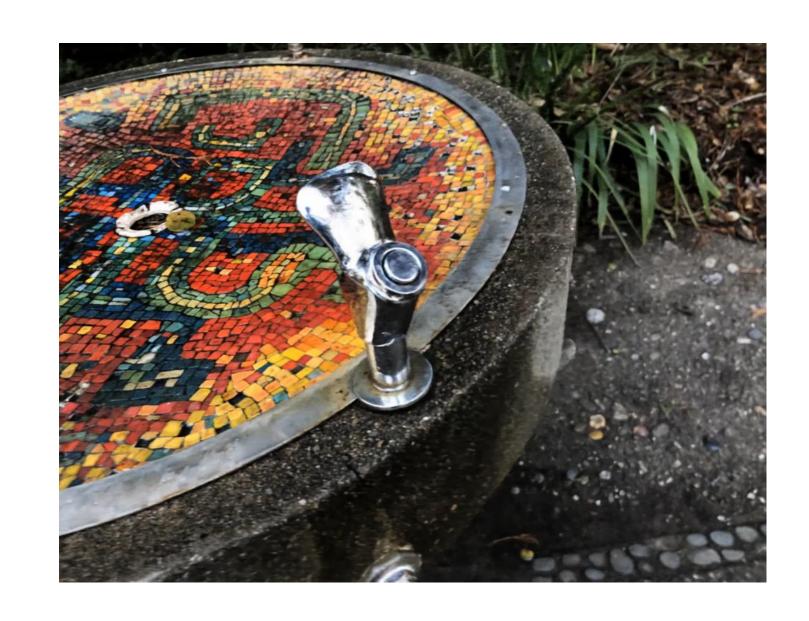
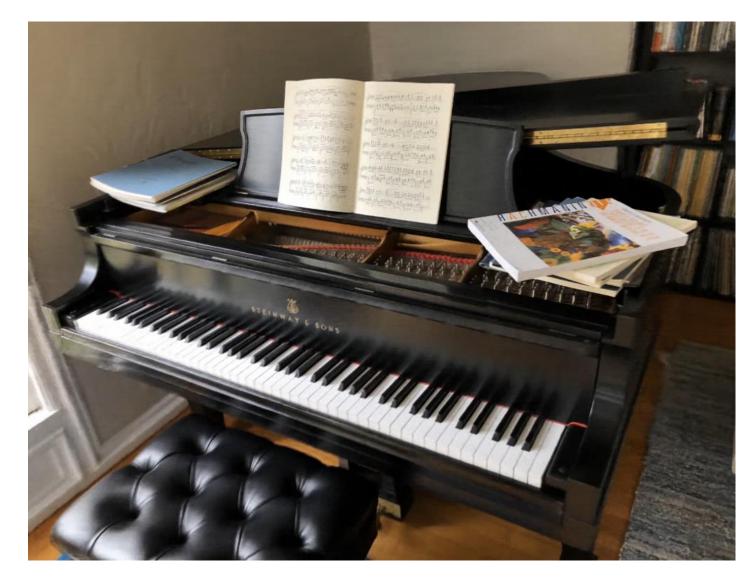
CS5670: Computer Vision

Neural Rendering & Neural Radiance Fields (NeRFs)





Announcements

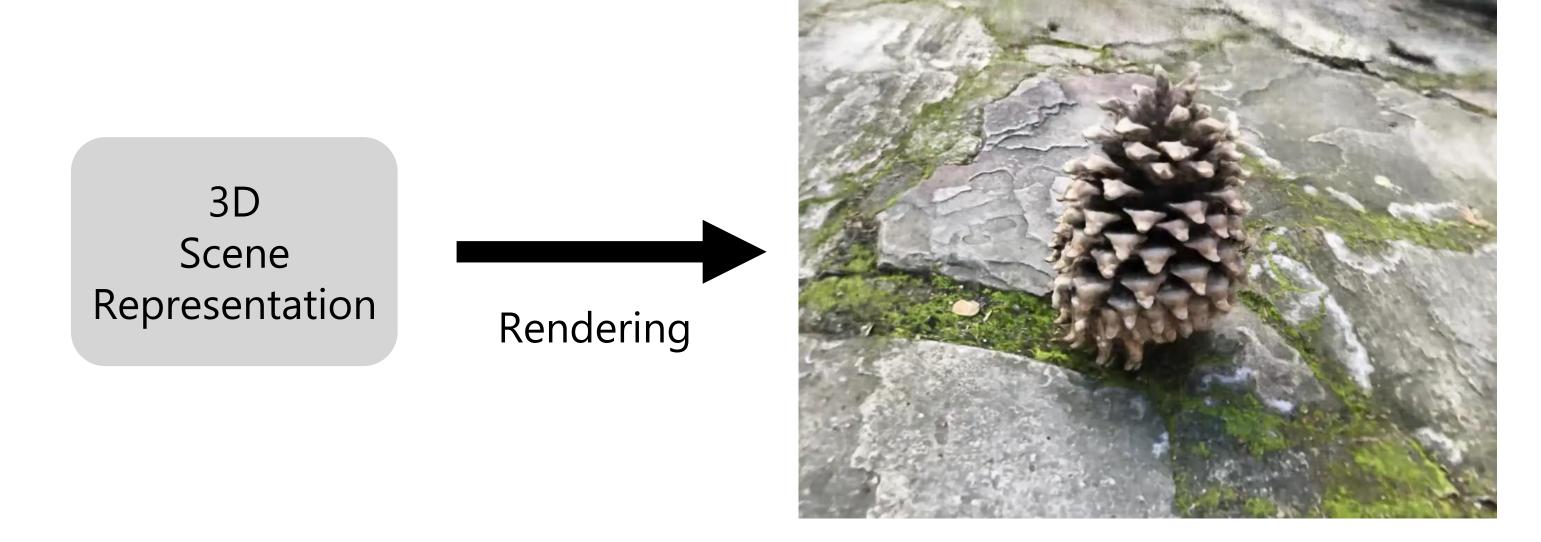
- Project 5 released today, due Wednesday, May 4, 2022 (8:00 pm)
 - To be done in groups of 2

