CS5670: Computer Vision

Training Deep Networks
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Illustration of LeCun et al. 1998 from CS231n 2017 Lecture 1

Slides from Fei-Fei Li, Justin Johnson, Serena Yeung
http://vision.stanford.edu/teaching/cs231n/



http://vision.stanford.edu/teaching/cs231n/

Announcements

* In class final on May 10
— Open book, open note

* Project 5 (Neural Radiance Fields) due Weds, May 4, 2022
(by 8:00 pm)

» Course evaluations are open starting Tuesday, May 3
— We would love your feedback!

— Small amount of extra credit for filling out

« What you write is still anonymous, instructors only see whether
students filled it out

— Link coming soon



Readings

» Convolutional neural networks
— http://cs231n.github.io/convolutional-networks/

 Stochastic Gradient Descent & Backpropagation
— http://cs231n.github.io/optimization-1/
— http://cs231n.github.io/optimization-2/

 Best practices for training CNNs
— http://cs231n.github.io/neural-networks-2/
— http://cs231n.github.io/neural-networks-3/



http://cs231n.github.io/convolutional-networks/
http://cs231n.github.io/optimization-1/
http://cs231n.github.io/optimization-2/
http://cs231n.github.io/neural-networks-2/
http://cs231n.github.io/neural-networks-3/

Deep networks can be used for...

Image classification View synthesis
f(&) = "apple”
f(Rl) = “tomato”

f( ) 14 COW”

And much more!



Convolutional neural networks

Layer types:

» Convolutional layer

* Pooling layer
 Fully-connected layer
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Training the network

* Given a network architecture (CNN, MLP etc) and some
training data, how do we actually set the weights of the
network?



Gradient descent: iteratively follow the
slope




Stochastic gradient descent (SGD)

 Train on batches of data (e.g., 32 images or 32 rays) at a
time

* A full pass through the dataset (i.e., using batches that
cover the training data) is called an epoch

» Usually need to train for multiple epochs, i.e., multiple full
passes through the dataset to converge

 Stochastic gradient descent approximates the true
gradient, but works remarkably well in practice

* Use backpropagation to automatically compute
agradients on each batch



How do you actually
train these things”

Roughly speaking:
Gather Find a ConvNet Minimize
labeled data architecture the loss
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Training a convolutional
neural network

Split and preprocess your data

Choose your network architecture

Initialize the weights

Find a learning rate and regularization strength
Minimize the loss and monitor progress

Fiddle with knobs



Why so complicated?

* Training deep networks can be finicky — lots of parameters
to learn, complex, non-linear optimization function



What Makes Training Deep Nets Hard?

* It's easy to get high training
accuracy:

 Use a huge, fully connected
network with tons of layers

* Let it memorize your training data

QOO0
QOOOOO
QOOOOO

This would be an

* Its hard to get high test accuracy
example of overfitting

— QOO0

— COCO00U




Related Question: Why Convolutional Layers?

* A fully connected layer can
generally represent the same
functions as a convolutional one

 Think of the convolutional layer as
a version of the FC layer with
constraints on parameters

* What is the advantage of CNNs?

Convolutional Layer

QOO
Ol01010010

Fully Connected Layer



Overfitting: More Parameters, More Problems

* Non-Deep Example: consider the function T + X

e Let's take some noisy samples of the function...
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Overfitting: More Parameters, More Problems

N
* Now lets fit a polynomial to our samples of the form Py (z) = Zazkpk
k=0
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Overfitting: More Parameters, More Problems

* A model with more parameters can
represent more functions

N
¢ E.g.:if Pn(z) =) aFp; RheénPis
k=0

* More parameters will often reduce training
error but increase testing error. This is
overfitting.

* When overfitting happens, models do not
generalize well.
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Deep Learning: More Parameters, More Problems?

* More parameters let us represent a
larger space of functions

* The larger that space is, the harder
our optimization becomes

 This means we need:
e More data
« More compute resources
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* Etc. Convolutional Layer Fully Connected Layer



Deep Learning: More Parameters, More Problems?

