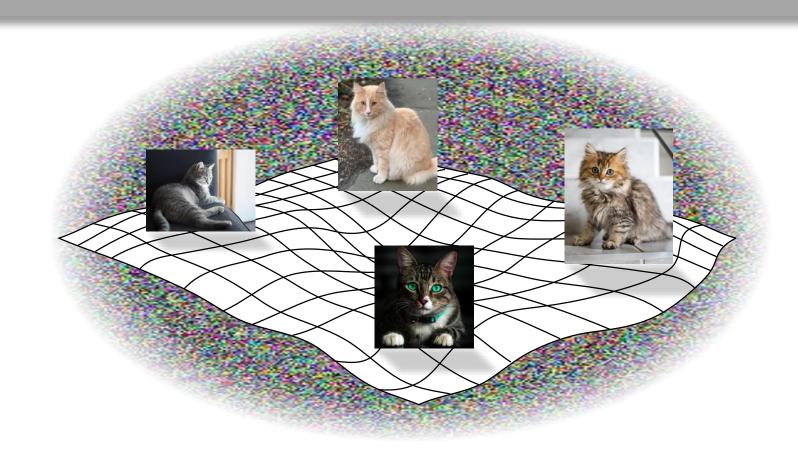
CS5670: Computer Vision

Image Manifolds & Image Synthesis (including GANS)



Most content from Abe Davis, with additional credit to Jin Sun and Phillip Isola

Announcements

- In class final on May 10
 - Open book, open note (your own notes please do not print out whole slide decks)
- Project 5 (Neural Radiance Fields) due tomorrow by 8:00 pm
- Course evaluations are open starting today (May 3)
 - We would love your feedback!
 - Small amount of extra credit for filling out
 - What you write is still anonymous, instructors only see whether students filled it out

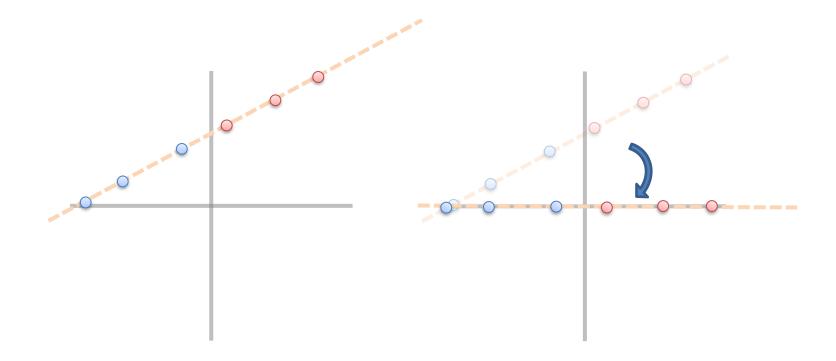
https://apps.onginogring.com.oll.odu/CourseEval/

By Abe Davis

DIMENSIONALITY REDUCTION

Linear Dimensionality Reduction: 2D->1D

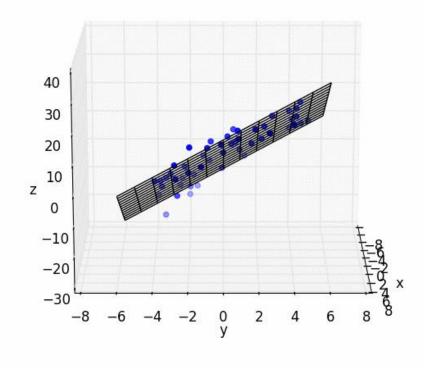
- Consider a bunch of data points in 2D
- Let's say these points only differ along one line
- If so, we can translate and rotate our data so that it is 1D



Linear Dimensionality Reduction: 3D-

>2D

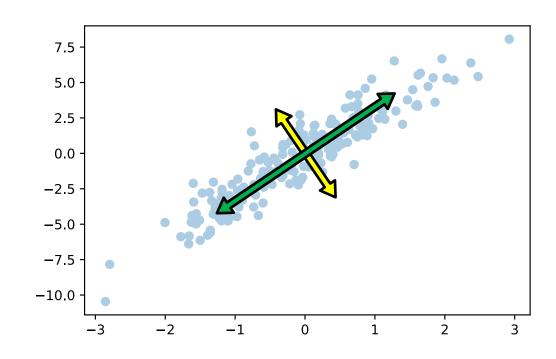
- Similar to 1D case, we can fit a plane to the data, and transform our coordinate system so that plane becomes the x-y plane
- "Plane fitting"
- More generally: look for the 2D subspace that best fits the data, and ignore the remaining dimensions



Think of this as data that sits on a flat sheet of paper, suspended in 3D space. We will come back to this analogy in a couple slides...

Generalizing Linear Dimensionality Reduction

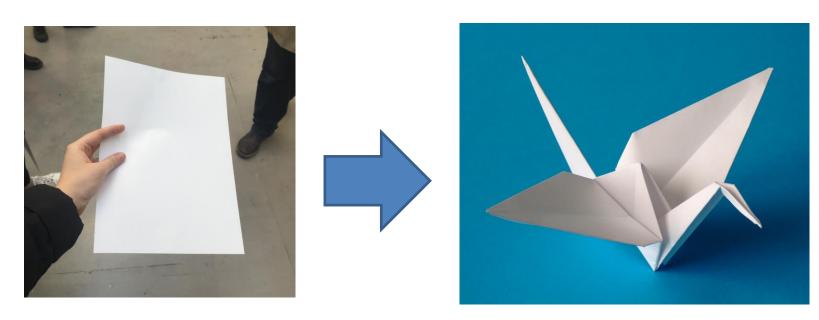
- **Principal Components Analysis** (**PCA**): find and order orthogonal axes by how much the data varies along each axis.
- The axes we find (ordered by variance of our data) are called principal components.
- Dimensionality reduction can be done by using only the first k principal components



Side Note: principal components are closely related to the eigenvectors of the covariance matrix for our data

Manifolds

- Think of a piece of paper as a 2D subspace
- If we bend & fold it, it's still locally a 2D subspace...
- A "manifold" is the generalization of this concept to higher dimensions...

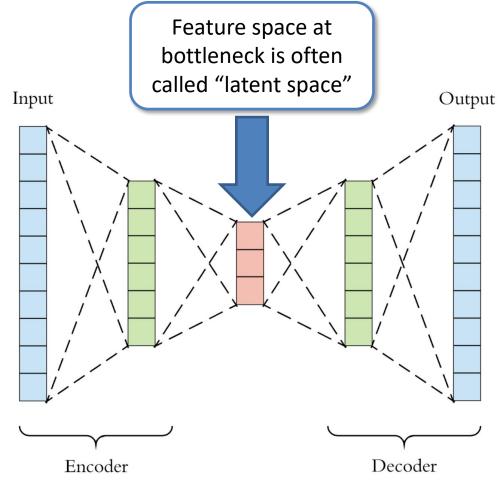


Autoencoders: Dimensionality Reduction for Manifolds

- Learn a non-linear transformation into some lower-dimensional space (encoder)
- Learn a transformation from lowerdimensional space back to original content (decoder)
- Loss function measures difference between input & output

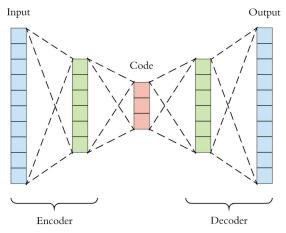
Unsupervised

– No labels required!

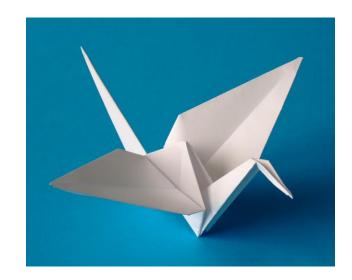


Autoencoders: Dimensionality Reduction for Manifolds

 Transformations that reduce dimensionality cannot be invertible in general



 An autoencoder tries to learn a transformation that is invertible for points on some manifold.



By Abe Davis

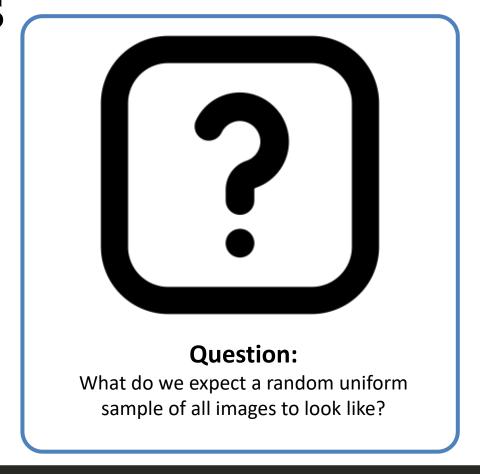
IMAGE MANIFOLDS

The Space of All Images

 Lets consider the space of all 100x100 images

 Now lets randomly sample that space...