Sample final exam online – see Ed Stem

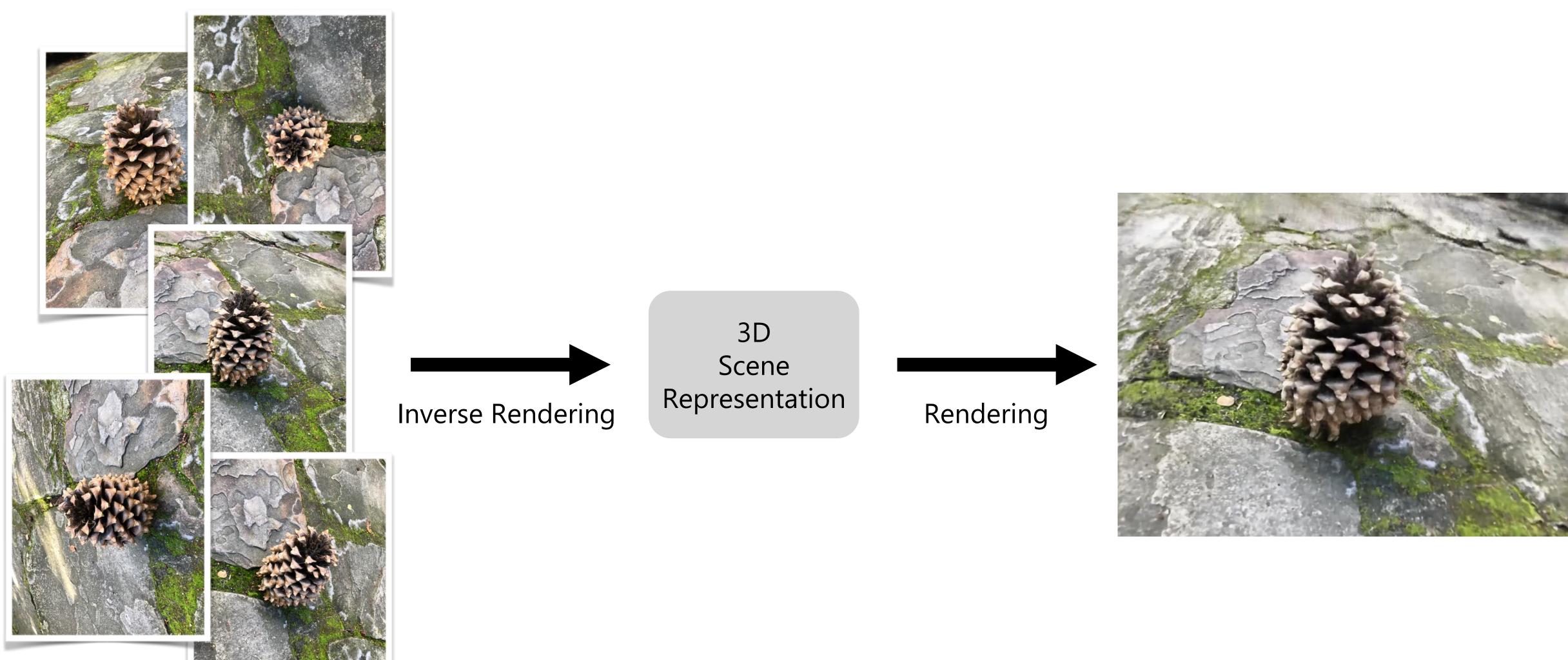
• Final exam in-class on May 10

Project 5 Demo

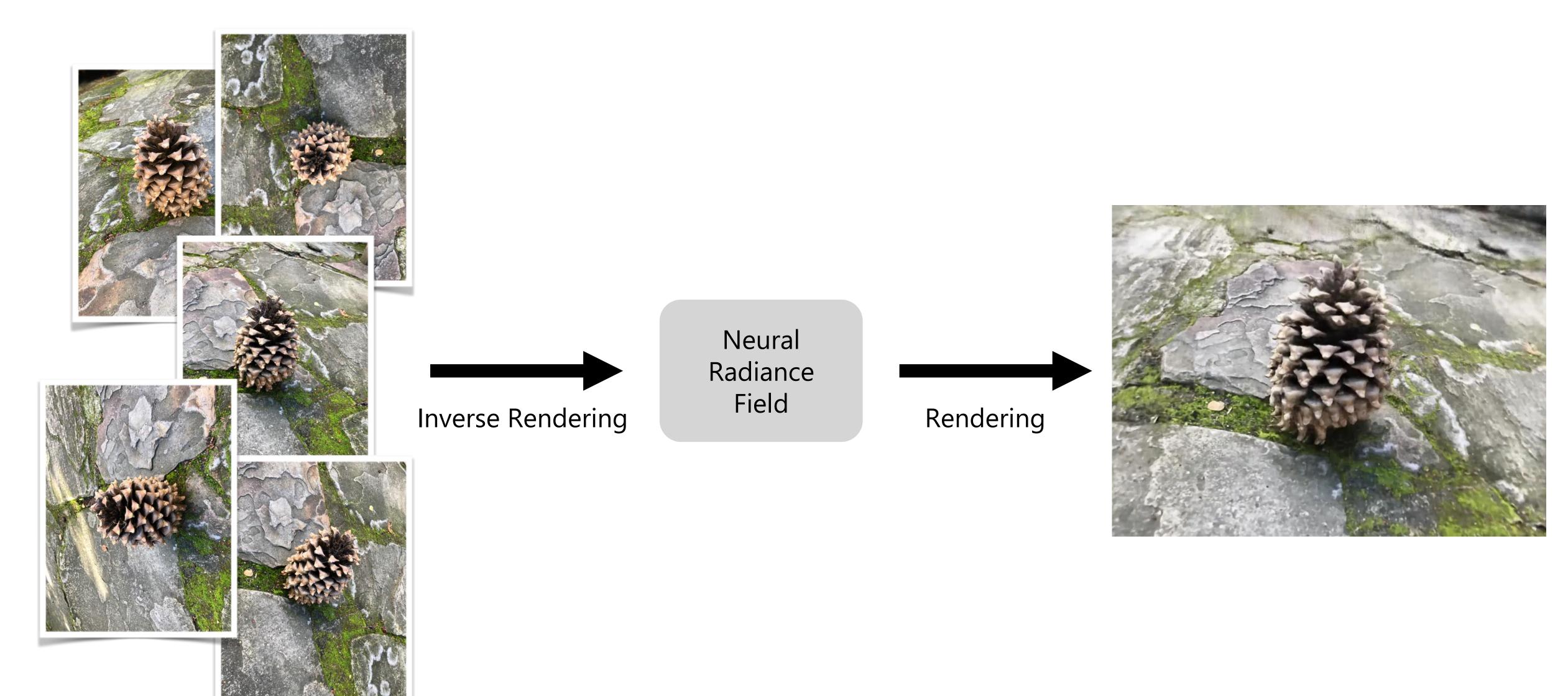
Computer vision as inverse rendering



Computer vision as inverse rendering



Neural Radiance Fields (NeRF) as an approach to inverse rendering



Deep learning for 3D reconstruction

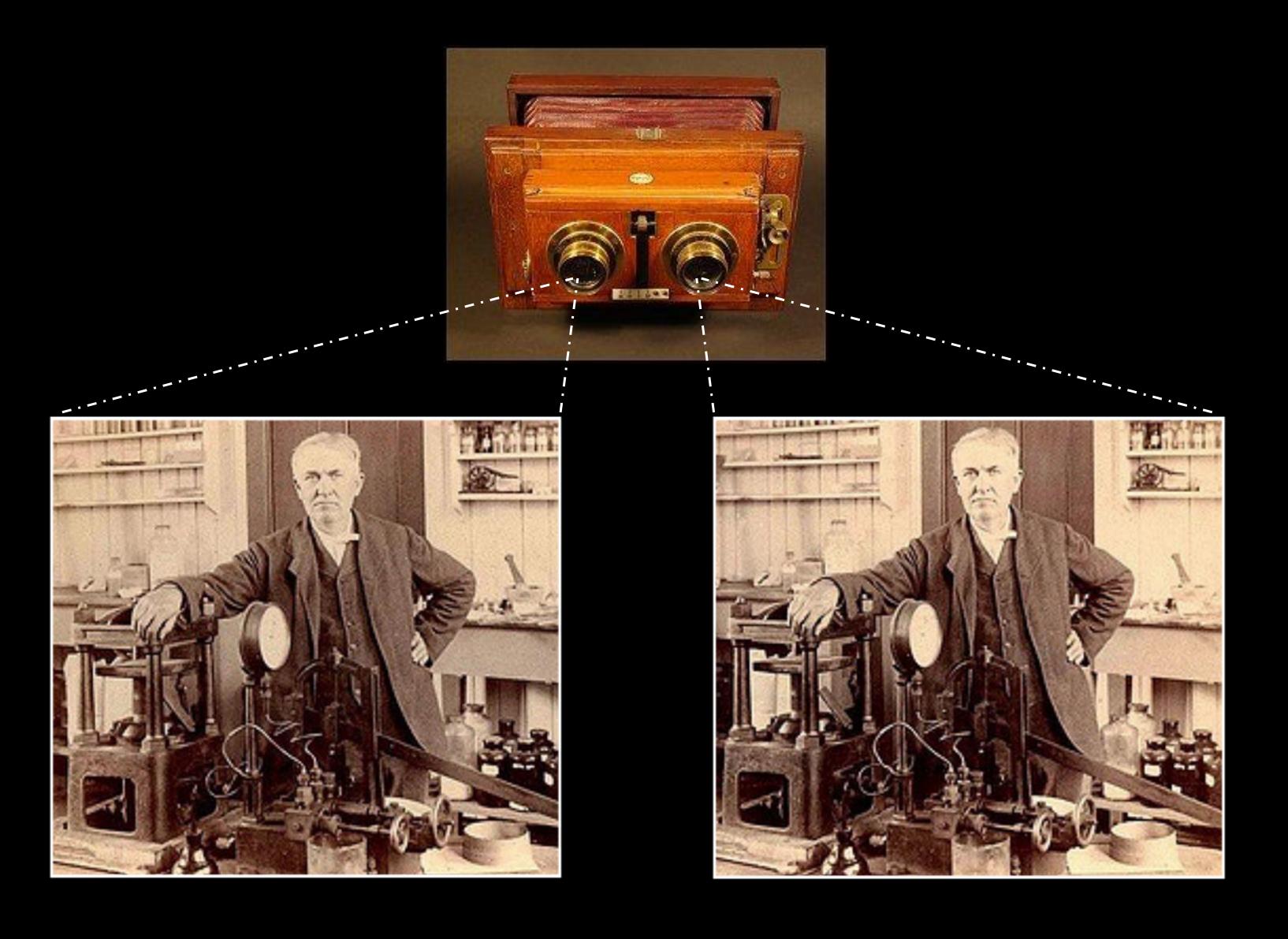
- Previously: we reconstruct geometry by running stereo or multi-view stereo on a set of images
 - "Classical" approach

- How can we leverage powerful tools of deep learning?
 - Deep neural networks
 - GPU-accelerated stochastic gradient descent

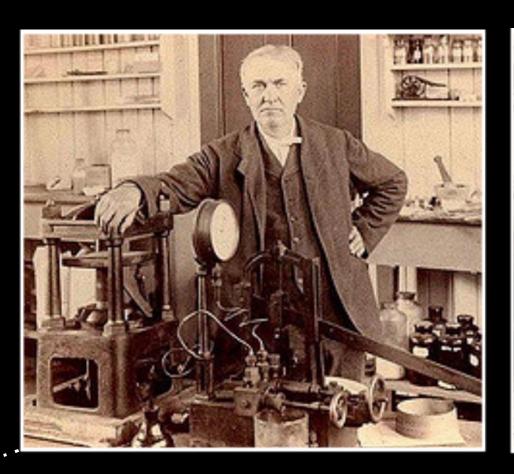
NeRF and related methods – Key ideas

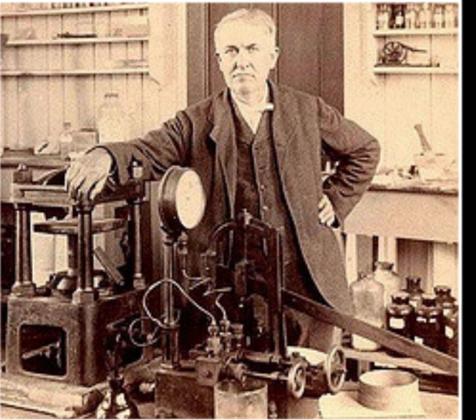
- We need to create a loss function and a scene representation that we can optimize using gradient descent to reconstruct the scene
- Differentiable rendering

