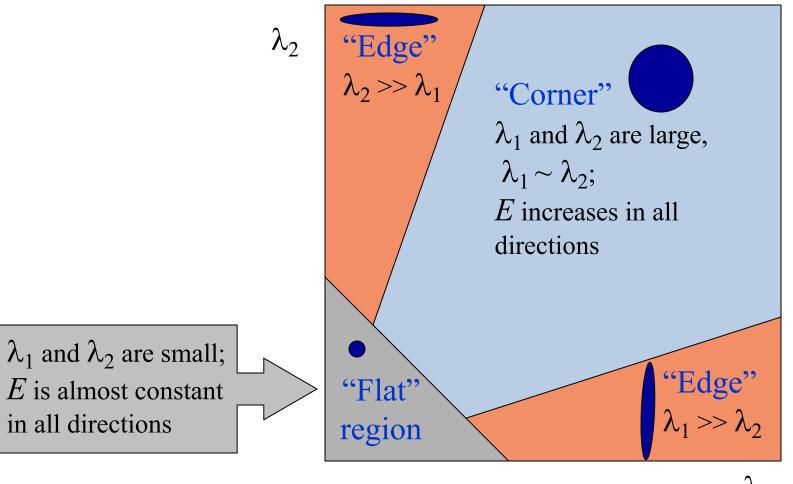
Want E(u,v) to be large for small shifts in all directions

- the minimum of E(u,v) should be large, over all unit vectors [u v]
- this minimum is given by the smaller eigenvalue (λ_{min}) of H



Interpreting the eigenvalues

Classification of image points using eigenvalues of M:

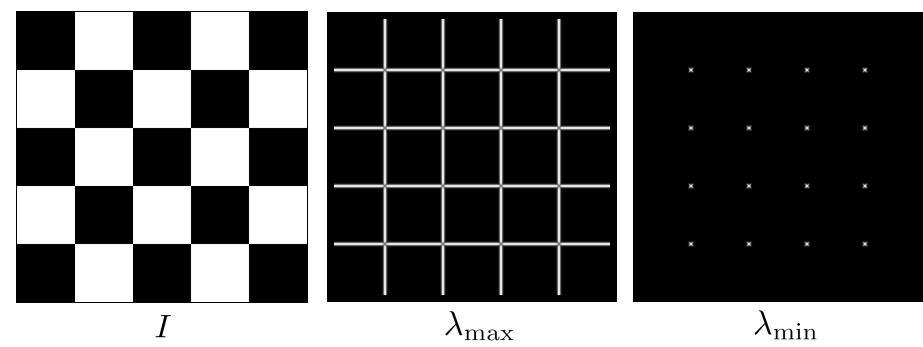


 λ_1

Corner detection summary

Here's what you do:

- Compute the gradient at each point in the image
- For each pixel:
 - Create the *H* matrix from nearby gradient values
 - Compute the eigenvalues.
 - Find points with large response (λ_{min} > threshold)
- Choose those points where λ_{min} is a local maximum as features

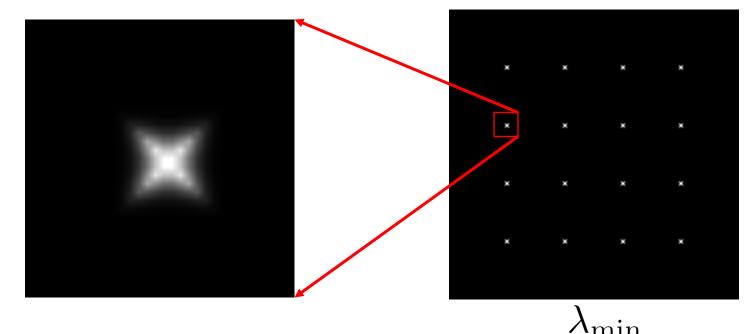


 $H = \sum_{(x,y)\in W} \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$

Corner detection summary

Here's what you do:

- Compute the gradient at each point in the image
- For each pixel:
 - Create the *H* matrix from nearby gradient values
 - Compute the eigenvalues.
 - Find points with large response (λ_{min} > threshold)
- Choose those points where λ_{min} is a local maximum as features



The Harris operator

 λ_{min} is a variant of the "Harris operator" for feature detection

$$f = \frac{\lambda_1 \lambda_2}{\lambda_1 + \lambda_2}$$
$$= \frac{determinant(H)}{trace(H)}$$

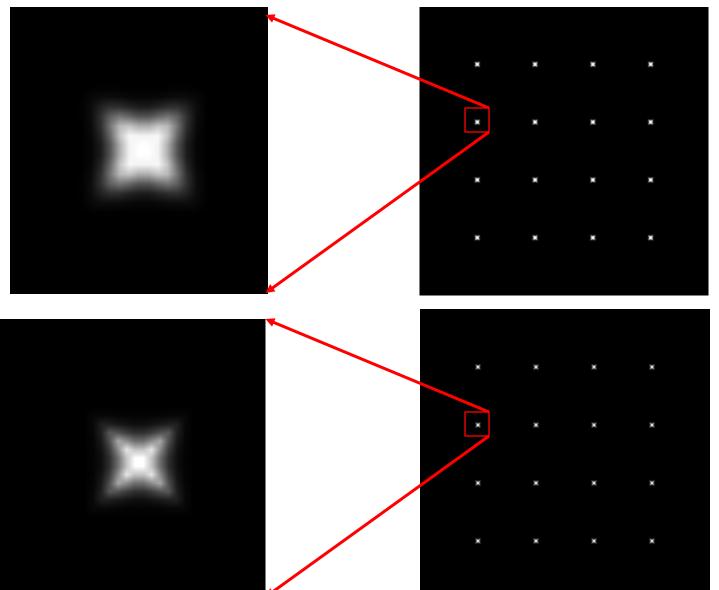
- The *trace* is the sum of the diagonals, i.e., *trace*(*H*) = $h_{11} + h_{22}$
- Very similar to λ_{min} but less expensive (no square root)
- Called the Harris Corner Detector or Harris Operator
- Lots of other detectors, this is one of the most popular

Alternate Harris operator

• For Project 2, you will use an alternate definition of the Harris operator:

$$R=\lambda_1\lambda_2-k\cdot(\lambda_1+\lambda_2)^2=\det(M)-k\cdot\mathrm{tr}(M)^2$$