 Conclusion: Most images are noise



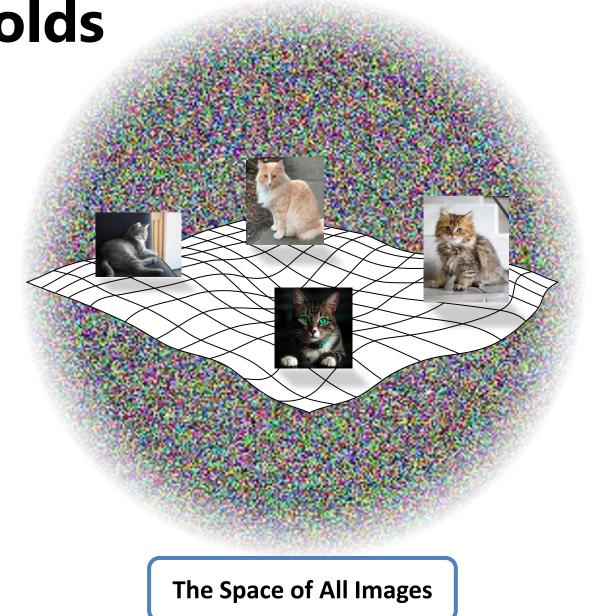
pixels = np.random.rand(100,100,3)

Natural Image Manifolds

Most images are "noise"

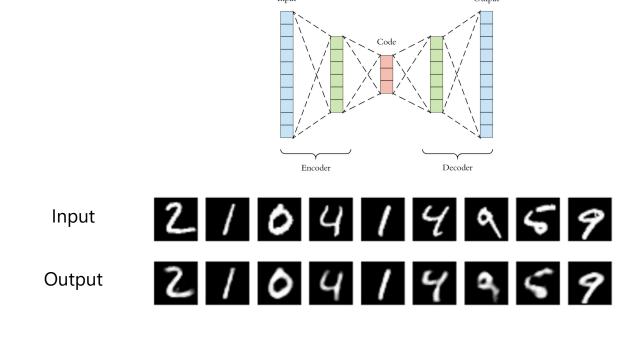
 "Meaningful" images tend to form some manifold within the space of all images

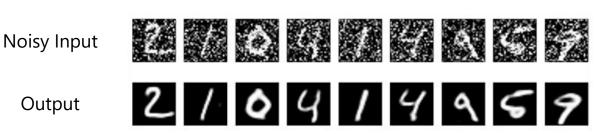
 Images of a particular class fall on manifolds within that manifold...



Denoising & the "Nullspace" of Autoencoders

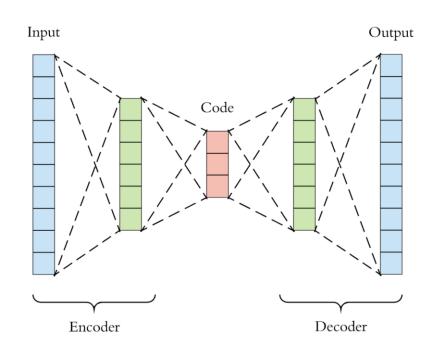
- The autoencoder tries to learn a dimensionality reduction that is invertible for our data (data on some manifold)
- Most noise will be in the non-invertible part of image space (off the manifold)
- If we feed noisy data in, we will often get denoised data

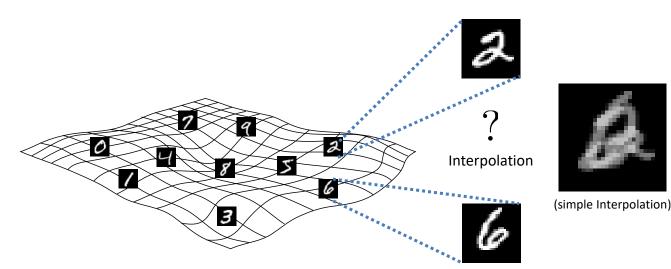




Problem

- Autoencoders can compress because data sits on a manifold
- This doesn't mean that every point in the latent space will be on the manifold...
- GANs (later this lecture) will learn a loss function that helps with this



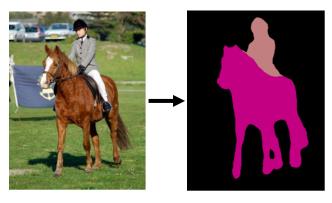


Abe Davis, with slides from Jin Sun, Phillip Isola, and Richard Zhang

IMAGE-TO-IMAGE APPLICATIONS

Image prediction ("structured

prediction")
Object labeling



[Long et al. 2015, ...]

Text-to-photo

"this small bird has a pink breast and crown..."

[Reed et al. 2016, ...]

Depth prediction

Style transfer

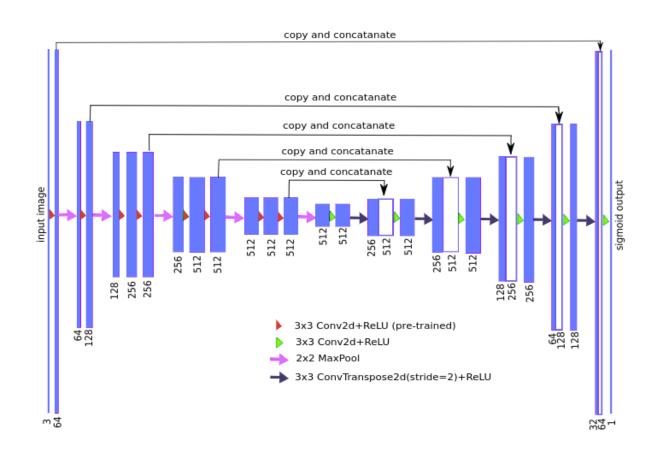
[Gatys et al. 2016, ...]

Image classification vs. image translation

- For image classification, we map an image to a label (e.g., "cat")
- For image prediction/translation tasks, we map an image to another image-shaped thing (e.g., a depth map)
- What kind of convolutional neural network architecture can do this?

U-Net

- A popular network structure to generate same-sized output
- Similar to a convolutional autoencoder, but with "skip connections" that concatenate the output of earlier layers onto later layers
- Great for learning transformations from one image to another



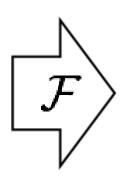
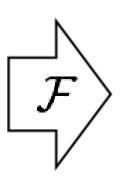
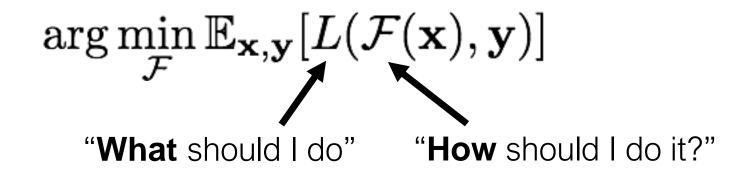
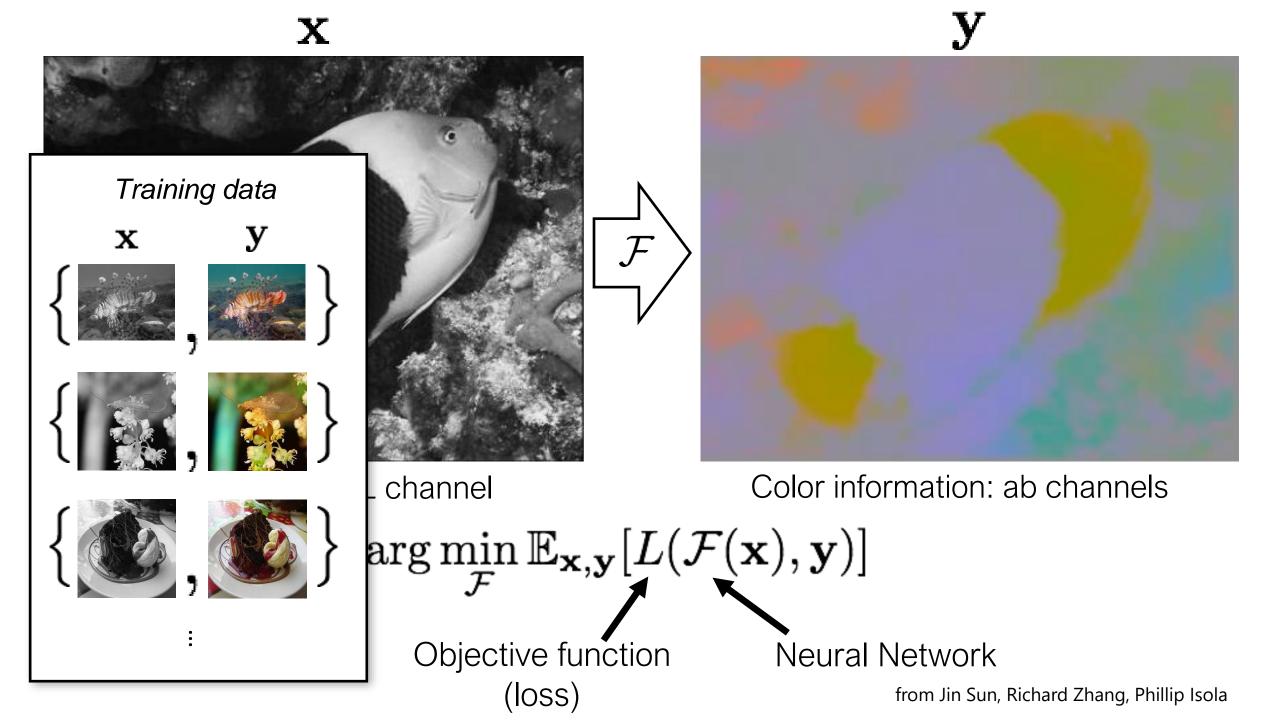
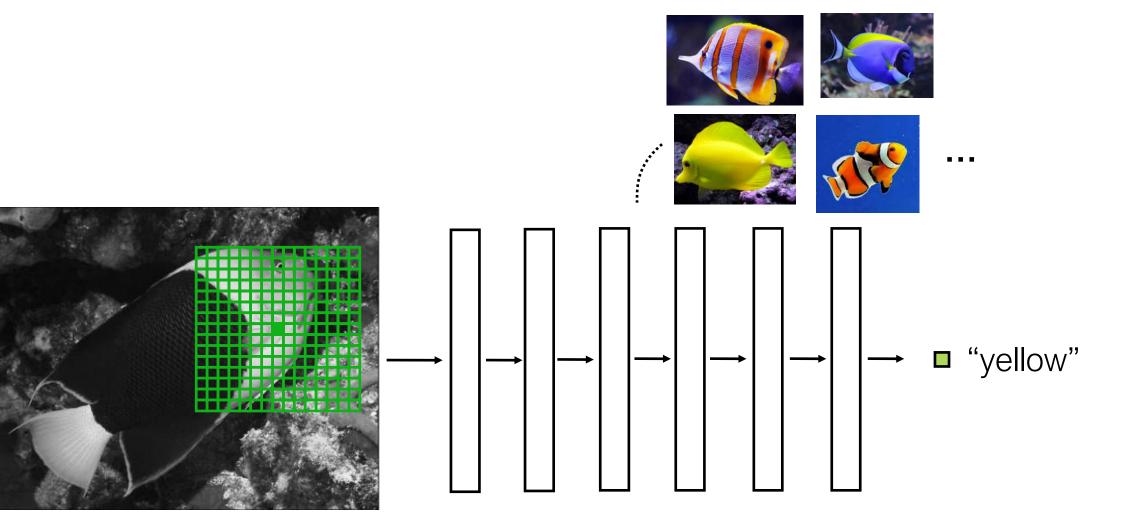