Side Topic: Stereo Photography



Stereo Photography





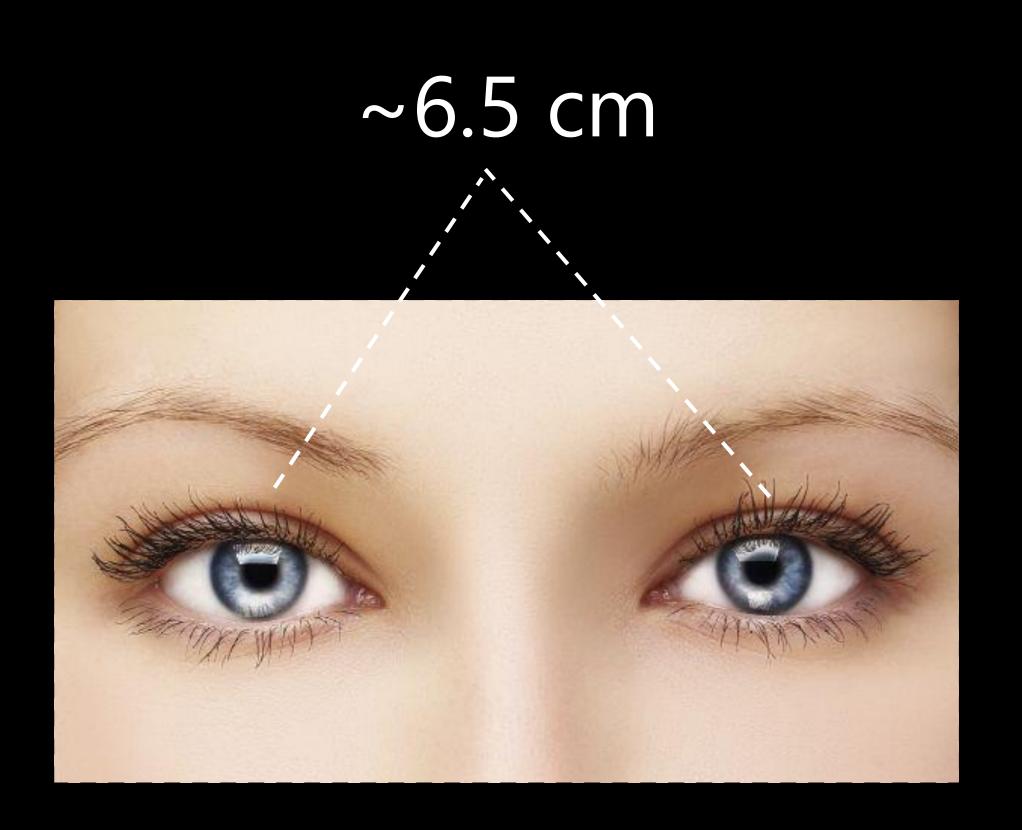
Viewing Devices

Stereo Photography

Queen Victoria at World Fair, 1851

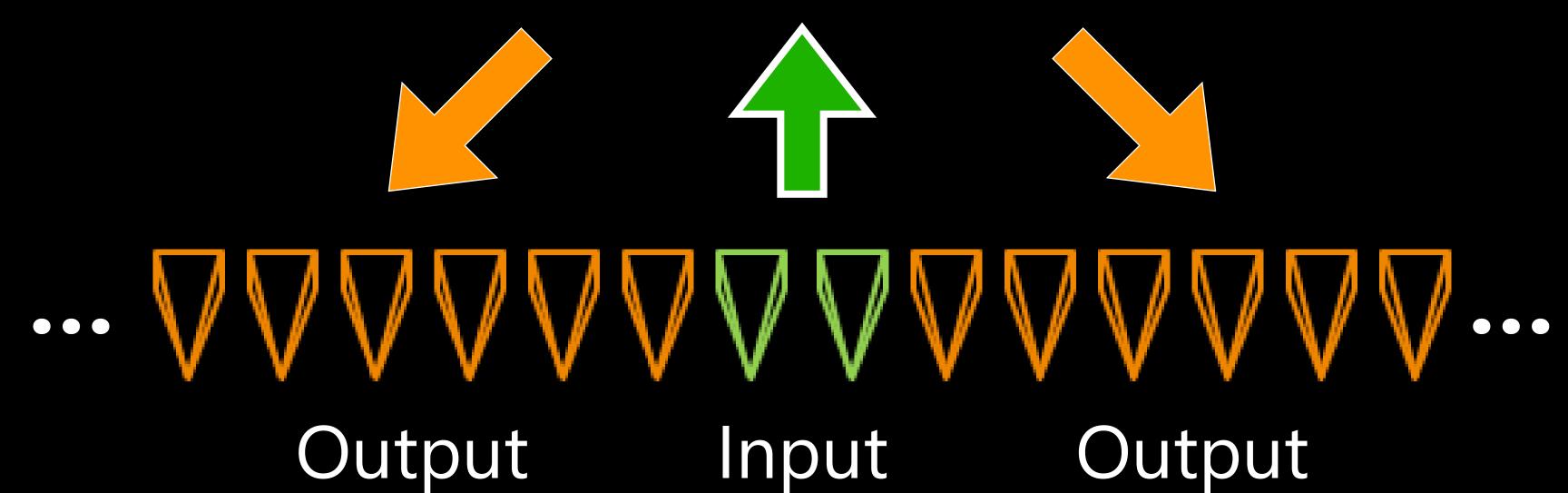
Stereo Photography

Issue: Narrow Baseline



Problem Statement

3D scene representation



Challenges

Extrapolation

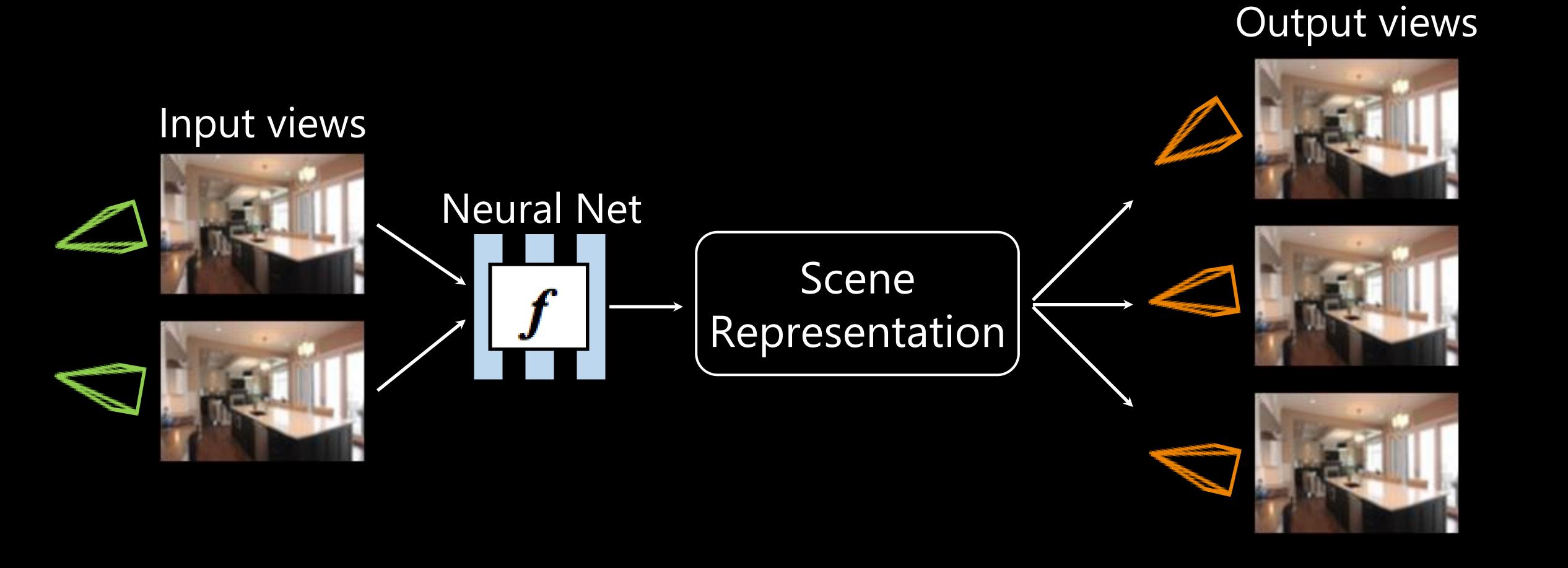
Large disocclusion

Output Input Output

Non-Lambertian Effects

Reflections, transparencies, etc.