A convolutional layer
looks for components

of a function that are \

S patia | |y' | nva ri ant Convolutional Layer Fully Connected Layer
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How to Avoid Overfitting: Regularization

* In general:
* More parameters means higher risk of overfitting
* More constraints/conditions on parameters can help

* [f a model is overfitting, we can
e Collect more data to train on

. i‘?egu{arize: add some additional information or assumptions to better constrain
earning

 Regularization can be done through:
the design of architecture

the choice of loss function

the preparation of data



Regularization: Architecture Choice

 “Bigger” architectures (typically,
those with more parameters) tend
to be more at risk of overfitting.
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Convolutional Fully Connected Layer
Layer



Regularization

Regularization reduces overfitting:
Lo
L L T L Lreg — /I_HW‘ |2

data

A =0.001 A =0.01

[Andrej Karpathy http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html]
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(1) Data preprocessing

Preprocess the data so that learning is better conditioned:

original data
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X -= np.mean(axis=0, keepdims=True)

X /= np.std(axis=0, keepdims=True)

Figure: Andrej Karpathy



(1) Data preprocessing

For ConvNets, typically only the mean is subtracted.

An input image (256x256) Minus sign The mean input image

A per-channel mean also works (one value per R,G,B).

Figure: Alex Krizhevsky



Batch normalization

 Side note — can also perform normalization after each
layer of the network to stabilize network training (“batch
normalization”)



(1) Data preprocessing

Augment the data — extract random crops from the
iInput, with slightly jittered offsets. Without this, typical
ConvNets (e.g. [Krizhevsky 2012]) overfit the data.

E.g. 224x224 patches
extracted from 256x256 images

Randomly retlect horizontally

Perform the augmentation live
during training

Figure: Alex Krizhevsky



(2) Choose your architecture
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https://playground.tensorflow.org/

Very common

(2) Choose your architecture modern choice

“AlexNet” “GoogLeNet” “VGG Net”
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[Krizhevsky et al. NIPS 2012]  [Szegedy et al. CVPR 2015] [Simonyan & Zisserman, e et al. CVPR 201¢

ICLR 2015]



(3) Initialize your weights

Set the weights to small random numbers:
W = np.random.randn(D, H) * 0.001

(matrix of small random numbers drawn from a Gaussian distribution)

Set the bias to zero (or small nonzero):

b = np.zeros(H)

(if you use RelU activations, folks tend to initialize bias to small positive number)
Slide: Andrej Karpathy



(4) Overtit a small portion of the data

model = init two layer model(32*32*3, 50, 10) # input size, hidden size, number rlasses
trainer = ClassifierTrainer()
X_tiny = X_train[:20] # take 20 examples 4_

y tiny = y train[:20]

best model, stats = trainer.train(X tiny, y tiny, X tiny, y tiny,
model, two layer net,
num epochs=200, reg=0.0,
update='sgd', learning rate decay=1,
sample batches = False,
learning rate=le-3, verbose=True)

The above code:
- take the first 20 examples from
CIFAR-10
- turn off regularization (reg = 0.0)
- use simple vanilla ‘sgd’



(4) Overfit a small portion ot the data

model = init two layer model(32*32*3, 50, 10) # input size, hidden size, number of
trainer = ClassifierTrainer()
X_tiny = X_train[:20] # take 20 examples <«mu————

y tiny = y train[:20]

best model, stats = trainer.train(X tiny, y tiny, X tiny, y tiny,
model, two layer net,
num epochs=200, reg=0.0,
update='sqgd', learning rate decay=1,
sample batches = False,
learning rate=le-3, verbose=True)

Details:

'sgd’: vanilla gradient descent (no momentum etc)
learning_rate_decay = 1: constant learning rate
sample_batches = False (full gradient descent, no batches)

epochs = 200: number of passes through the data
Slide: Andrej Karpathy



(4) Overfit a small portion ot the data

100% accuracy on the training set (good)

Finished epoch 1 / 200: cost 2.302603, train: 0.400000, val ©.400000, lr 1.000000e-03

Finished epoch 2 / 200: cost 2.302258, train: 0.450000, val 0.450000, lr 1.000000e-03 :

Finished epoch 3 / 200: cost 2.301849, train: 0.600000, val 0.600000, lr 1.000000e-03