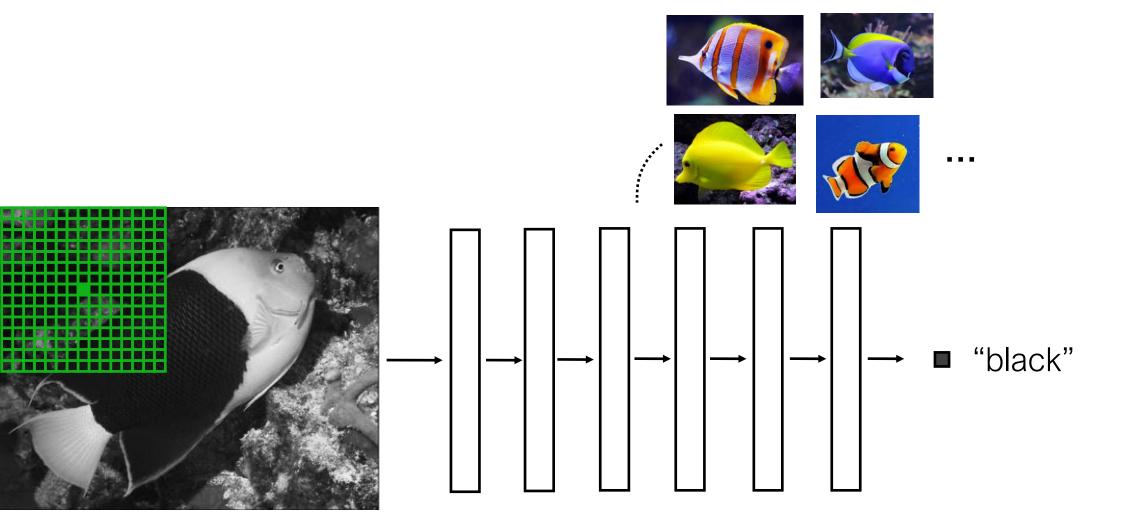
Image Colorization

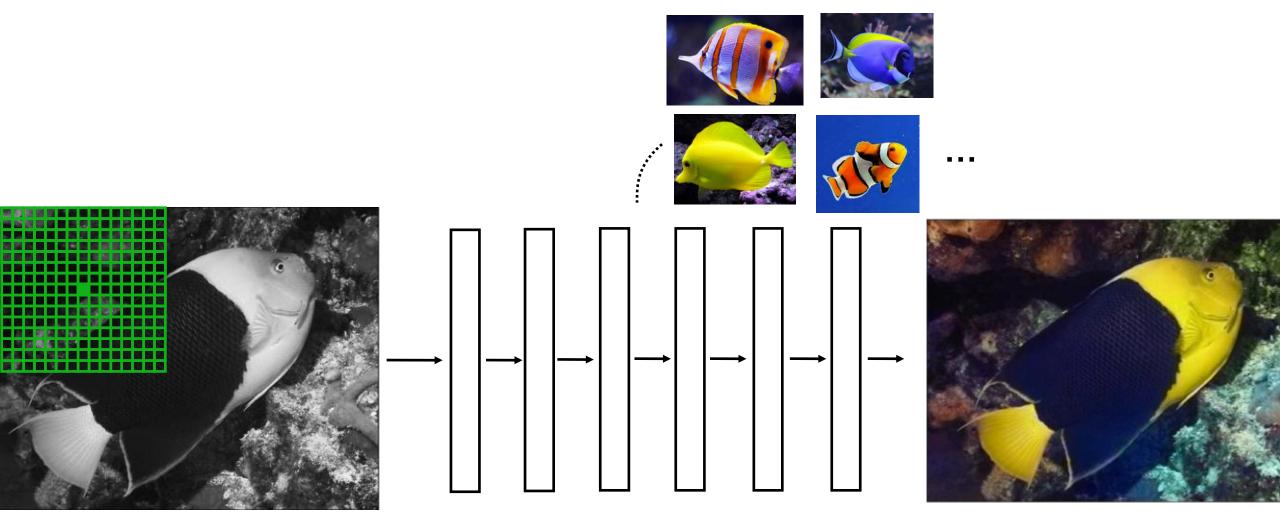












Basic loss functions

Prediction:
$$\hat{\mathbf{y}} = \mathcal{F}(\mathbf{x})$$
 Truth: \mathbf{y}

Classification (cross-entropy):

$$L(\hat{\mathbf{y}}, \mathbf{y}) = -\sum_{i} \hat{\mathbf{y}}_{i} \log \mathbf{y}_{i}$$

How many extra bits it takes to correct the predictions

Least-squares regression:

$$L(\hat{\mathbf{y}}, \mathbf{y}) = \|\hat{\mathbf{y}} - \mathbf{y}\|_2$$

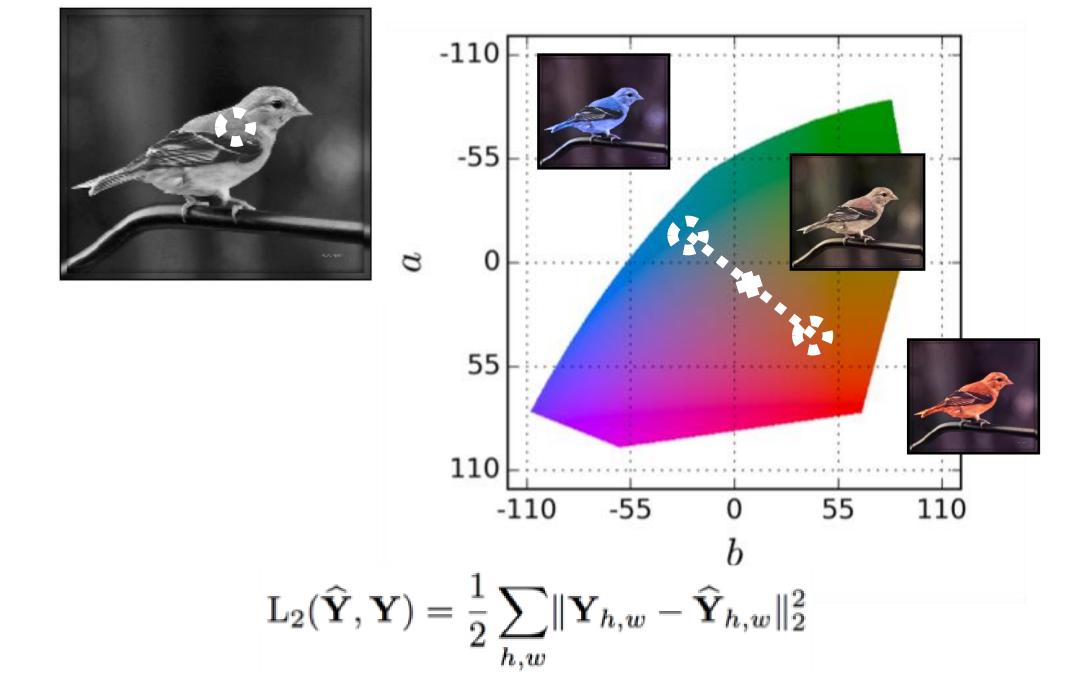
How far off we are in Euclidean distance

Input

Output

Ground truth

$$L_2(\widehat{\mathbf{Y}}, \mathbf{Y}) = \frac{1}{2} \sum_{h,w} \|\mathbf{Y}_{h,w} - \widehat{\mathbf{Y}}_{h,w}\|_2^2$$



Input

Ground truth

Color distribution cross-entropy loss with colorfulness enhancing term.