Neural prediction of scene representations

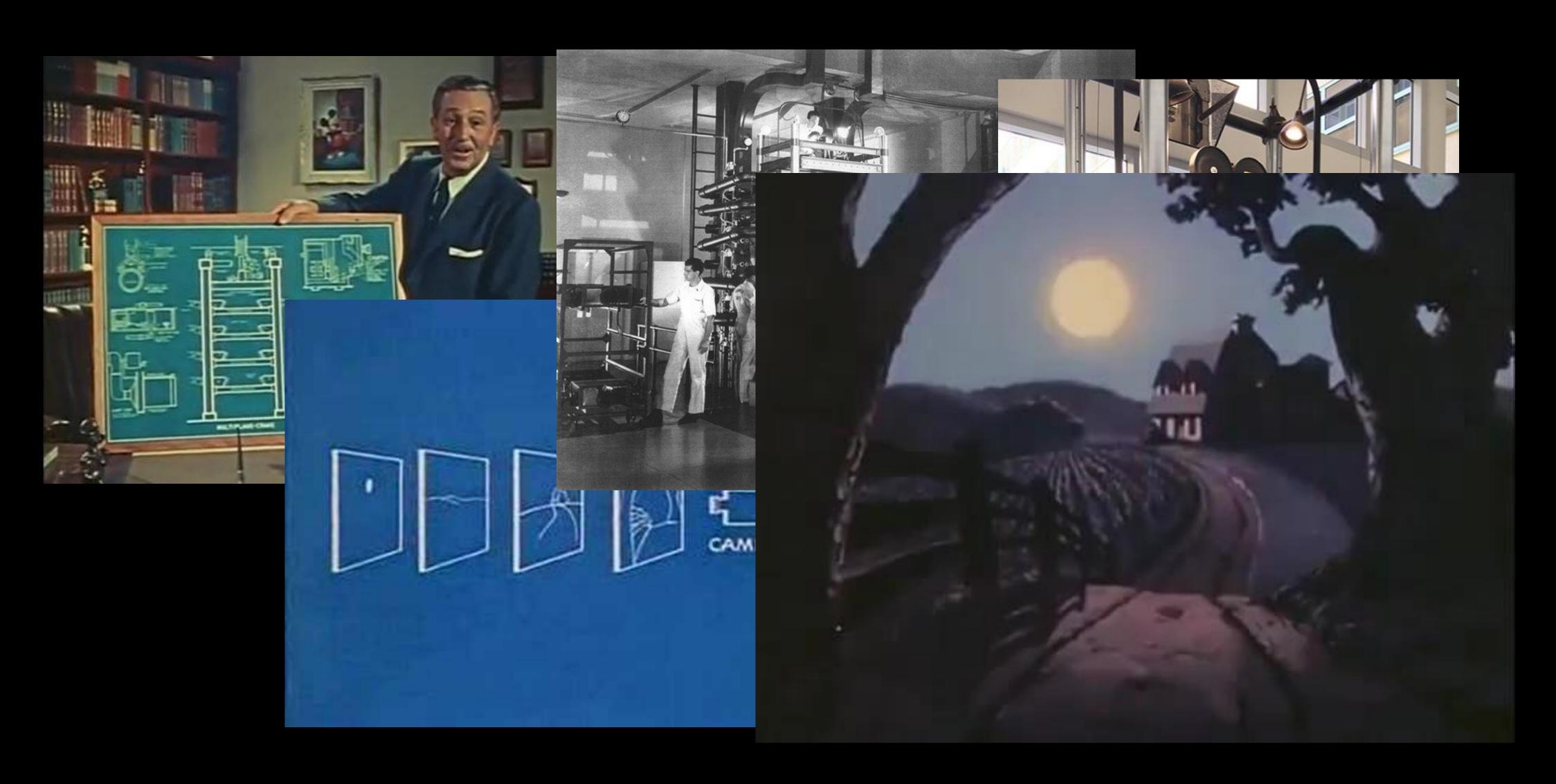


Stereo Magnification: Learning View Synthesis using Multiplane Images

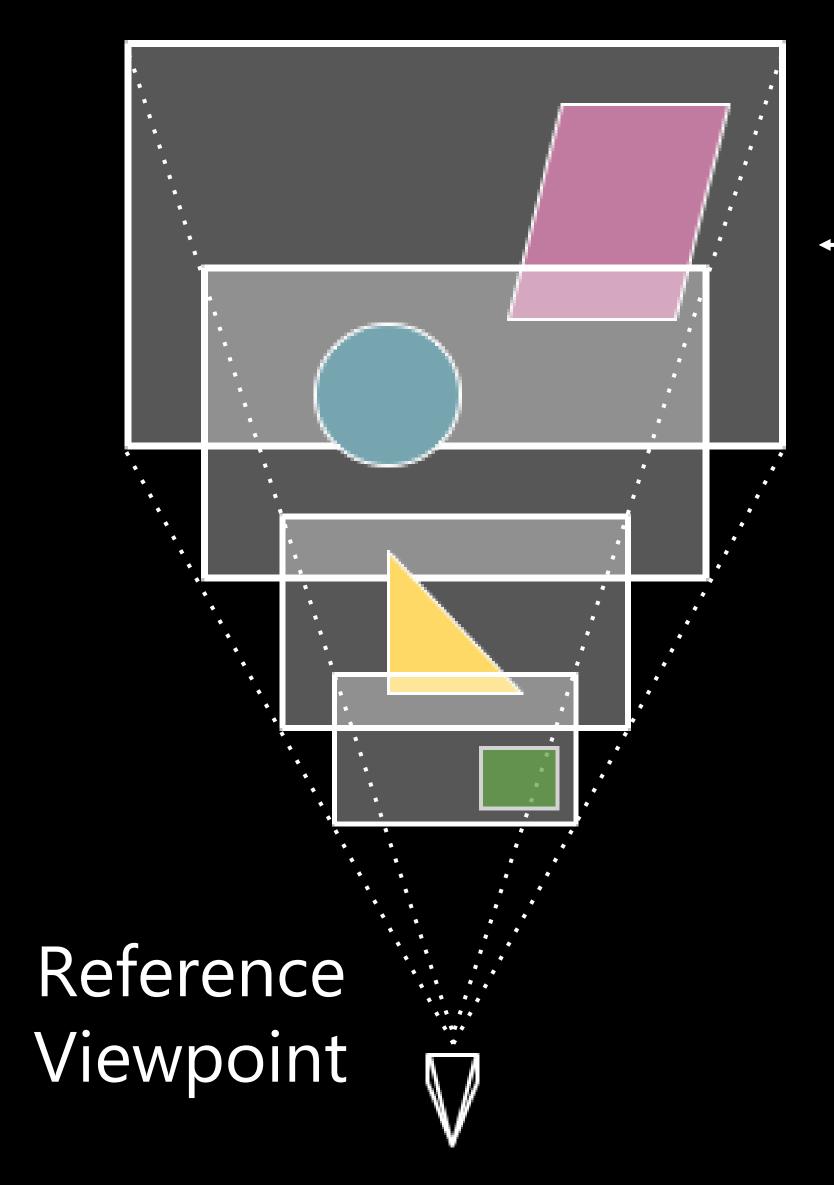
Tinghui Zhou, Richard Tucker, John Flynn, Graham Fyffe, Noah Snavely

SIGGRAPH 2018

Multiplane Camera (1937)

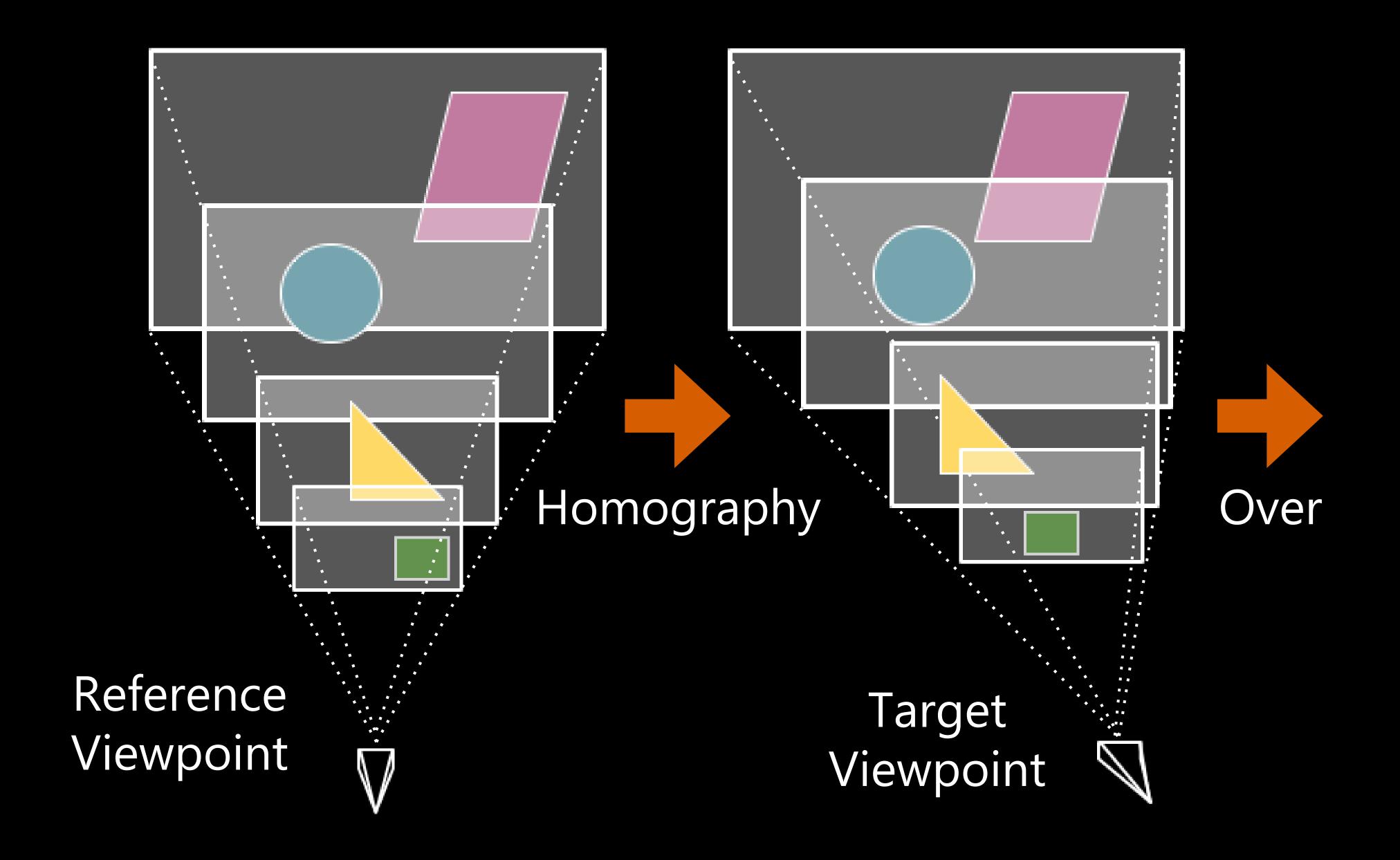


Multiplane Images (MPIs)