The Harris operator

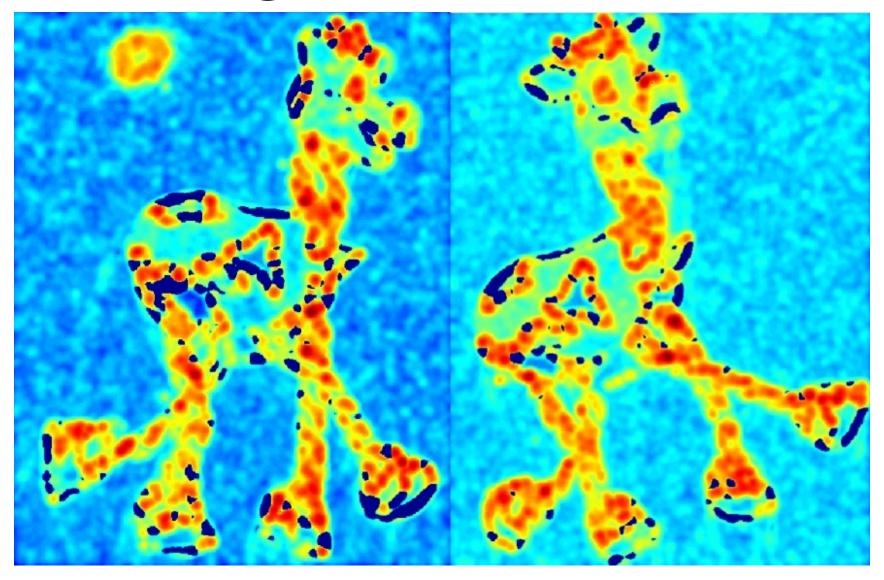


Harris operator

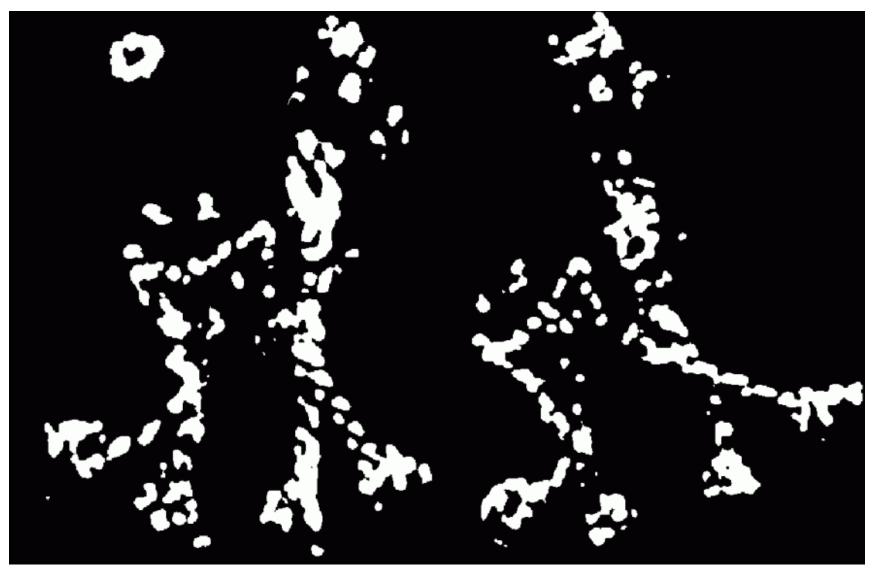
 λ_{\min}

Harris detector example

f value (red high, blue low)



Threshold (f > value)



Find local maxima of f (non-max suppression)

Harris features (in red)

Weighting the derivatives

• In practice, using a simple window W doesn't work too well $H = \sum_{(x,y) \in W} \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$

• Instead, we'll *weight* each derivative value based on its distance $H = \sum_{(x,y)\in W} w_{x,y} \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$

 $w_{x,y}$

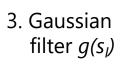
Harris Detector [Harris88]

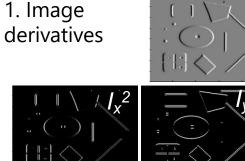
Second moment matrix

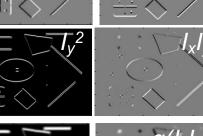
$$\mu(\sigma_I, \sigma_D) = g(\sigma_I) * \begin{bmatrix} I_x^2(\sigma_D) & I_x I_y(\sigma_D) \\ I_x I_y(\sigma_D) & I_y^2(\sigma_D) \end{bmatrix}$$

2. Square of derivatives

 $\det M = \lambda_1 \lambda_2$ trace $M = \lambda_1 + \lambda_2$





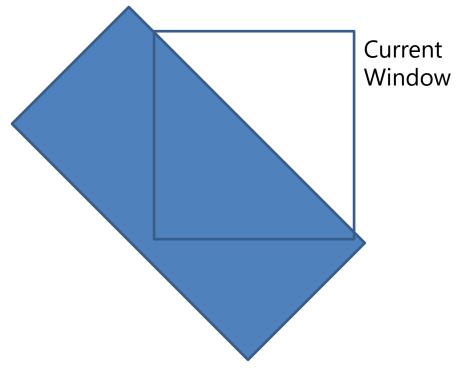


0. Input image

4. Cornerness function – both eigenvalues are strong

Harris Corners – Why so complicated?

- Can't we just check for regions with lots of gradients in the x and y directions?
 - No! A diagonal line would satisfy that criteria



Questions?