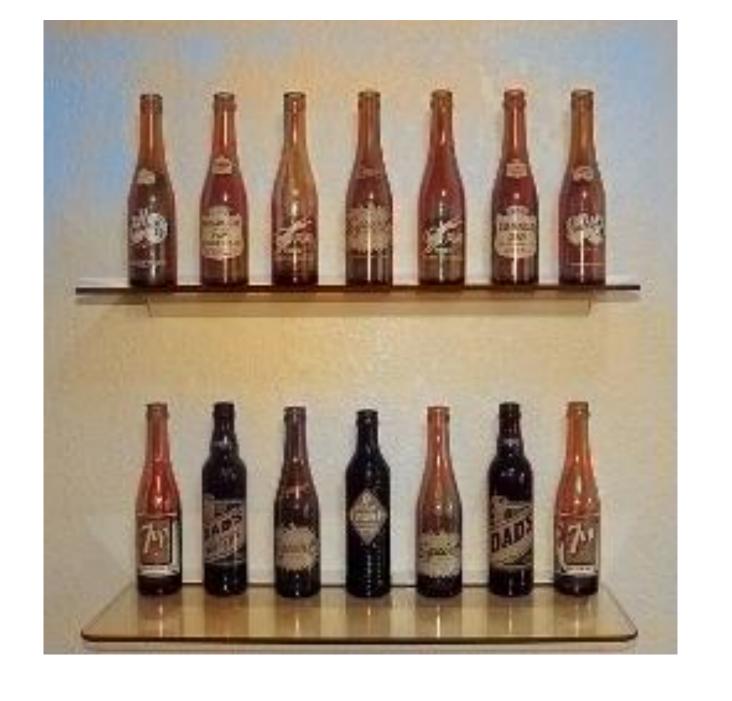
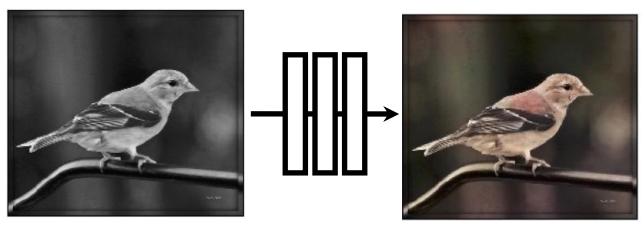
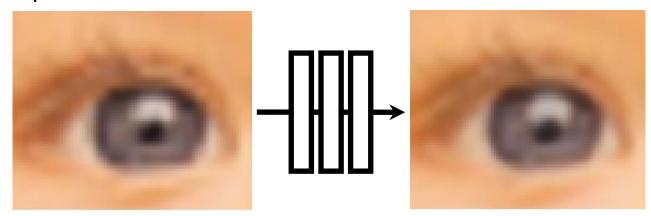


Image colorization



[Zhang, Isola, Efros, ECCV 2016]

Super-resolution

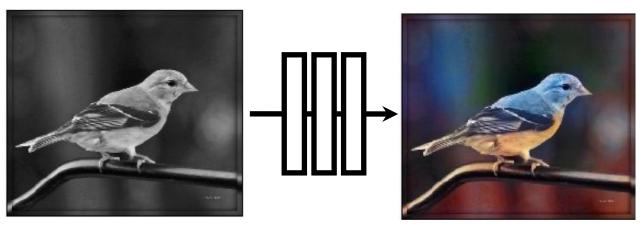


[Johnson, Alahi, Li, ECCV 2016]

L2 regression

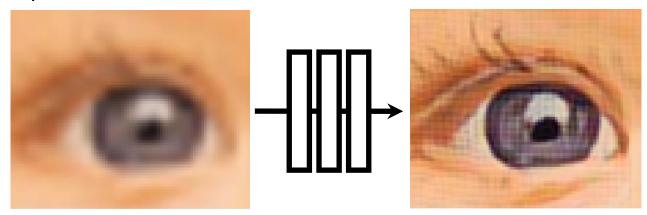
L2 regression

Image colorization



[Zhang, Isola, Efros, ECCV 2016]

Super-resolution



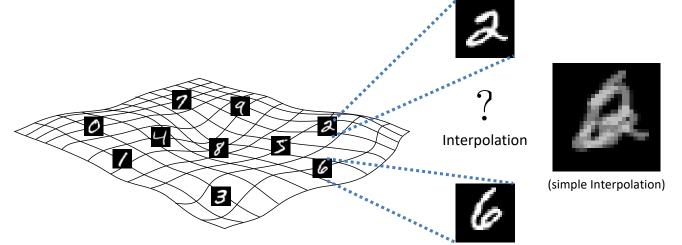
[Johnson, Alahi, Li, ECCV 2016]

Cross entropy objective, with colorfulness term

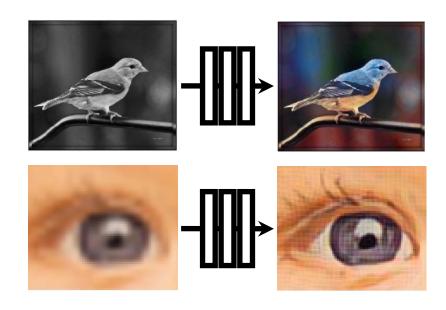
Deep feature covariance matching objective

Better Loss Function: Sticking to the Manifold

 How do we design a loss function that penalizes images that aren't on the image manifold?



 Key insight: we will *learn* our loss function by training a network to discriminate between images that are on the manifold and images that aren't



Abe Davis, with slides from Jin Sun and Phillip Isola

PART 3: GENERATIVE ADVERSARIAL NETWORKS (GANS)

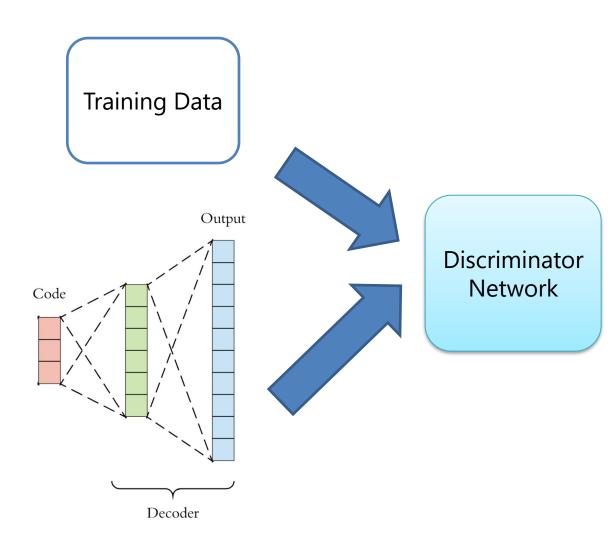
Generative Adversarial Networks (GANs)

 Basic idea: Learn a mapping from some latent space to images on a particular manifold

- Example of a **Generative Model**:
 - We can think of classification as a way to compute some P(x) that tells us the probability that image x is a member of a class.
 - Rather than simply evaluating this distribution, a generative model tries to learn a way to sample from it

Generative <u>Adversarial</u> Networks (GANs)

- Generator network has similar structure to the decoder of our autoencoder
 - Maps from some latent space to images
- We train it in an adversarial manner against a discriminator network
 - Generator tries to create output indistinguishable from training data
 - Discriminator tries to distinguish between generator output and training data



Example: Randomly Sampling the Space of Face Images

(Using Generative Adversarial Networks (GANs)

Which face is real?

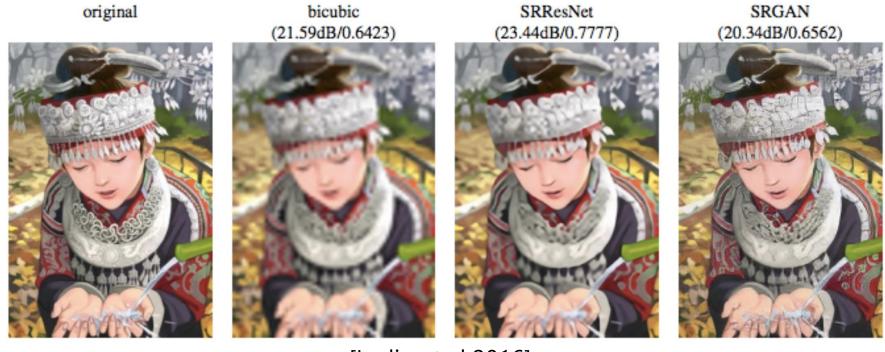
Example: Randomly Sampling the Space of Face Images

(Using Generative Adversarial Networks (GANs)

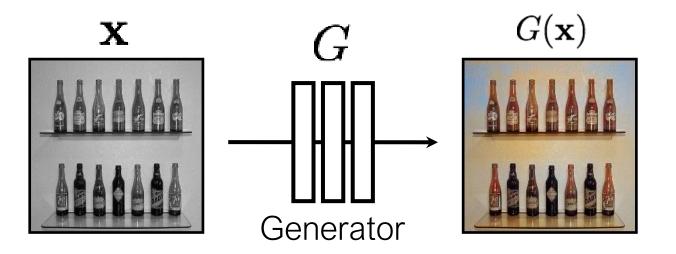
Which face is real?

