CS5670: Computer Vision

Training Deep Networks

Announcements

- In class final on May 10
 - Open book, open note
- Project 5 (Neural Radiance Fields) due Weds, May 4, 2022 (by 8:00 pm)
- Course evaluations are open starting Tuesday, May 3
 - We would love your feedback!
 - Small amount of extra credit for filling out
 - What you write is still anonymous, instructors only see whether students filled it out
 - Link coming soon

Readings

- Convolutional neural networks
 - http://cs231n.github.io/convolutional-networks/
- Stochastic Gradient Descent & Backpropagation
 - http://cs231n.github.io/optimization-1/
 - http://cs231n.github.io/optimization-2/
- Best practices for training CNNs
 - http://cs231n.github.io/neural-networks-2/
 - http://cs231n.github.io/neural-networks-3/

Deep networks can be used for...

Image classification

View synthesis

And much more!

Convolutional neural networks

Layer types:

- Convolutional layer
- Pooling layer
- Fully-connected layer

Training the network

 Given a network architecture (CNN, MLP, etc) and some training data, how do we actually set the weights of the network?

Gradient descent: iteratively follow the slope

Stochastic gradient descent (SGD)

- Train on batches of data (e.g., 32 images or 32 rays) at a time
- A full pass through the dataset (i.e., using batches that cover the training data) is called an **epoch**
- Usually need to train for multiple epochs, i.e., multiple full passes through the dataset to converge
- Stochastic gradient descent approximates the true gradient, but works remarkably well in practice
- Use backpropagation to automatically compute gradients on each batch

How do you actually train these things?

Roughly speaking:

Gather labeled data

Find a ConvNet architecture

Minimize the loss

Training a convolutional neural network

- Split and preprocess your data
- Choose your network architecture
- Initialize the weights
- Find a learning rate and regularization strength
- Minimize the loss and monitor progress
- Fiddle with knobs

Why so complicated?

 Training deep networks can be finicky – lots of parameters to learn, complex, non-linear optimization function

What Makes Training Deep Nets Hard?

- It's easy to get high training accuracy:
 - Use a huge, fully connected network with tons of layers
 - Let it memorize your training data
- Its hard to get high test accuracy

This would be an example of *overfitting*

Related Question: Why Convolutional Layers?

- A fully connected layer can generally represent the same functions as a convolutional one
 - Think of the convolutional layer as a version of the FC layer with constraints on parameters

What is the advantage of CNNs?

Overfitting: More Parameters, More Problems

- Non-Deep Example: consider the function $\ x^2 + x$
- Let's take some noisy samples of the function...

Overfitting: More Parameters, More Problems

• Now lets fit a polynomial to our samples of the form $P_N(x) = \sum_{k=0}^n x^k p_k$

Overfitting: More Parameters, More Problems

• A model with more parameters can represent more functions

• E.g.,: if
$$P_N(x) = \sum_{k=0}^N x^k p_k$$
 Phen P_{15}

 More parameters will often reduce training error but increase testing error. This is overfitting.

• When overfitting happens, models do not generalize well.

Deep Learning: More Parameters, More Problems?

 More parameters let us represent a larger space of functions

 The larger that space is, the harder our optimization becomes

- This means we need:
 - More data
 - More compute resources
 - Etc.

Deep Learning: More Parameters, More Problems?

A convolutional layer looks for components of a function that are spatially-invariant

How to Avoid Overfitting: Regularization

- In general:
 - More parameters means higher risk of overfitting
 - More constraints/conditions on parameters can help
- If a model is overfitting, we can
 - Collect more data to train on
 - Regularize: add some additional information or assumptions to better constrain learning
- Regularization can be done through:
 - the design of architecture
 - the choice of loss function
 - the preparation of data
 - ...

Regularization: Architecture Choice

• "Bigger" architectures (typically, those with more parameters) tend to be more at risk of overfitting.

Regularization

Regularization reduces overfitting:

$$L = L_{\text{data}} + L_{\text{reg}} \qquad \qquad L_{\text{reg}} = \lambda \frac{1}{2} ||W||_2^2$$

$$\lambda = 0.001 \qquad \qquad \lambda = 0.01$$

$$\lambda = 0.1$$

[Andrej Karpathy http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html]

(1) Data preprocessing

Preprocess the data so that learning is better conditioned:

Figure: Andrej Karpathy

(1) Data preprocessing

For ConvNets, typically only the mean is subtracted.

A per-channel mean also works (one value per R,G,B).

