CS5670: Computer Vision
Image Manifolds & Image Synthesis (including GANS)

Most content from Abe Davis, with additional credit to Jin Sun and Phillip Isola



Announcements

* In class final on May 10

— Open book, open note (your own notes — please do not print
out whole slide decks)

* Project 5 (Neural Radiance Fields) due tomorrow by 8:00
pm
» Course evaluations are open starting today (May 3)

— We would love your feedback!

— Small amount of extra credit for filling out

« What you write is still anonymous, instructors only see whether
students filled it out
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https://apps.engineering.cornell.edu/CourseEval/

DIMENSIONALITY REDUCTION



Linear Dimensionality Reduction: 2D-
>1D

» Consider a bunch of data points in 2D
 Let's say these points only differ along one line
* If so, we can translate and rotate our data so that it is 1D



Linear Dimensionality Reduction: 3D-

>2D

« Similar to 1D case, we can
fit a plane to the data, and
transform our coordinate
system so that plane
becomes the x-y plane

* "Plane fitting”

* More generally: look for
the 2D subspace that best
fits the data, and ignore
the remaining dimensions

Think of this as data that sits
on a flat sheet of paper,
suspended in 3D space. We
will come back to this analogy
in a couple slides...



Generalizing Linear Dimensionality Reduction

* Principal Components Analysis
(PCA): find and order orthogonal |,

axes by how much the data varies s
along each axis.

* The axes we find (ordered by
variance of our data) are called

principal components. I T S e

* Dimensionality reduction can be
done by using Only the first k Side Note: principal components are
pri ncipal com ponents closely related to the eigenvectors of

the covariance matrix for our data



Manifolds

* Think of a piece of paper as a 2D subspace
* If we bend & fold it, it's still locally a 2D subspace...

« A "manifold” is the generalization of this concept to
higher dimensions...




Autoencoders: Dimensionality Reduction for
Manifolds

Feature space at
bottleneck is often

Learn a non-linear transformation - called “latent space” —
iInto some lower-dimensional space
(encoder) A Ay
Learn a transformation from lower- \ H \ //
dimensional space back to original \/ \/
content (decoder) /\\\ //\\
Loss function measures difference // ) R
between input & output e ™~

- -
Unsupervised Encoder Decoder

— No labels required!



Autoencoders: Dimensionality Reduction for
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 Transformations that reduce
dimensionality cannot be
invertible in general
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* An autoencoder tries to
learn a transformation that
s invertible for points on
some manifold.




IMAGE MANIFOLDS



The Space of All Images - N

* Lets consider the space of
all 100x100 images

|
* Now lets randomly sample
that space...
Question:
What do we expect a random uniform
sample of all images to look like?
» Conclusion: Most images \ J

are noise



Natural Image Manifolds

noise”
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images are

e Most

Meaningful” images tend
to form some manifold
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[ The Space of All Images ]

that manifold...



Denoising & the “Nullspace” of Autoencoders

llllllll

 The autoencoder tries to
learn a dimensionality
reduction that is invertible
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:;:i?;lj?ta (data on some input ..ﬂ......
Output ..E.

 Most noise will be in the
non-invertible part of image
space (off the manifold)

Noisy Input

* If we feed noisy data in, we o ..E....

Wi | | Ofte n q et d e n O i Sed d ata Examples from: https://blog.keras.io/building-autoencoders-in-keras.html



https://blog.keras.io/building-autoencoders-in-keras.html

Problem
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* This doesn’'t mean that
every point in the latent
space will be on the
manifold...

 GANSs (later this lecture) will

learn a loss function that
halnce with +hic




IMAGE-TO-IMAGE APPLICATIONS



Image prediction (“structured

-

")
f Object labeling )
—
\ [onget al. 2015, ...] )
4 Text-to-photo A
“this small bird
has a pink breast=
and crown...”
\_ [Reed et al. 20186, ...] 4

Depth prediction

g -
—- _

Single RGB Image

Depth Map
[Eigen et al. 2014, ...]

N

Style transfer

[Gatys et al. 2016, ...]




Image classification vs. image translation

* For image classification, we map an image to a label (e.g.,
llcatll)

* For image prediction/translation tasks, we map an image
to another image-shaped thing (e.g., a depth map)

« What kind of convolutional neural network architecture
can do this?