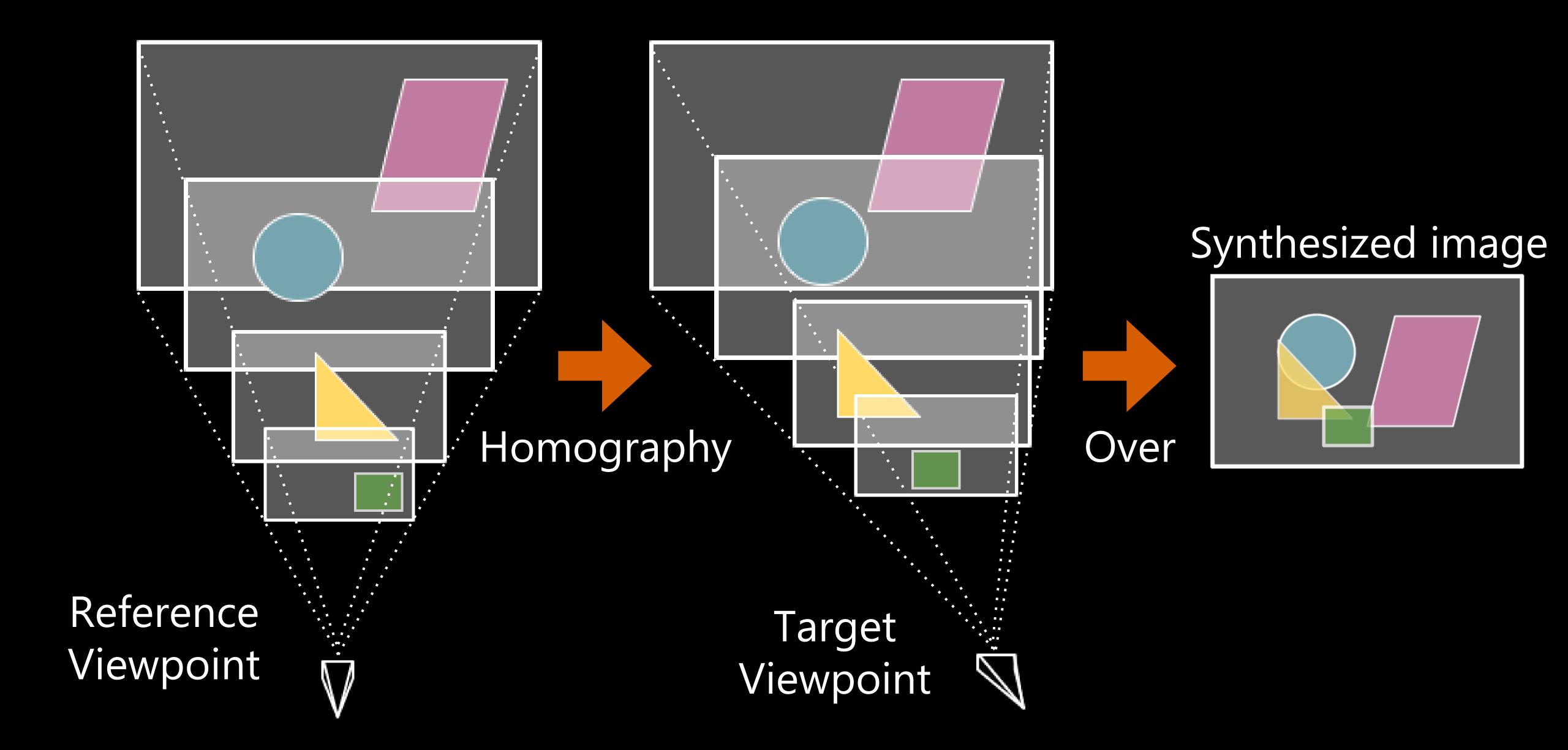


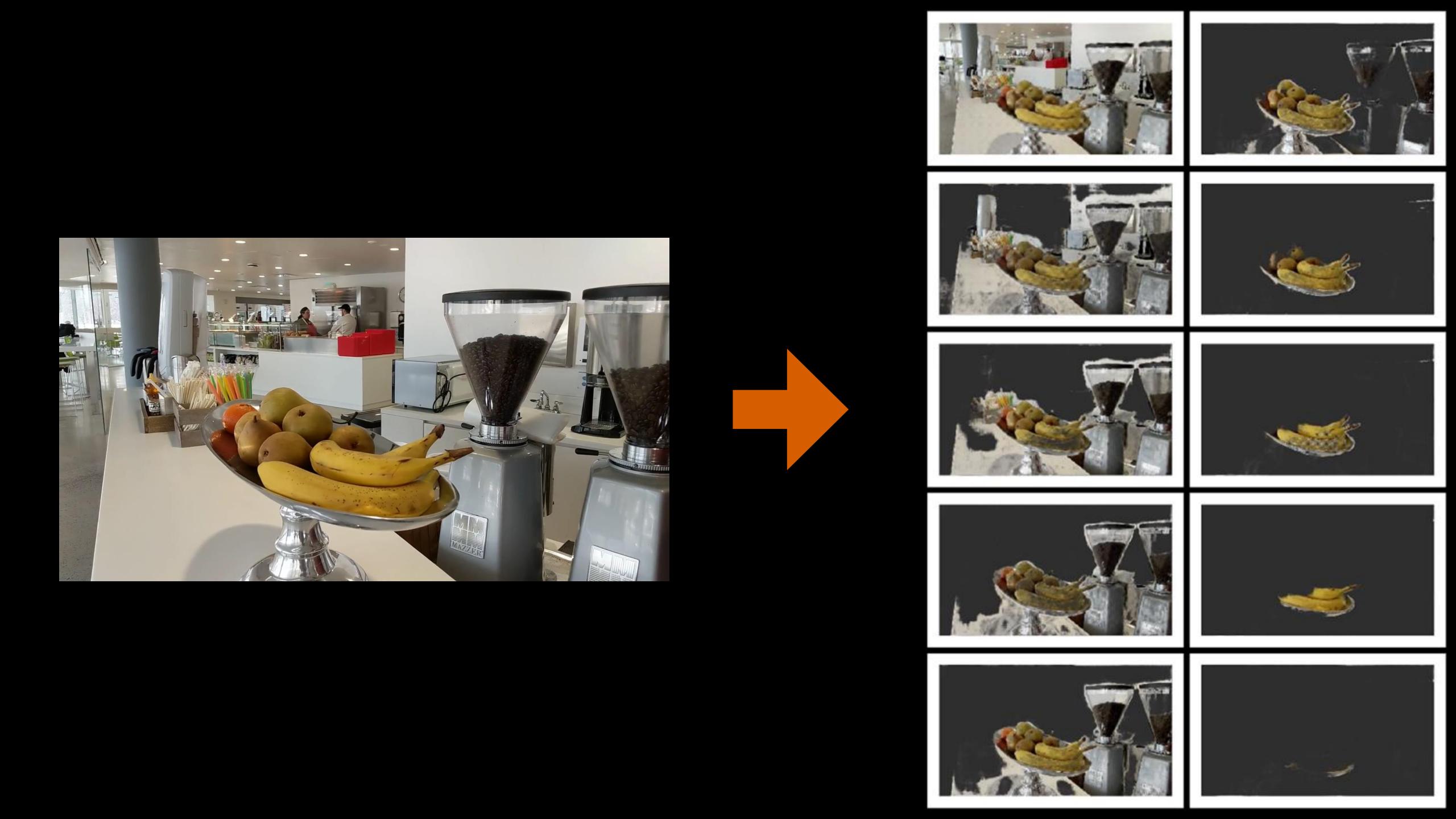
Each plane is at a fixed —depth and encoded by an RGBA image