Finished epoch 4 / 200: cost 2.301196, train: 0.650000, val 0.650000, lr 1.000000e-03

Finished epoch 5 / 200: cost 2.300044, train: 0.650000, val 0.650000, lr 1.000000e-03

Finished epoch 6 / 200: cost 2.297864, train: 0.550000, val 0.550000, lr 1.000000e-03

Finished epoch 7 / 200: cost 2.293595, train: 0.600000, val 0.600000, lr 1.000000e-03

Finished epoch 8 / 200: cost 2.285096, train: 0.550000, val 0.550000, lr 1.000000e-03

Finished epoch 9 / 200: cost 2.268094, train: 0.550000, val 0.550000, lr 1.000000e-03

Finished epoch 10 / 200: cost 2.234787, train: 0.500000, val 0.500000, lr 1.000000e-03

Finished epoch 11 / 200: cost 2.173187, train: 0.500000, val 0.500000, lr 1.000000e-03

Finished epoch 12 / 200: cost 2.076862, train: 0.500000, val 0.500000, lr 1.000000e-03

Finished epoch 13 / 200: cost 1.974090, train: 0.400000, val 0.400000, lr 1.000000e-03

Finished epoch 14 / 200: cost 1.895885, train: 0.400000, val 0.400000, lr 1.000000e-03

Finished epoch 15 / 200: cost 1.820876, train: 0.450000, val 0.450000, lr 1.000000e-03

Finished epoch 16 / 200: cost 1.737430, train: 0.450000, val 0.450000, lr 1.000000e-03

Finished epoch 17 / 200: cost 1.642356, train: 0.500000, val 0.500000, lr 1.000000e-03

Finished epoch 18 / 200: cost 1.535239, train: 0.600000, val 0.600000, lr 1.000000e-03

Finished epoch 19 / 200: cost 1.421527, train: 0.600000, val 0.600000, lr 1.000000e-03 .
Finished epoch 195 / 200: cost 0.002694, train:j1.000000 .000000, lr 1.000000e-03
Finished epoch 196 / 200: cost 0.002674, train:j1.000000 .000000, lr 1.000000e-03
Finished epoch 197 / 200: cost 0.002655, train:j1.000000 .000000, lr 1.000000e-03
Finished epoch 198 / 200: cost 0.002635, train:|1.000000 .000000, lr 1.000000e-03
Finished epoch 199 / 200: cost 0.002617, train:j1.000000 .000000, 1lr 1.000000e-03
Finished epoch 200 / 200: cost 0.002597, train:j1.000000 .000000, lr 1.000000e-03
finished optimization. best validation accuracy: 1.00000C

Slide: Andrej Karpathy



(4) Find a learning rate

low learning rate
o Q: Which one of these
high learning rate . .
learning rates is best to use?

good learning rate




L earning rate schedule

How do we change the learning rate over time?
Various choices:

e Step down by a factor of 0.1 every 50,000
mini-batches (used by SuperVision [Krizhevsky 2012])

* Decrease by a factor of 0.97 every epoch
(used by GooglLeNet [Szegedy 2014])

e Scale by sgrt(1-t/max_t)
(used by BVLC to re-implement GooglLeNet)

» Scale by 1/t
e Scale by exp(-t)



Summary of things to fiddle

* Network architecture
e Learning rate, decay schedule, update type

e Regularization (L2, L1, maxnorm, dropout, ...)

e Loss function (softmax, SVM, ...)

« Weight initialization

Neural network
parameters




Summary of things to fiddle

* Network architecture
e Learning rate, decay schedule, update type (+batch size)

e Regularization (L2, L1, maxnorm, dropout, ...)

e Loss function (softmax, SVM, ...)

« Weight initialization

Neural network
parameters




Questions?