Figure: Alex Krizhevsky

Batch normalization

 Side note – can also perform normalization after each layer of the network to stabilize network training ("batch normalization")

(1) Data preprocessing

Augment the data — extract random crops from the input, with slightly jittered offsets. Without this, typical ConvNets (e.g. [Krizhevsky 2012]) overfit the data.

E.g. 224x224 patches extracted from 256x256 images

Randomly reflect horizontally

Perform the augmentation live during training

Figure: Alex Krizhevsky

(2) Choose your architecture

https://playground.tensorflow.org/

(2) Choose your architecture

Very common modern choice

[Krizhevsky et al. NIPS 2012]

"GoogLeNet"

[Szegedy et al. CVPR 2015]

"VGG Net"

[Simonyan & Zisserman, ICLR 2015]

(3) Initialize your weights

Set the weights to small random numbers:

$$W = np.random.randn(D, H) * 0.001$$

(matrix of small random numbers drawn from a Gaussian distribution)

Set the bias to zero (or small nonzero):

$$b = np.zeros(H)$$

(if you use ReLU activations, folks tend to initialize bias to small positive number)

Slide: Andrej Karpathy

(4) Overfit a small portion of the data

The above code:

- take the first 20 examples from CIFAR-10
- turn off regularization (reg = 0.0)
- use simple vanilla 'sgd'

(4) Overfit a small portion of the data

Details:

'sgd': vanilla gradient descent (no momentum etc)
learning_rate_decay = 1: constant learning rate
sample_batches = False (full gradient descent, no batches)
epochs = 200: number of passes through the data

Slide: Andrej Karpathy

(4) Overfit a small portion of the data

100% accuracy on the training set (good)

```
Finished epoch 1 / 200: cost 2.302603, train: 0.400000, val 0.400000, lr 1.000000e-03
 Finished epoch 2 / 200: cost 2.302258, train: 0.450000, val 0.450000, lr 1.000000e-03
 Finished epoch 3 / 200: cost 2.301849, train: 0.600000, val 0.600000, lr 1.000000e-03
 Finished epoch 4 / 200: cost 2.301196, train: 0.650000, val 0.650000, lr 1.000000e-03
 Finished epoch 5 / 200: cost 2.300044, train: 0.650000, val 0.650000, lr 1.000000e-03
 Finished epoch 6 / 200: cost 2.297864, train: 0.550000, val 0.550000, lr 1.000000e-03
 Finished epoch 7 / 200: cost 2.293595, train: 0.600000, val 0.600000, lr 1.000000e-03
 Finished epoch 8 / 200: cost 2.285096, train: 0.550000, val 0.550000, lr 1.000000e-03
 Finished epoch 9 / 200: cost 2.268094, train: 0.550000, val 0.550000, lr 1.000000e-03
 Finished epoch 10 / 200: cost 2.234787, train: 0.500000, val 0.500000, lr 1.000000e-03
 Finished epoch 11 / 200: cost 2.173187, train: 0.500000, val 0.500000, lr 1.000000e-03
 Finished epoch 12 / 200: cost 2.076862, train: 0.500000, val 0.500000, lr 1.000000e-03
 Finished epoch 13 / 200: cost 1.974090, train: 0.400000, val 0.400000, lr 1.000000e-03
 Finished epoch 14 / 200: cost 1.895885, train: 0.400000, val 0.400000, lr 1.000000e-03
 Finished epoch 15 / 200: cost 1.820876, train: 0.450000, val 0.450000, lr 1.000000e-03
 Finished epoch 16 / 200: cost 1.737430, train: 0.450000, val 0.450000, lr 1.000000e-03
 Finished epoch 17 / 200: cost 1.642356, train: 0.500000, val 0.500000, lr 1.000000e-03
 Finished epoch 18 / 200: cost 1.535239, train: 0.600000, val 0.600000, lr 1.000000e-03
 Finished epoch 19 / 200: cost 1.421527, train: 0.600000, val 0.600000, lr 1.000000e-03
Finished epoch 195 / 200: cost 0.002694, train: 1.000000 val 1.000000, lr 1.000000e-03
Finished epoch 196 / 200: cost 0.002674, train: 1.000000
                                                               val 1.000000, lr 1.000000e-03
Finished epoch 197 / 200: cost 0.002655, train: 1.000000
                                                               val 1.000000, lr 1.000000e-03
Finished epoch 198 / 200: cost 0.002635, train: 1.000000
                                                               val 1.000000, lr 1.000000e-03
Finished epoch 199 / 200: cost 0.002617, train: 1.000000
                                                               val 1.000000, lr 1.000000e-03
Finished epoch 200 / 200: cost 0.002597, train: 1.000000
                                                               val 1.000000, lr 1.000000e-03
finished optimization. best validation accuracy: 1.000000
```

Slide: Andrej Karpathy

(4) Find a learning rate

Q: Which one of these learning rates is best to use?