View Synthesis using Multiplane Images

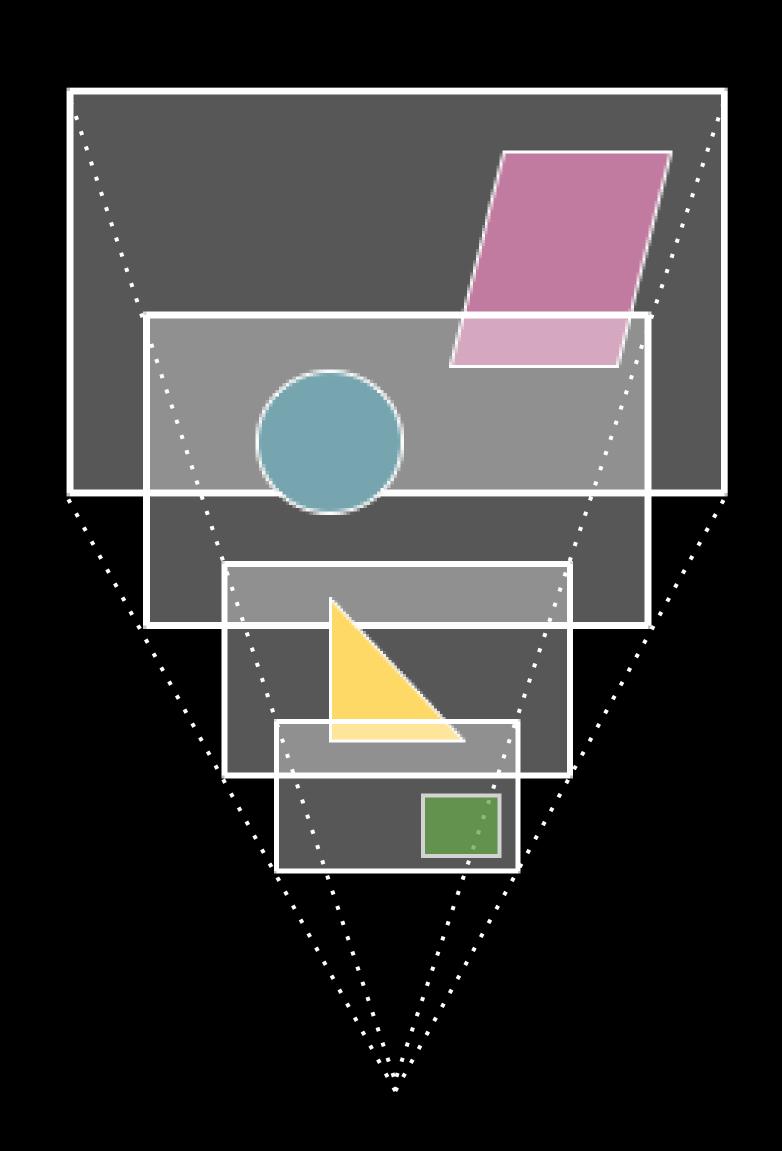


View Synthesis using Multiplane Images



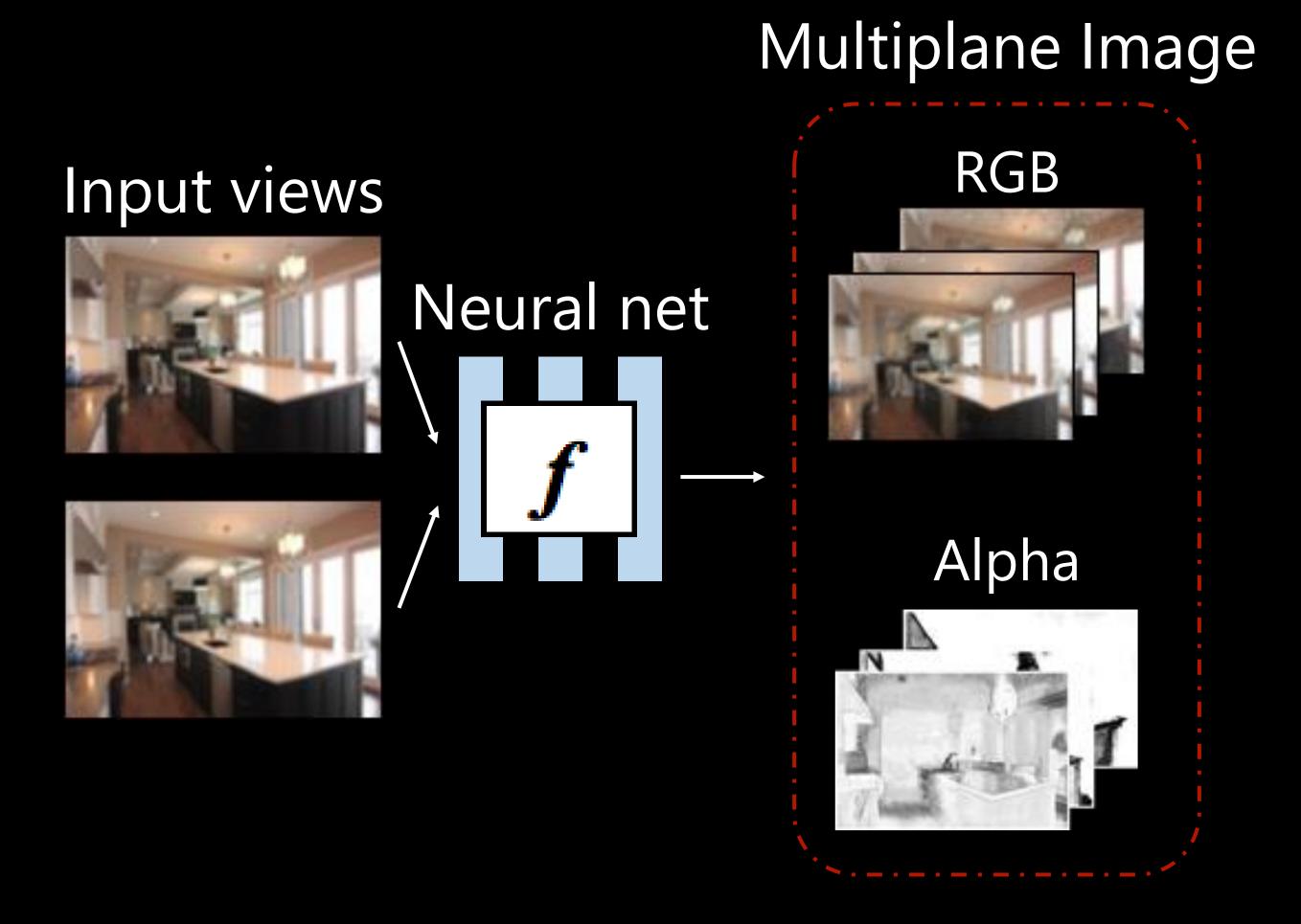


Properties of Multiplane Images

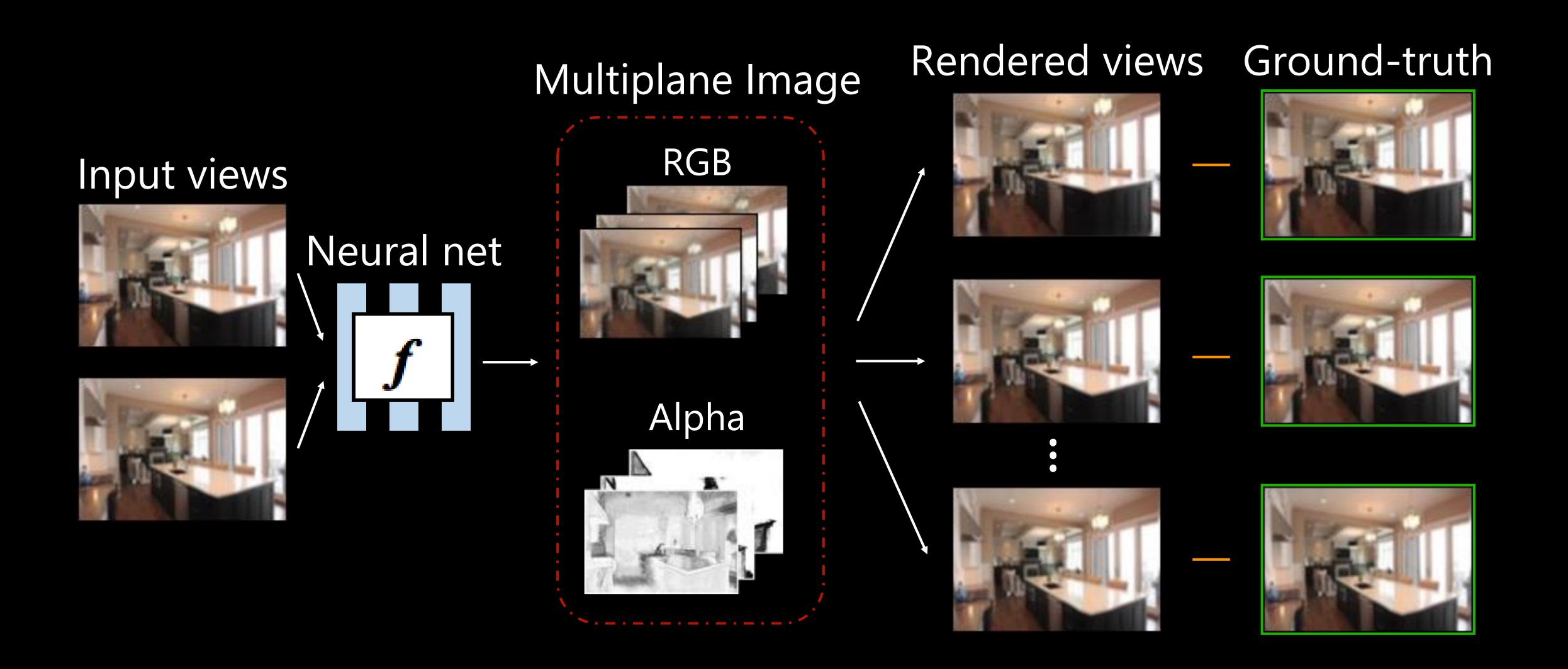


- . Models disocclusion
- Models soft edges and non-Lambertian effects
- Efficient for view synthesis
- Differentiable rendering

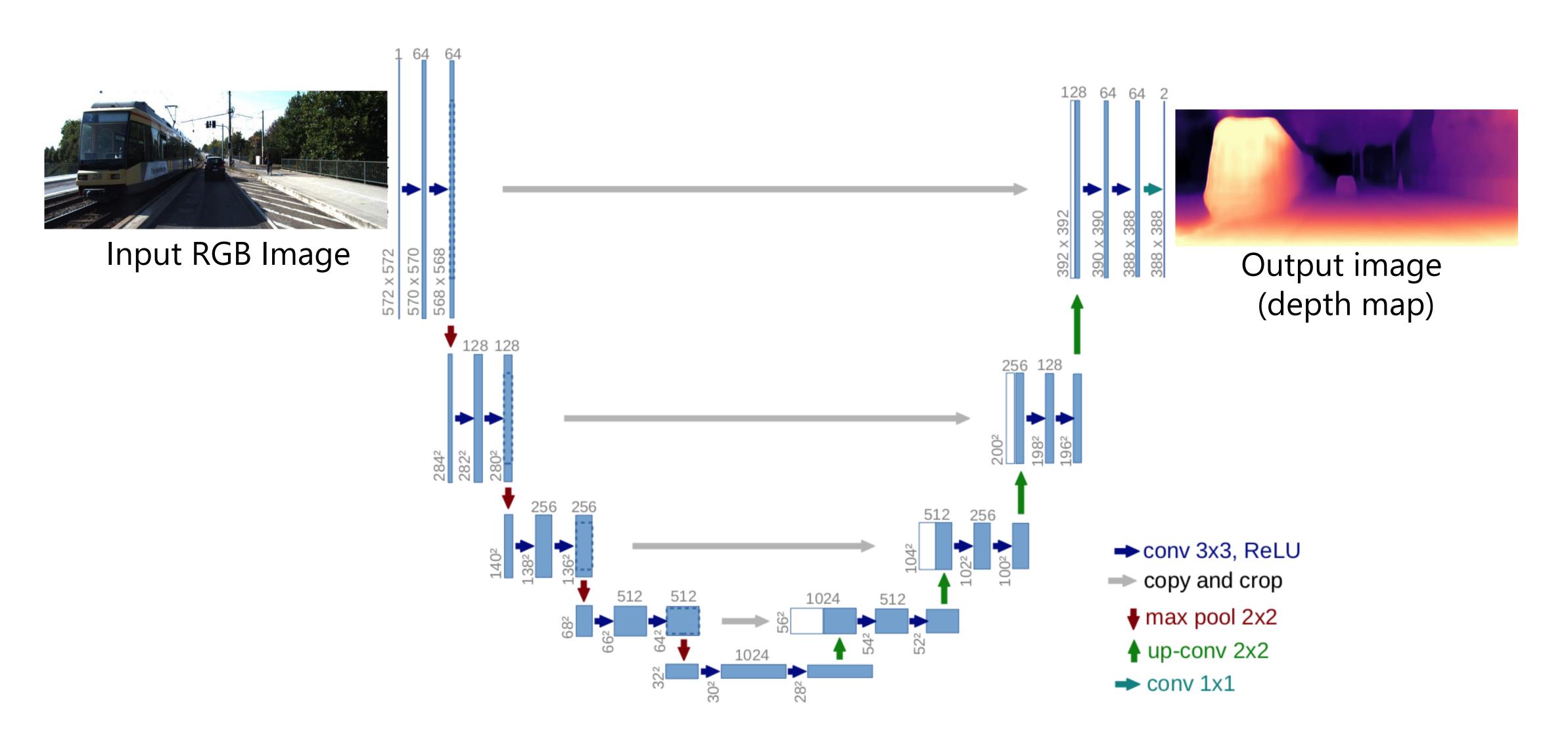
Learning Multiplane Images



Learning Multiplane Images



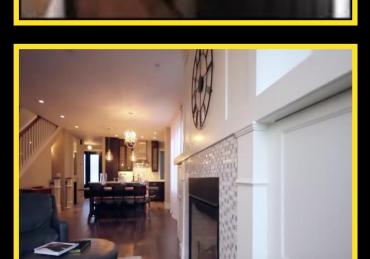
Common architecture for mapping images to images: UNet architecture