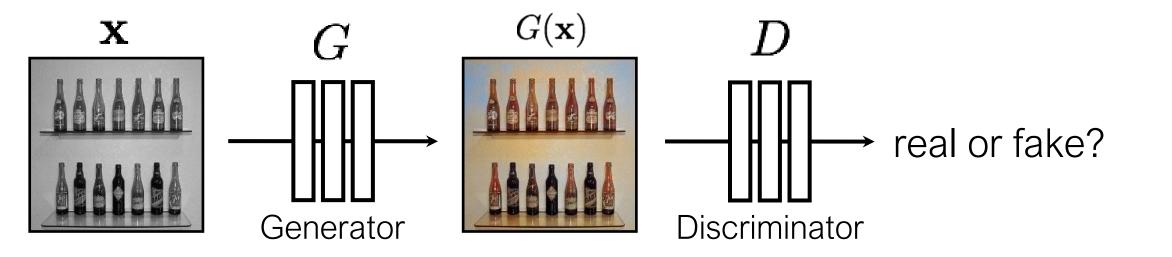
Conditional GANs

- Generate samples from a conditional distribution
- Example: generate high-resolution image conditioned on low resolution input



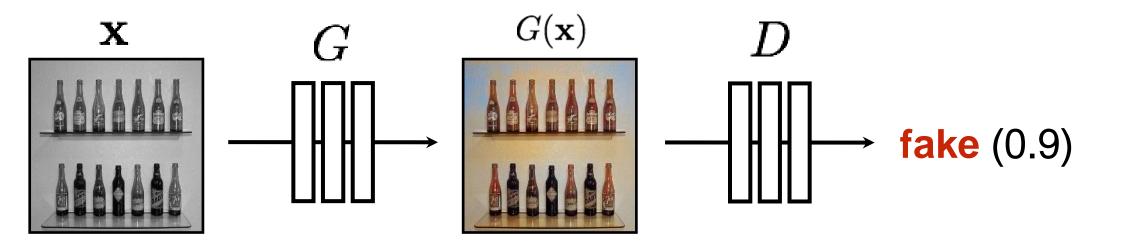
[Ledig et al 2016]

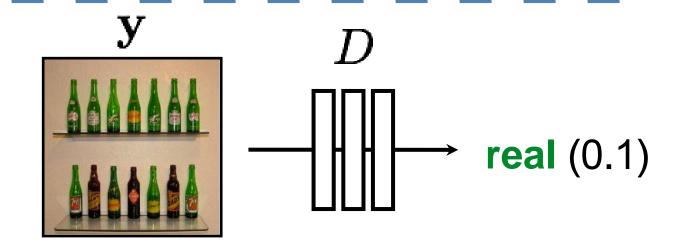




G tries to synthesize fake images that fool **D**

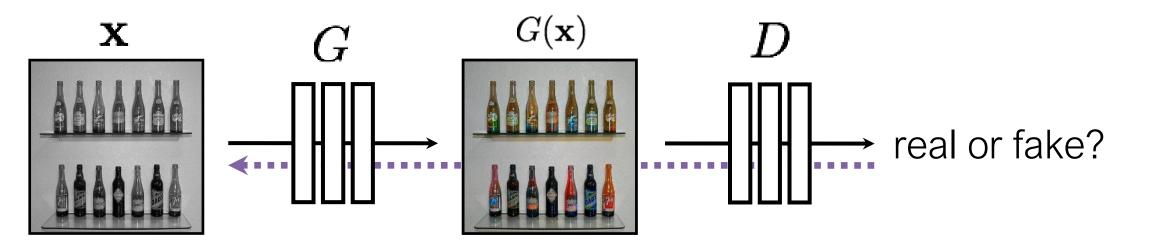
D tries to identify the fakes





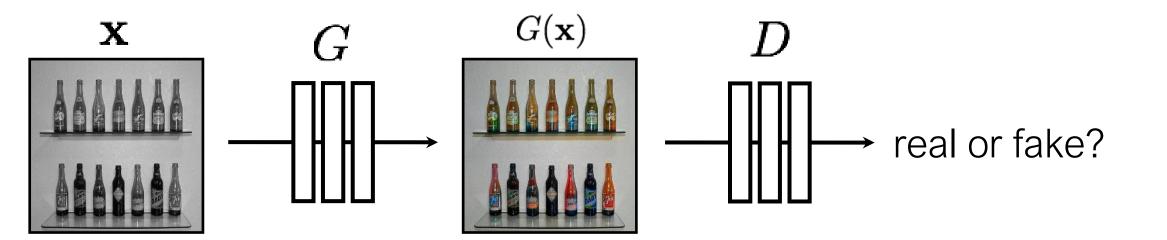
(Identify generated images as fake) (Identify training images as real)

$$\underset{D}{\operatorname{arg\,max}} \; \mathbb{E}_{\mathbf{x},\mathbf{y}}[\; \log D(G(\mathbf{x})) \; + \; \log(1 - D(\mathbf{y})) \;]$$



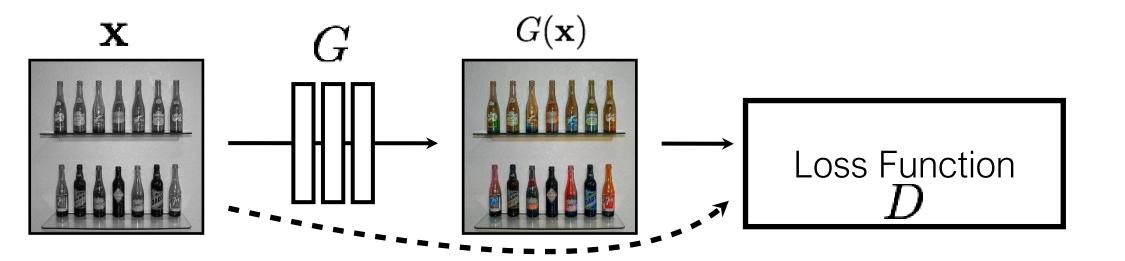
G tries to synthesize fake images that **fool D**:

$$\arg\min_{G} \mathbb{E}_{\mathbf{x},\mathbf{y}} [\log D(G(\mathbf{x})) + \log(1 - D(\mathbf{y}))]$$



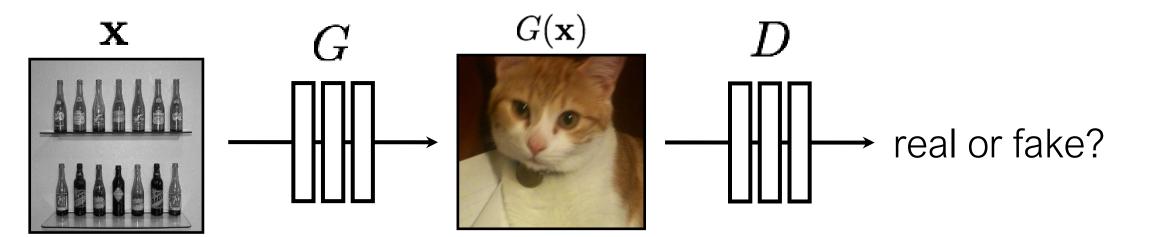
G tries to synthesize fake images that **fool** the **best D**:

$$\arg\min_{G} \max_{D} \mathbb{E}_{\mathbf{x},\mathbf{y}} [\log D(G(\mathbf{x})) + \log(1 - D(\mathbf{y}))]$$

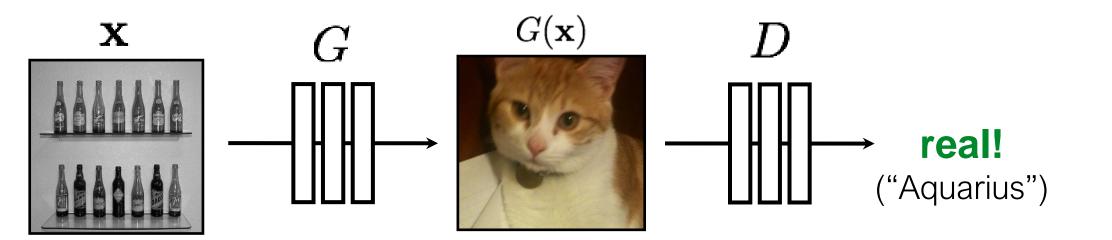


G's perspective: **D** is a loss function.

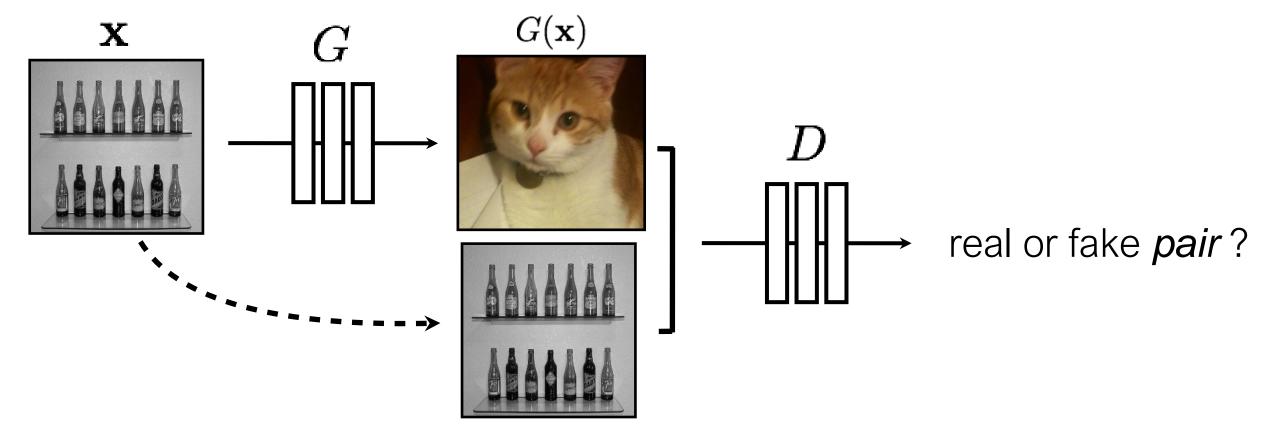
Rather than being hand-designed, it is *learned*.