Learning rate schedule

How do we change the learning rate over time?

Various choices:

- Step down by a factor of 0.1 every 50,000 mini-batches (used by SuperVision [Krizhevsky 2012])
- Decrease by a factor of 0.97 every epoch (used by GoogLeNet [Szegedy 2014])
- Scale by sqrt(1-t/max_t)
 (used by BVLC to re-implement GoogLeNet)
- Scale by 1/t
- Scale by exp(-t)

Summary of things to fiddle

- Network architecture
- Learning rate, decay schedule, update type
- Regularization (L2, L1, maxnorm, dropout, ...)
- Loss function (softmax, SVM, ...)
- Weight initialization

Neural network parameters

Summary of things to fiddle

- Network architecture
- Learning rate, decay schedule, update type (+batch size)
- Regularization (L2, L1, maxnorm, dropout, ...)
- Loss function (softmax, SVM, ...)
- Weight initialization

Neural network parameters

Questions?

Transfer Learning

"You need a lot of a data if you want to train/use CNNs"

Transfer Learning

"You need a lot of a data if you want to train/ise CNNs"

Transfer Learning with CNNs

1. Train on Imagenet

Donahue et al, "DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition", ICML 2014 Razavian et al, "CNN Features Off-the-Shelf: An Astounding Baseline for Recognition", CVPR Workshops 2014

Transfer Learning with CNNs

1. Train on Imagenet

2. Small Dataset (C classes)

Donahue et al, "DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition", ICML 2014 Razavian et al, "CNN Features Off-the-Shelf: An Astounding Baseline for Recognition", CVPR Workshops 2014

Transfer Learning with CNNs

1. Train on Imagenet

FC-1000 FC-4096 FC-4096 MaxPool Conv-512 Conv-512 MaxPool Conv-512 Conv-512 MaxPool Conv-256 Conv-256 MaxPool Conv-128 Conv-128 MaxPool Conv-64 Conv-64 Image

2. Small Dataset (C classes)

Donahue et al, "DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition", ICML 2014 Razavian et al, "CNN Features Off-the-Shelf: An Astounding Baseline for Recognition", CVPR Workshops 2014

3. Bigger dataset

	very similar dataset	very different dataset
very little data	?	?
quite a lot of data	?	?

	very similar dataset	very different dataset
very little data	Use Linear Classifier on top layer	?
quite a lot of data	Finetune a few layers	?

	very similar dataset	very different dataset
very little data	Use Linear Classifier on top layer	You're in trouble Try linear classifier from different stages
quite a lot of data	Finetune a few layers	Finetune a larger number of layers

Transfer learning with CNNs is pervasive...

(it's the norm, not an exception)

Image Captioning: CNN + RNN

Girshick, "Fast R-CNN", ICCV 2015 Figure copyright Ross Girshick, 2015. Reproduced with permission. Karpathy and Fei-Fei, "Deep Visual-Semantic Alignments for Generating Image Descriptions", CVPR 2015 Figure copyright IEEE, 2015. Reproduced for educational purposes.

Transfer learning with CNNs is pervasive...

(it's the norm, not an exception)

Girshick, "Fast R-CNN", ICCV 2015 Figure copyright Ross Girshick, 2015. Reproduced with permission. Karpathy and Fei-Fei, "Deep Visual-Semantic Alignments for Generating Image Descriptions", CVPR 2015 Figure copyright IEEE, 2015. Reproduced for educational purposes.

Transfer learning with CNNs is pervasive...

(it's the norm, not an exception)

Takeaway for your projects and beyond:

Have some dataset of interest but it has < ~1M images?

- Find a very large dataset that has similar data, train a big ConvNet there
- 2. Transfer learn to your dataset

Deep learning frameworks provide a "Model Zoo" of pretrained models so you don't need to train your own

TensorFlow: https://github.com/tensorflow/models

PyTorch: https://github.com/pytorch/vision

Common modern approach: start with a ResNet architecture pre-trained on ImageNet, and fine-tune on your (smaller) dataset

Questions?