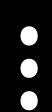
Training Data

Target view

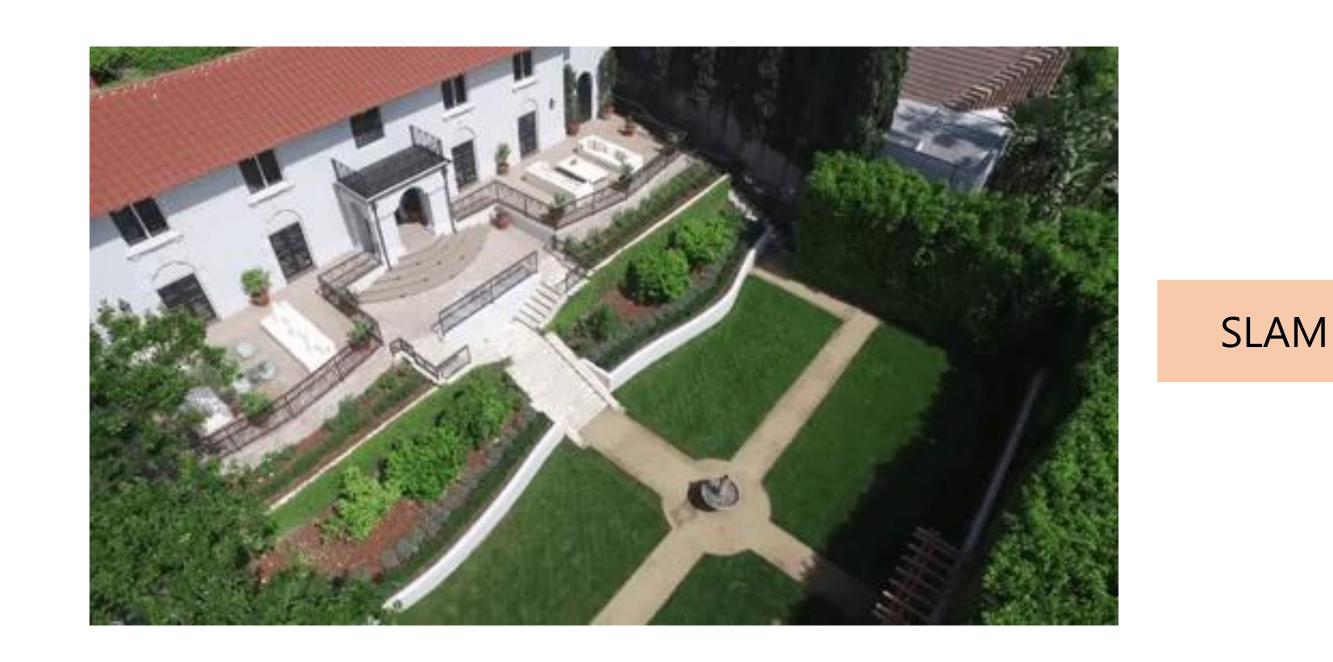
Input views

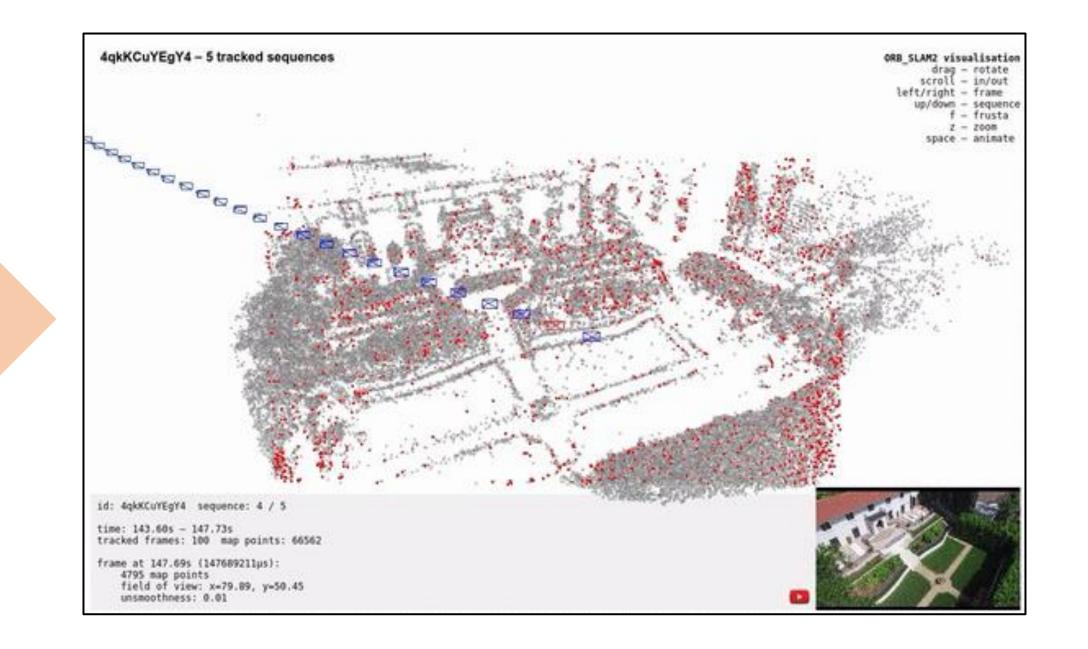


Need massive set of triplets with known camera poses



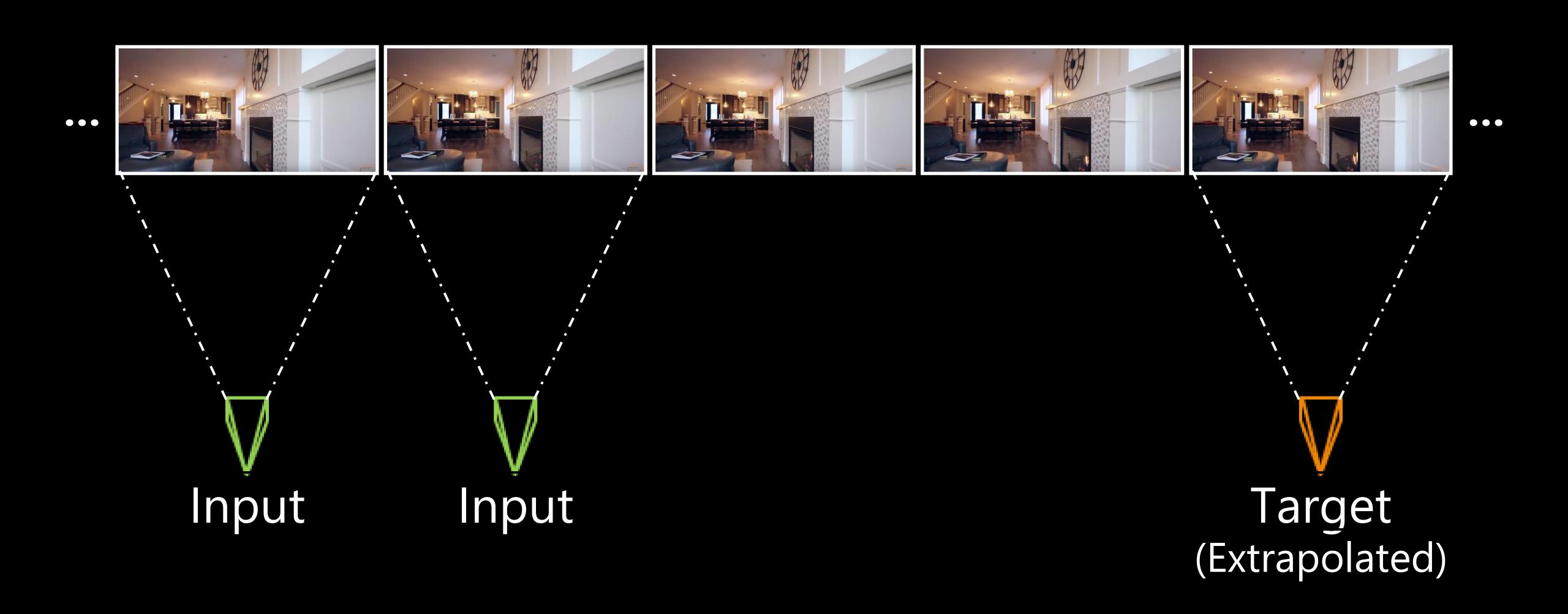
RealEstate 10K



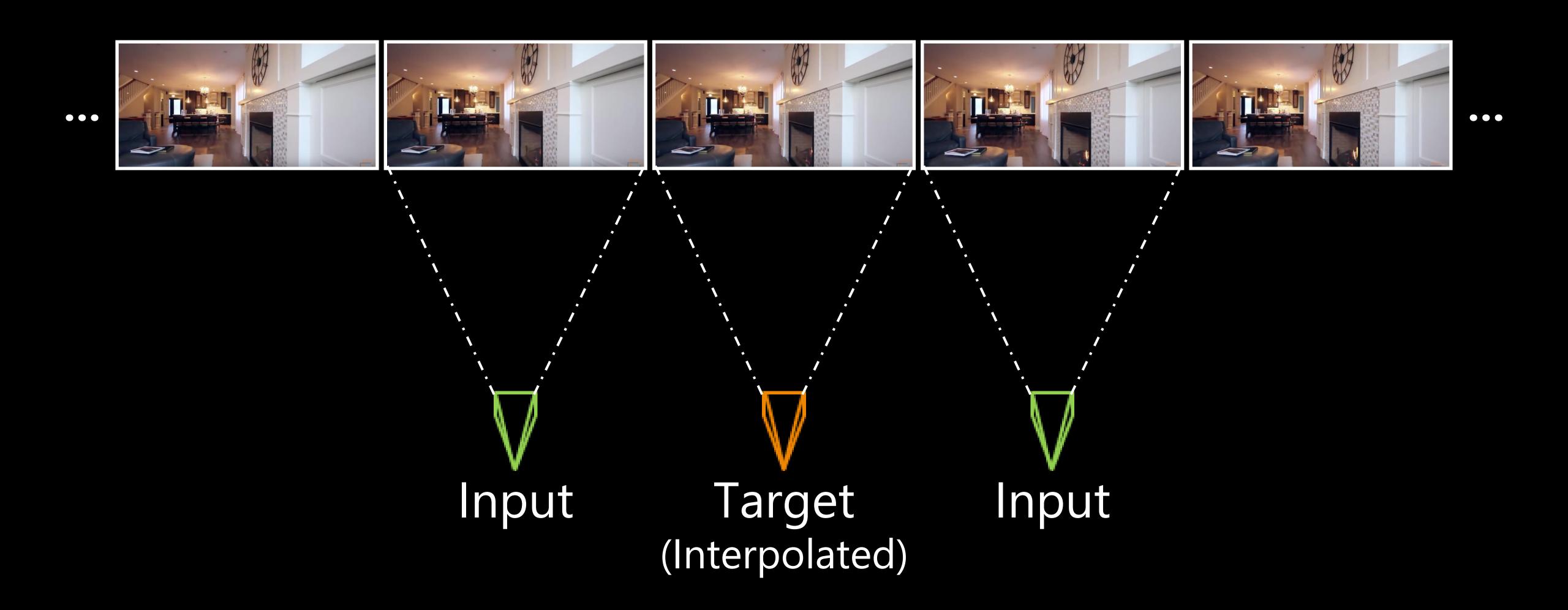