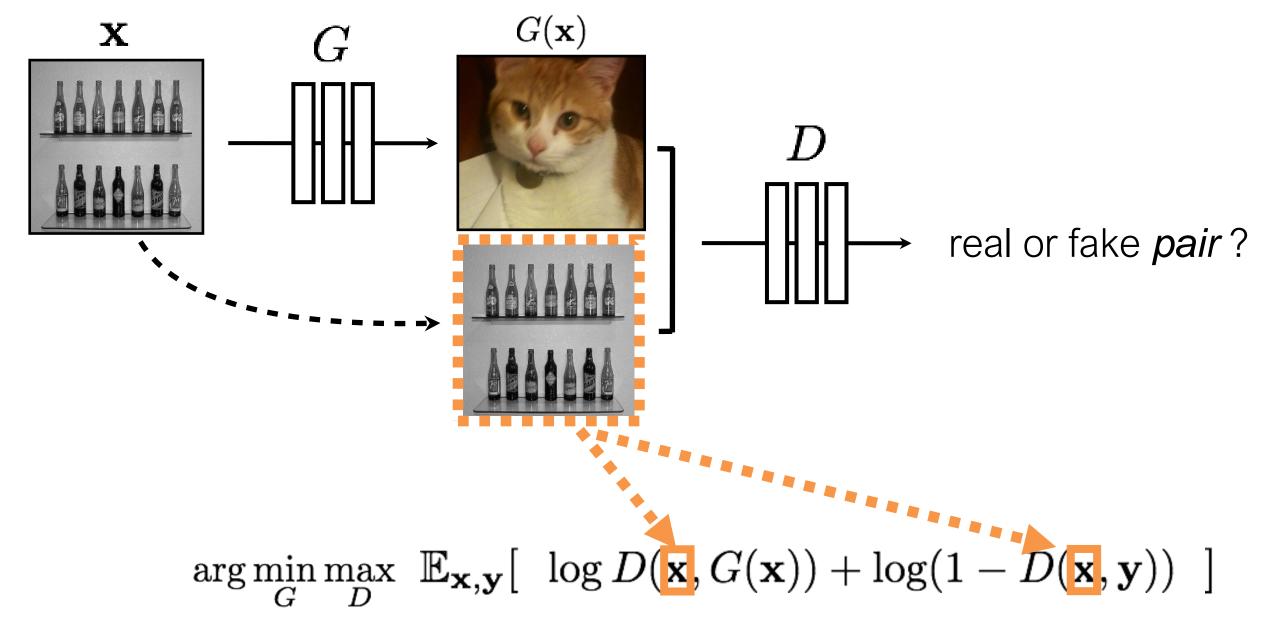
$$\operatorname{arg\,min}_{G} \max_{D} \mathbb{E}_{\mathbf{x},\mathbf{y}} \left[\log D(G(\mathbf{x})) + \log(1 - D(\mathbf{y})) \right]$$

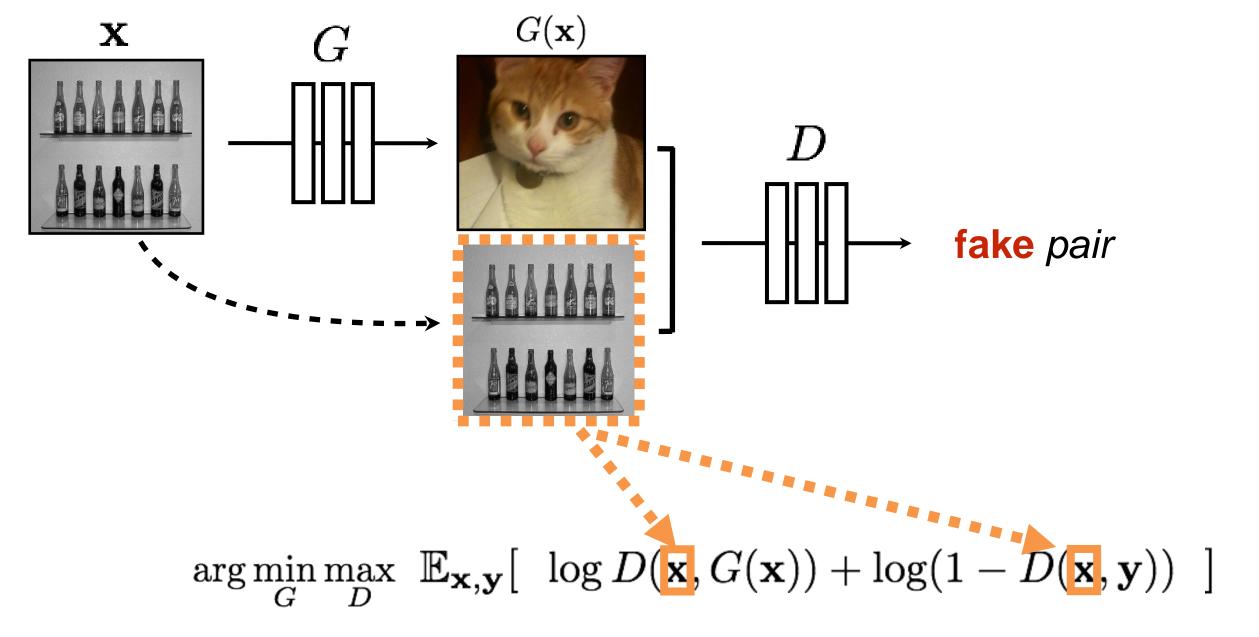


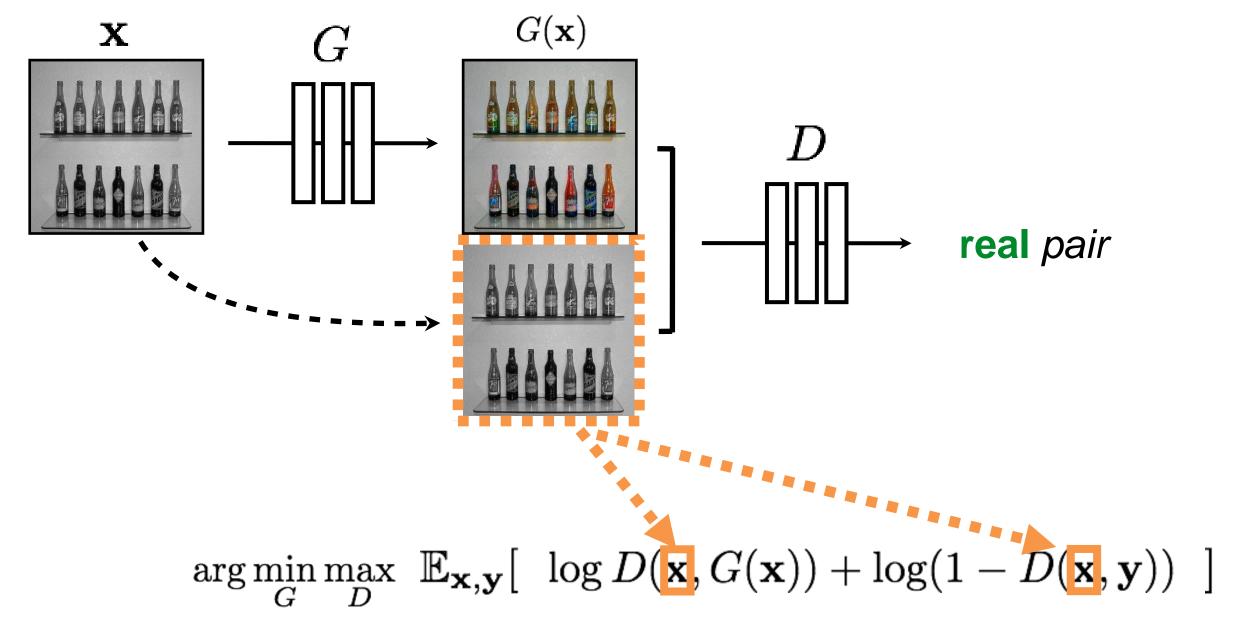
$$\operatorname{arg\,min}_{G} \max_{D} \mathbb{E}_{\mathbf{x},\mathbf{y}} \left[\log D(G(\mathbf{x})) + \log(1 - D(\mathbf{y})) \right]$$