U-Net

* A popular network structure
to generate same-sized
output

Similar to a convolutional
autoencoder, but with “skip
connections” that
concatenate the output of
earlier layers onto later layers

Great for learning
transformations from one
Image to another

input image

256

b 3x3 Conv2d+RelU (pre-trained)
[»  3x3 ConvZd+RelU
= 2x2 MaxPool

64
128

64
128
128

—h 3x3 ConvTranspose2d(stride=2)+RelU

=T —
s

sigmoid output



Image Colorization

from Jin Sun, Richard Zhang, Phillip Isola



“What should | do” “How should | do it?”

from Jin Sun, Richard Zhang, Phillip Isola



Training data
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| channel Color information: ab channels

arg m}n o,y [ L(F(X),y)]

Objective function Neural Network
(lOSS) from Jin Sun, Richard Zhang, Phillip Isola




— > > — — —_— O “ye”ow"

from Jin Sun, Richard Zhang, Phillip Isola



—_— > > —_— —_— —_— [ “black"

from Jin Sun, Richard Zhang, Phillip Isola



from Jin Sun, Richard Zhang, Phillip Isola



Basic loss functions

Prediction: ¥ = JF(X) Truth: Y
Classitication (cross-entropy): How many extra
~ _ ~ _ pits it takes to
L(y’ y) — Zz Yi log Yi - correct the
predictions

Least-squares regression:
How tar off we are

L(S/', y) — HS} — yH2 <+<— in Euclidean

distance

from Jin Sun, Richard Zhang, Phillip Isola



Designing loss functions

Input Output Ground truth







Designing loss functions

Input /Zhang et al. 2016 Ground truth

Color distribution cross-entropy loss with colorfulness enhancing term.

[Zhang, Isola, Efros, ECCV 2016]






Designing loss functions

Image colorization

L2 regression

[Zhang, Isola, Efros, ECCV 2016]
Super-resolution

L2 regression

[Johnson, Alahi, Li, ECCV 2016]



Designing loss functions

Image colorization

Cross entropy objective,
with colorfulness term

[Zhang, Isola, Efros, ECCV 2016]
Super-resolution

Deep feature covariance
matching objective

[Johnson, Alahi, Li, ECCV 2016]



Better Loss Function: Sticking to the Manifold

 How do we design a loss
function that penalizes images
that aren’t on the image
manifold?

» Key insight: we will learn our
loss function by training a
network to discriminate
between images that are on the
manifold and images that aren’t



PART 3: GENERATIVE ADVERSARIAL
NETWORKS (GANS)



Generative Adversarial Networks (GANSs)

 Basic idea: Learn a mapping from some latent space to
iImages on a particular manifold

» Example of a Generative Model:

— We can think of classification as a way to compute some P(x) that
tells us the probability that image x is a member of a class.

— Rather than simply evaluating this distribution, a generative
model tries to learn a way to sample from it



Generative Adversarial Networks (GANSs)

» Generator network has similar 4 )
structure to the decoder of our Training Data
autoencoder g )
— Maps from some latent space to
Images Queput
. o, e . g i imi
 We train it in an adversarial s Jiseriminetor
. . . Code _~1 |\ / | etwork
manner against a discriminator s/ B
N Y [
network = A [ M E
. ~_ N 1/ -
— Generator tries to create output ~~ \\ _
indistinguishable from training data ~E
— Discriminator tries to distinguish —

between generator output and
training data



Example: Randomly Sampling the Space of
Face Images

(Using Generative Adversarial Networks (GANSs)

Which face is real?



http://www.whichfaceisreal.com/index.php

Example: Randomly Sampling the Space of
Face Images

(Using Generative Adversarial Networks (GANSs)

Which face is real?



http://www.whichfaceisreal.com/index.php

Conditional GANs

» Generate samples from a conditional distribution

» Example: generate high-resolution image conditioned on
low resolution input

original bicubic SRResNet SRGAN
~(21.59dB/0.6423)  (23.44dB/0.7777)
F .

Y .
- *‘ %
w ’.4 -
WV -4
-

[Ledig et al 2016]



[Goodfellow et al., 2014]



| - - —

— HH P real or fake?

Generator

Discriminator

G tries to synthesize fake images that fool D

D tries to identify the fakes

[Goodfellow et al., 2014]



—HH — fake (0.9)

—nr— real (0.1)

(Identify generated images as fake) (Identify training images as real)

arg max Ex,y[|log D(G(x))| + |log(1—D(y))| |

[Goodfellow et al., 2014]



H — real or fake?

G tries to synthesize fake images that fool D:

ar Exy| log D(G(x)) + log(l—D(y)) |

[Goodfellow et al., 2014]



— HH — real or fake?