Transfer Learning

“You need a lot of a data if you want to
trainfuse CNNs”



Transfer Learning

“You need a lot of &If you want to
train f@ Ns”



Donahue et al, "DeCAF: A Deep Convalutional Activation
Feature for Generic Visual Recognition”, ICML 2014

Transfer Learning with CNNs i e o e SV nctons
2014
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Transfer Learning with CNNs

1. Train on Imagenet

FC-1000
FC-4096
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MaxPool
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Donahue et al, "DeCAF: A Deep Convalutional Activation
Feature for Generic Visual Recognition”, ICML 2014
Razavian et al, "CNMN Features Off-the-Shelf: An
Astounding Baseline far Recognition”, CVPR Wiorkshaops
2014



Transfer Learning with CNNs

1. Train on Imagenet

FC-1000
FC-4096
FC-4096

MaxPool
Conv-512
Conv-512

MaxPool
Conv-512
Conv-512

MaxPool
Conv-256
Conv-256

MaxPool
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MaxPool
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2. Small Dataset (C classes)
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Reinitialize
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> Freeze these

Donahue et al, "DeCAF: A Deep Convalutional Activation
Feature for Generic Visual Recognition”, ICML 2014
Razavian et al, "CNMN Features Off-the-Shelf: An
Astounding Baseline far Recognition”, CVPR Wiorkshaops

2014

3. Bigger dataset
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With bigger
dataset, train
more layers

> Freeze these

Lower learning rate
when finetuning;
1/10 of original LR

is good starting
point
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data few layers




FC-1000
FC-4096
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MaxPool
Conv612
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Conv612
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MaxPool
Conv-256
Conv-256

MaxPool
Conv-128
Conv-128

MaxPool
Conv-64
Conv-64

Image

More specific

More generic

/

very similar

very different

dataset dataset
very little data | Use Linear You're in
Classifier on trouble... Try
top layer linear classifier
from different
stages
quite a lot of Finetune a Finetune a
data few layers larger number
of layers




Transfer learning with CNNs is pervasive...
(it's the norm, not an exception)

Object Detection
(Fast R-CNN)

Image Captioning: CNN + RNN
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Karpathy and Fei-F ei, "Deep Yisual-Semantic Alignments for
Generating Image Descriptions”, CYPR 2015

Girshick, "Fast R-CNN", ICCY 2015
Figure copyright IEEE, 2015. Reproduced for educational purposes.

Figure copyright Ross Girshick, 2015. Reproduc ed with permission.




Transfer learning with CNNs is pervasive...
(it's the norm, not an exception)

Object Detection -
(Fast R-CNN) [t s CNN pretrained Image Captioning: CNN + RNN
: on ImageNet

Bounding hox
= regrassors

Propnsal
classifizr

“straw” “hat” END

Exlernal proposal
algorithm
e.g. selective search

ConvNet
{applied to entira

START “straw” “hat”

Karpathy and Fei-Fei, "Deep Visual-Semantic Alignments for
Generating Image Descriptions”, CYPR 2015

Girshick, "Fast R-CNN", ICCY 2015 X ! :
Figure copyright IEEE, 2015. Reproduced for educational purposes.

Figure copyright Ross Girshick, 2015. Reproduced with permission.



Transfer learning with CNNs is pervasive...
(it's the norm, not an exception)

Object Detection _
(Fast R-CNN) e CNN pretrained

> 7 t on ImageNet

Image Captioning: CNN + RNN

Propasal | Linear +
classifizr softmax

“straw” “hat” END

External proposal —
algorithm
e.g selective zearch

ConvNet
{(applied to entira
image}

START “straw” “hat”

Word vectors pretrained
. Karpathy and Fei-Fei, "Deep Visual-Semantic Alignments for
Girshick, "Fast R-CNN", ICCY 2015 Wlt h Wo rd2v e C Generating Image Descriptions”, CYPR 2015

Figure copyright Ross Girshick, 2015. Reproduced with permission. Figure copyright IEEE, 2015. Reproduced for educational purposes.



Takeaway for your projects and beyond.:
Have some dataset of interest but it has < ~1M Images?

1. Find a very large dataset that has
similar data, train a big ConvNet there

2. Transfer learn to your dataset _
Common modern approach:

start with a ResNet
architecture pre-trained on
ImageNet, and fine-tune on
your (smaller) dataset

Deep learning frameworks provide a “Model Zoo" of
pretrained models so you don’t need to train your own

TensorFlow: htips.//qithub.com/tensorflow/models
PyTorch: htips://aithub.com/pytorch/vision




Questions?