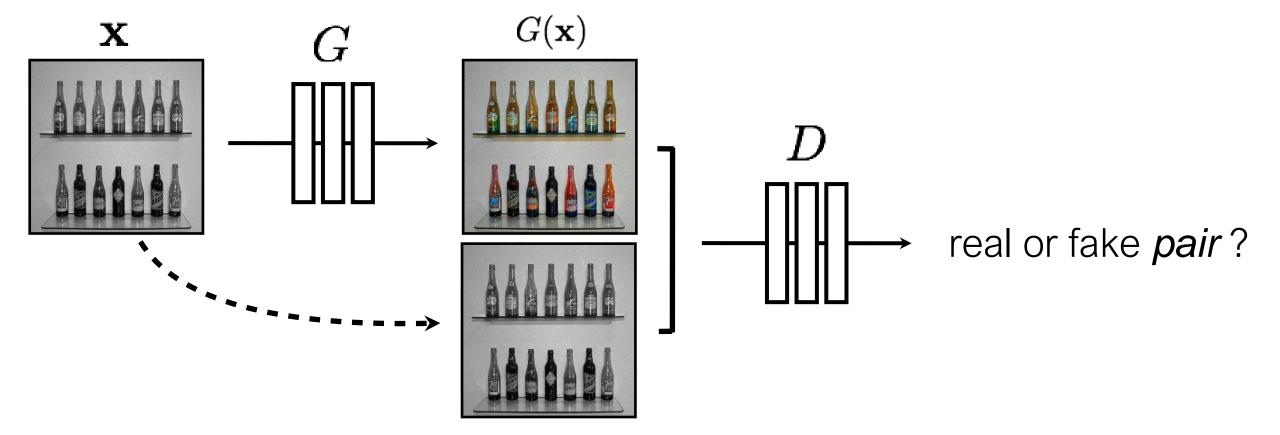


$$\arg\min_{G}\max_{D} \mathbb{E}_{\mathbf{x},\mathbf{y}}[\log D(G(\mathbf{x})) + \log(1 - D(\mathbf{y}))]$$







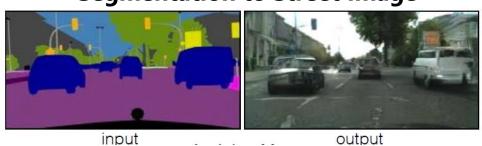


 $\arg\min_{G}\max_{D} \ \mathbb{E}_{\mathbf{x},\mathbf{y}}[\ \log D(\mathbf{x},G(\mathbf{x})) + \log(1-D(\mathbf{x},\mathbf{y}))\]$

More Examples of Image-to-Image Translation with GANs

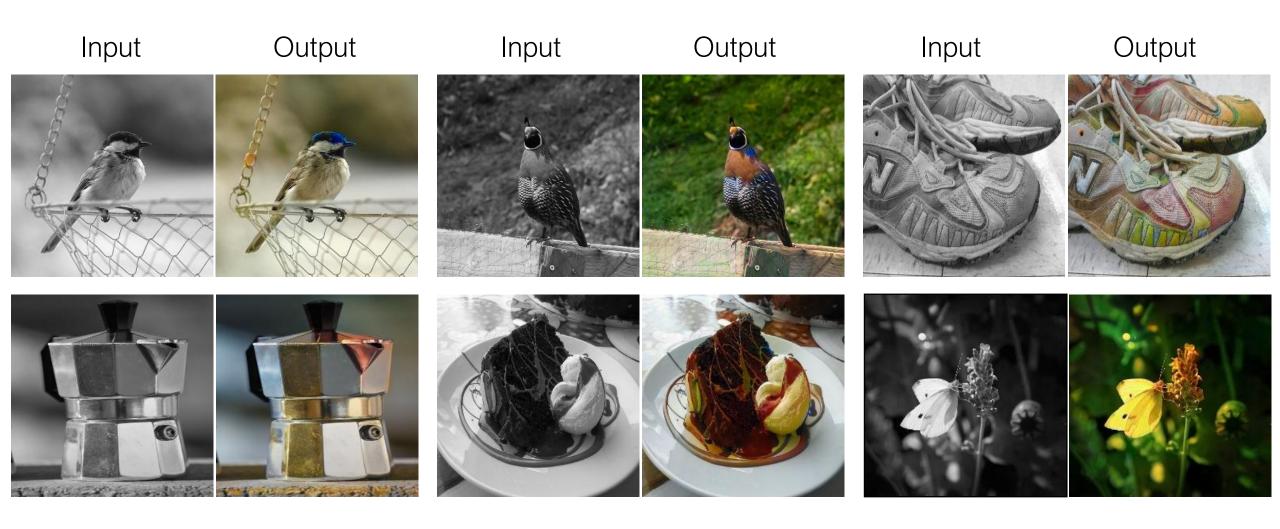
- We have pairs of corresponding training images
- Conditioned on one of the images, sample from the distribution of likely corresponding images

Segmentation to Street Image



Aerial Photo To Map

BW → Color



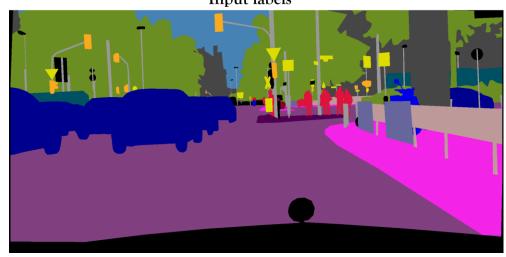
Data from [Russakovsky et al. 2015]



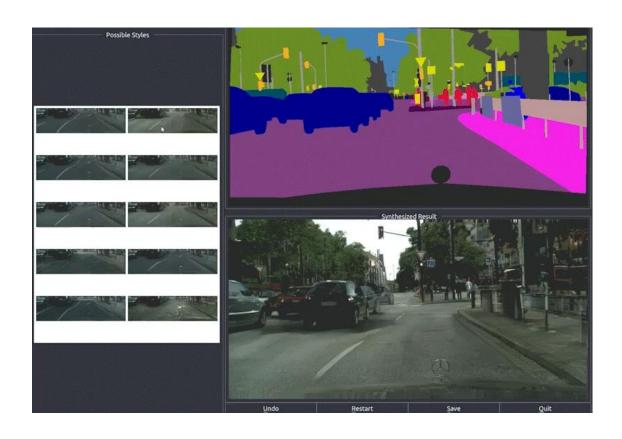
Data from [maps.google.com]

Labels → Street Views

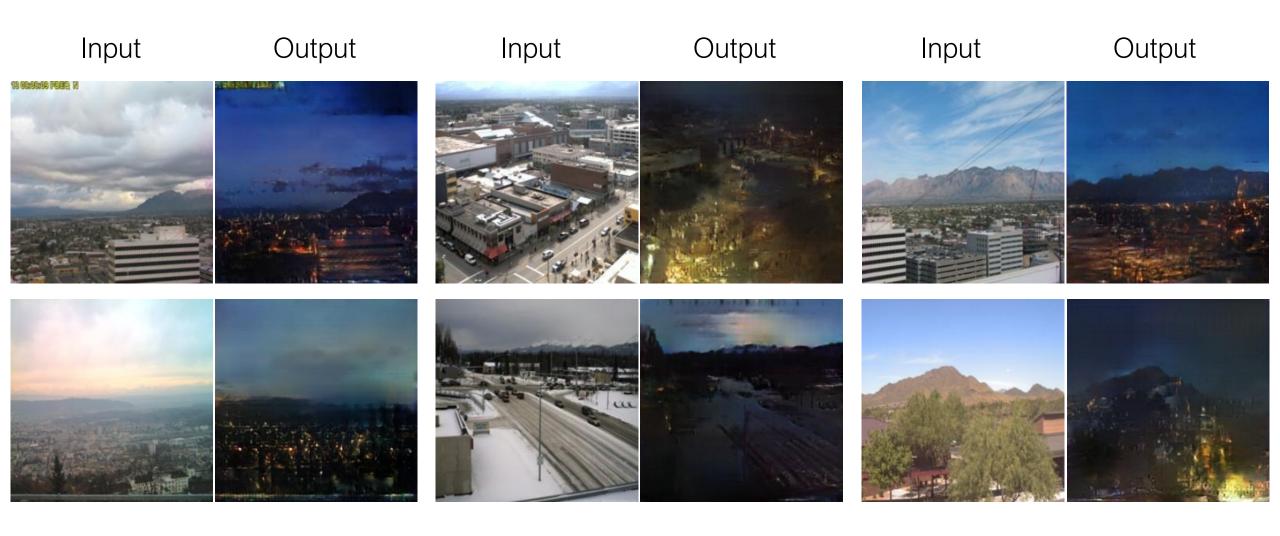
Input labels



Synthesized image



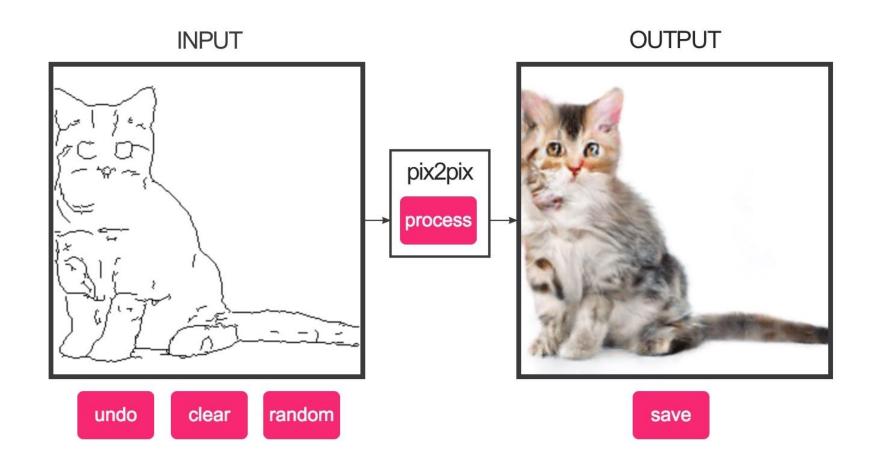
Day → Night



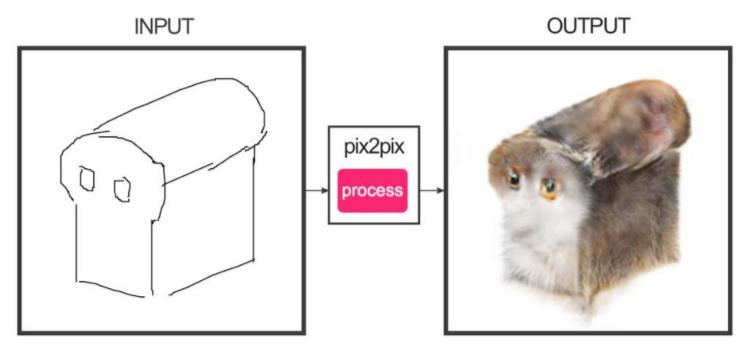
Data from [Laffont et al., 2014]