G tries to synthesize fake images that fool the best D:
argpninfmax] Exy[ log D(G(x)) + log(1 - D(y)) |

[Goodfellow et al., 2014]



D

G’s perspective: D is a loss function.

Rather than being hand-designed, it is learned.

[Goodfellow et al., 2014]
[Isola et al., 2017]



— HH — real or fake?

argménmg,x Exy| logD(G(x)) + log(l—D(y)) |

[Goodfellow et al., 2014]



— A reall
(“Aquarius™)

argménmg,x Exy| logD(G(x)) + log(l—D(y)) |

[Goodfellow et al., 2014]



—1HH— realorfake pair ?

argm&nmﬂa}c Ex,y[ logD(G(x)) + log(l—D(y)) ]

[Goodfellow et al., 2014]
[Isola et al., 2017]



—1HH— realorfake pair ?

argm&anax Ex,y[ log D(x, G(x)) + log(1 — D(x,y)) ]

[Goodfellow et al., 2014]
[Isola et al., 2017]



—1 Al — fake pair

argm&anax Ex,y[ log D(x, G(x)) + log(1 — D(x,y)) ]

[Goodfellow et al., 2014]
[Isola et al., 2017]



—1I Al F— realpair

argm&anax Ex,y[ log D(x, G(x)) + log(1 — D(x,y)) ]

[Goodfellow et al., 2014]
[Isola et al., 2017]



—{HH{— realorfake pair?

argm&n max Ex,y[ log D(x,G(x)) + log(1 — D(x,y)) ]

D

[Goodfellow et al., 2014]
[Isola et al., 2017]



More Examples of Image-to-Image
Translation with GANs

» We have pairs of corresponding training images

» Conditioned on one of the images, sample from the

distribution of likely corresponding images
Edges to Image

round truth

Segmentation to Street Image

input L o output

output




BW — Color

Input Output

Data from [Russakovsky et al. 2015]



Input Output Groundtruth

Data from

[maps.google.com] A



http://maps.google.com/

Labels — Street Views

Input labels

Synthesized image

Data from [Wang et al, 2018]



Day — Night

Input Output Input Output

Data from [Laffont et al., 2014]



Edges — Images

Input Output

Edges from [Xie & Tu, 2015]



Demo

INPUT OUTPUT

pIX2pix

process

m clear random

https.//affinelayer.com/pixsrv/



https://affinelayer.com/pixsrv/

INPUT OUTPUT

//( pIX2pix
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lvy Tasi @ivymyt

¢'. . o

Vitaly Vidmirov @vvid




Data from [Pathak et al., 2016]



Pose-guided Generation

Condition
image

Target Coarse Refined Condition Target Target Coarse Refined
result result

image (GT) result

pose image (GT) result

:

1

ey
(a) DeepFashion

(b) Market-1501

Refined results

0 & "

Condition image Target pose sequence

(c) Generating from a sequence of poses

Data from [Ma et al., 2018]



Challenges —> Solutions

» Output is high-dimensional, structured <
object O
— Approach: Use a deep net, D, to analyze ¥
output!
» Uncertainty in mapping; many plausible “this small bird has a pink
OUtpUtS breast and crown...”

— Approach: D only cares about “plausibility”,
doesn't hedge

 Lack of supervised training data
— Approach: ?




Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks

Jun-Yan Zhu* Taesung Park* Phillip Isola Alexei A. Efros
UC Berkeley
In ICCV 2017

[Paper] [Code (Torch)] [Code (PyTorch)]
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https://junyanz.github.io/CycleGAN/



https://junyanz.github.io/CycleGAN/
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https://hardikbansal.github.io/CycleGANBlog/

Start



https://hardikbansal.github.io/CycleGANBlog/




StyleGAN

A Style-Based Generator Architecture for Generative Adversarial Networks
Tero Karras, Samuli Laine, Timo Aila
https://github.com/NVlabs/stylegan



https://github.com/NVlabs/stylegan

Real-time image stylization



https://stadia.dev/blog/behind-the-scenes-with-stadias-style-transfer-ml/

StyleGAN2 [2020]

Analyzing and Improving the Image Quality of StyleGAN
Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, Timo Aila

https://github.com/NVlabs/stylegan2



https://github.com/NVlabs/stylegan2

Sl - SSEFIeGANS (Olrs)

Alias-Free Generative Adversarial Networks (StyleGAN3)
Tero Karras, Miika Aittala, Samuli Laine, Erik Harkonen, Janne Hellsten, Jaakko Lehtinen, Timo
Aila



Questions?