Edges → Images

Demo



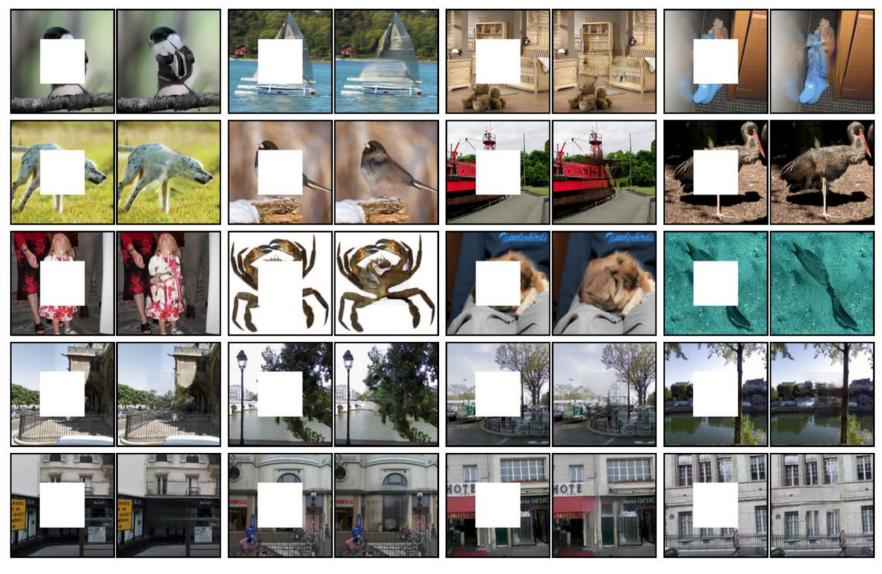
https://affinelayer.com/pixsrv/



Ivy Tasi @ivymyt

Vitaly Vidmirov @vvid

Image Inpainting

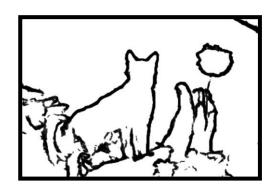


Pose-guided Generation

(c) Generating from a sequence of poses

Challenges —> **Solutions**

- Output is high-dimensional, structured object
 - Approach: Use a deep net, D, to analyze output!
- Uncertainty in mapping; many plausible outputs
 - Approach: D only cares about "plausibility", doesn't hedge
- Lack of supervised training data
 - Approach: ?



"this small bird has a pink breast and crown..."

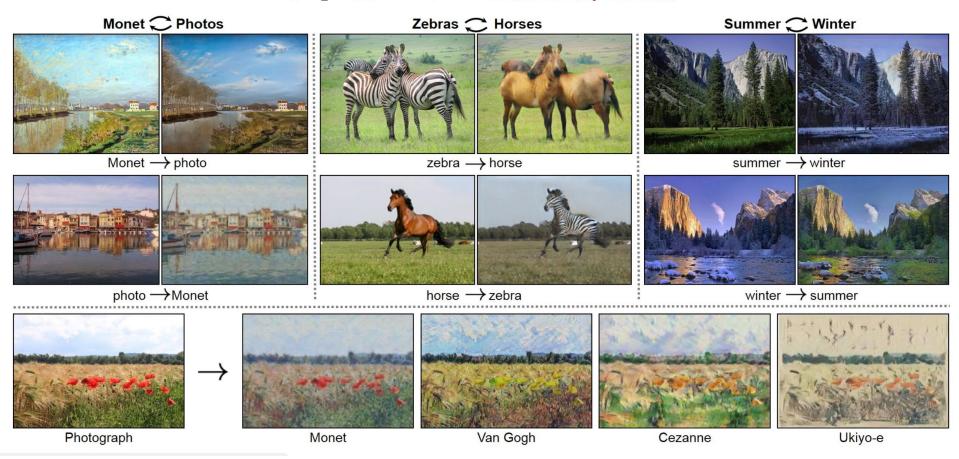
Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks

Jun-Yan Zhu* Taesung Park* Phillip Isola Alexei A. Efros

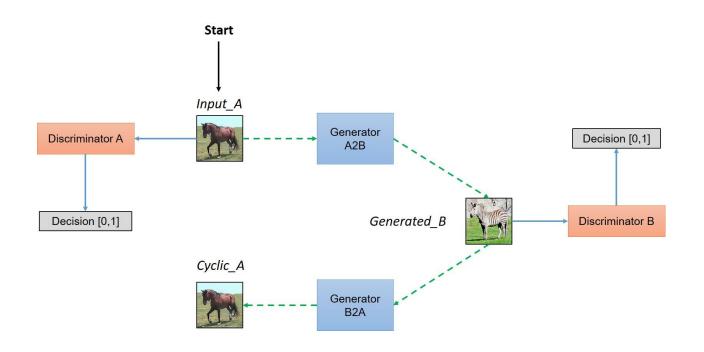
UC Berkeley

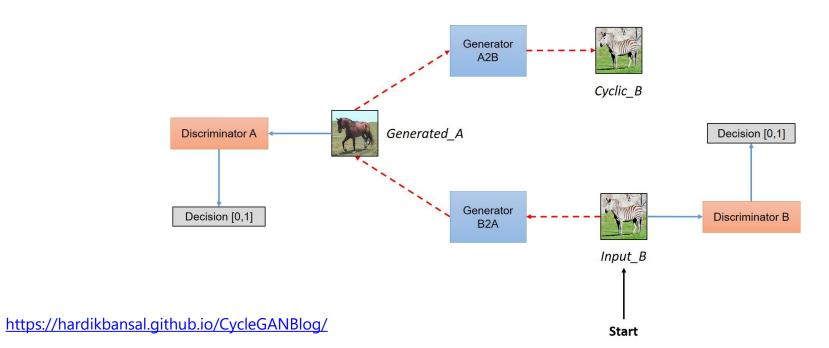
In ICCV 2017

[Paper] [Code (Torch)] [Code (PyTorch)]



https://junyanz.github.io/CycleGAN/





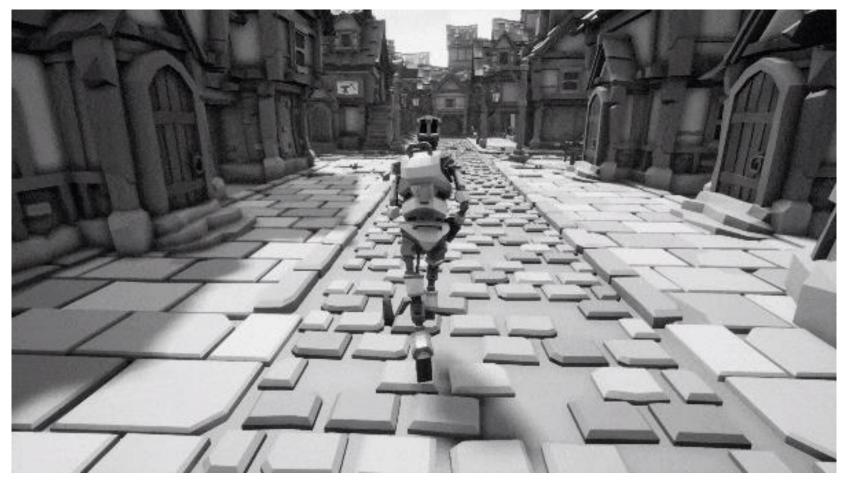
StyleGAN

A Style-Based Generator Architecture for Generative Adversarial Networks

Tero Karras, Samuli Laine, Timo Aila

https://github.com/NVlabs/stylegan

Real-time image stylization



https://stadia.dev/blog/behind-the-scenes-with-stadias-style-transfer-ml/

StyleGAN2 [2020]

Analyzing and Improving the Image Quality of StyleGAN

Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, Timo Aila

StyleGAN3 [2021]

Alias-Free Generative Adversarial Networks (StyleGAN3)

Tero Karras, Miika Aittala, Samuli Laine, Erik Härkönen, Janne Hellsten, Jaakko Lehtinen, Timo Aila

Questions?