10 million frames from 80,000 video clips from 10,000 videos https://google.github.io/realestate10k/

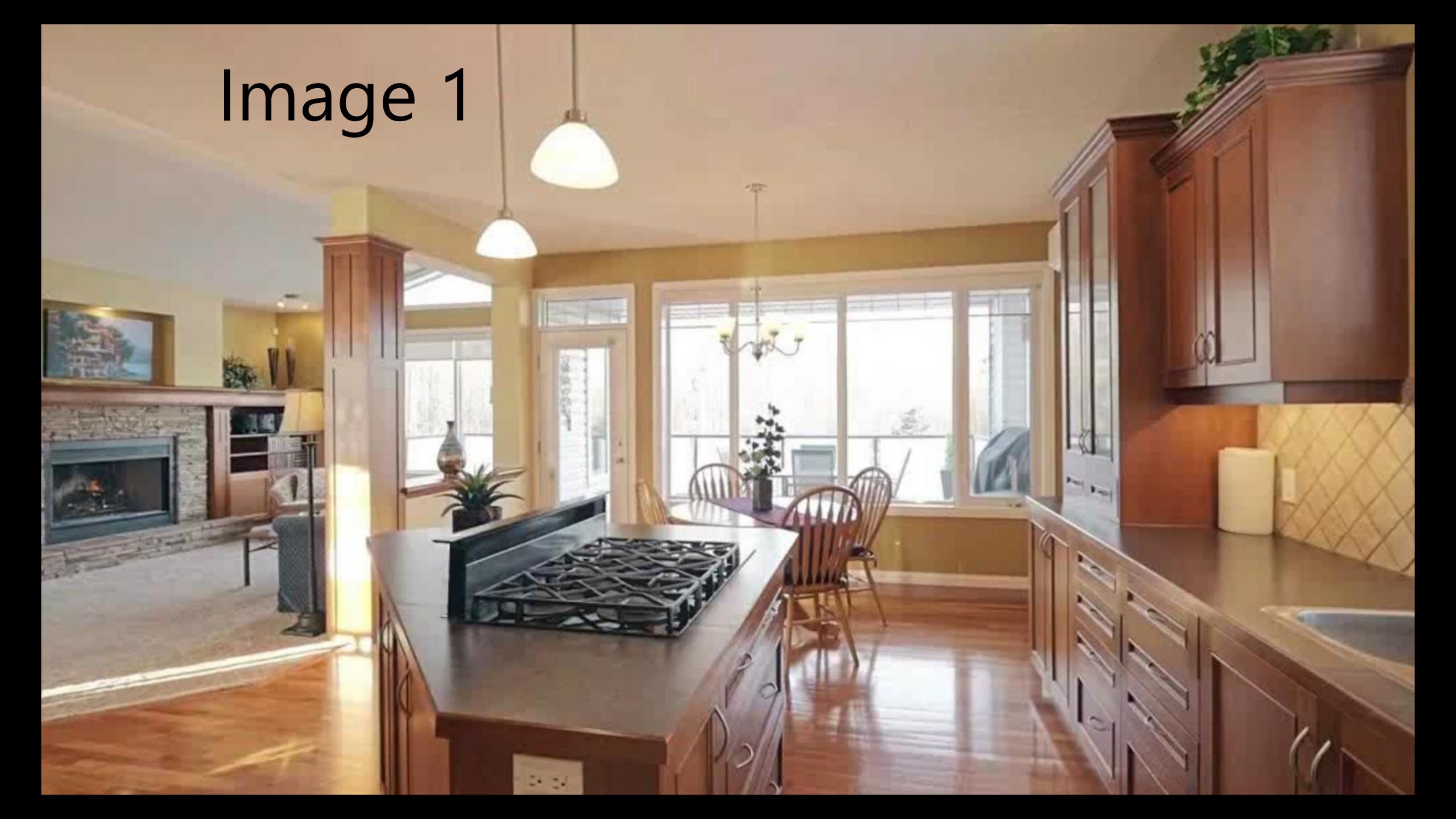
Sampling Training Examples



Sampling Training Examples



Results



Multi-plane Image (MPI)

Plane 0

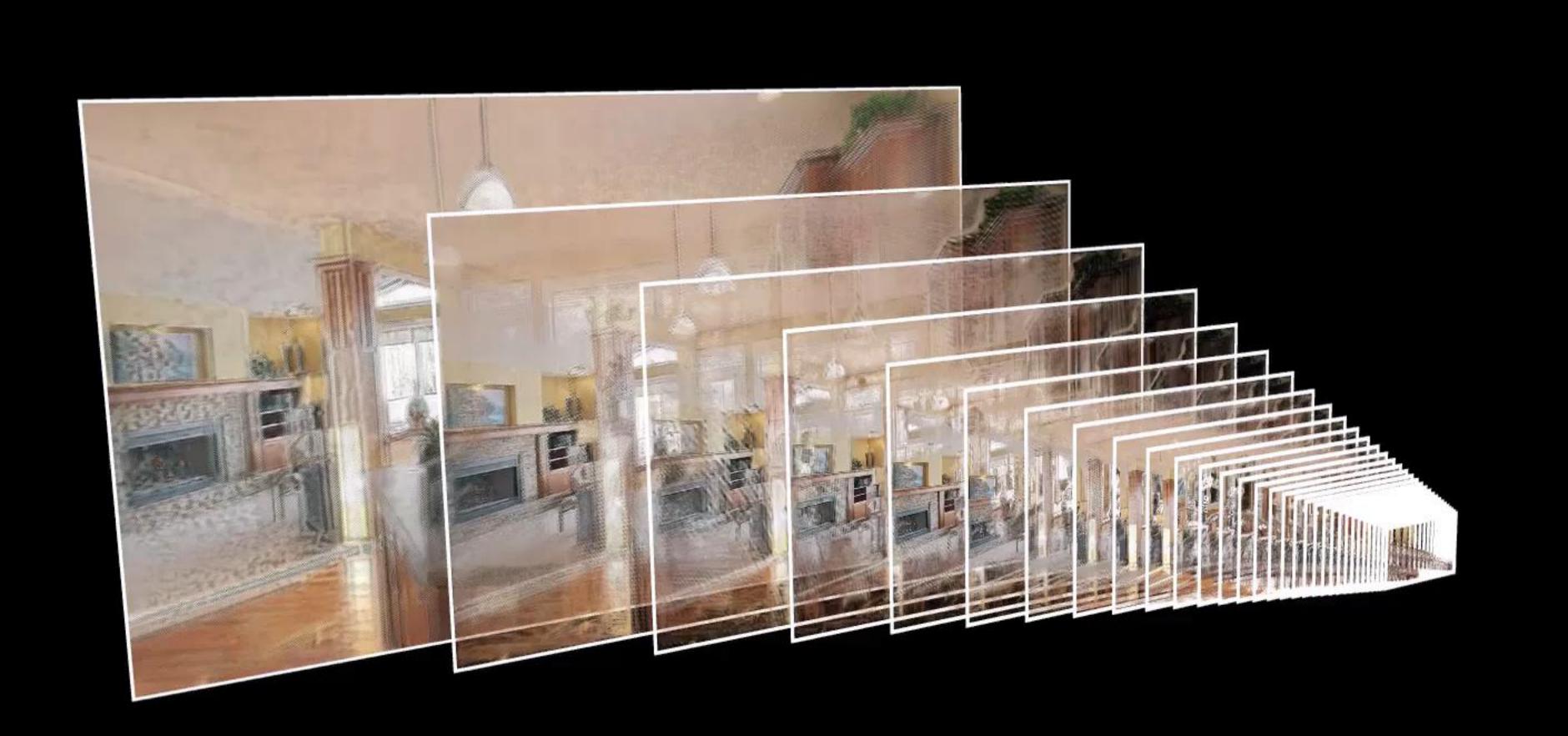
Plane 9

Reference input view

Plane 16

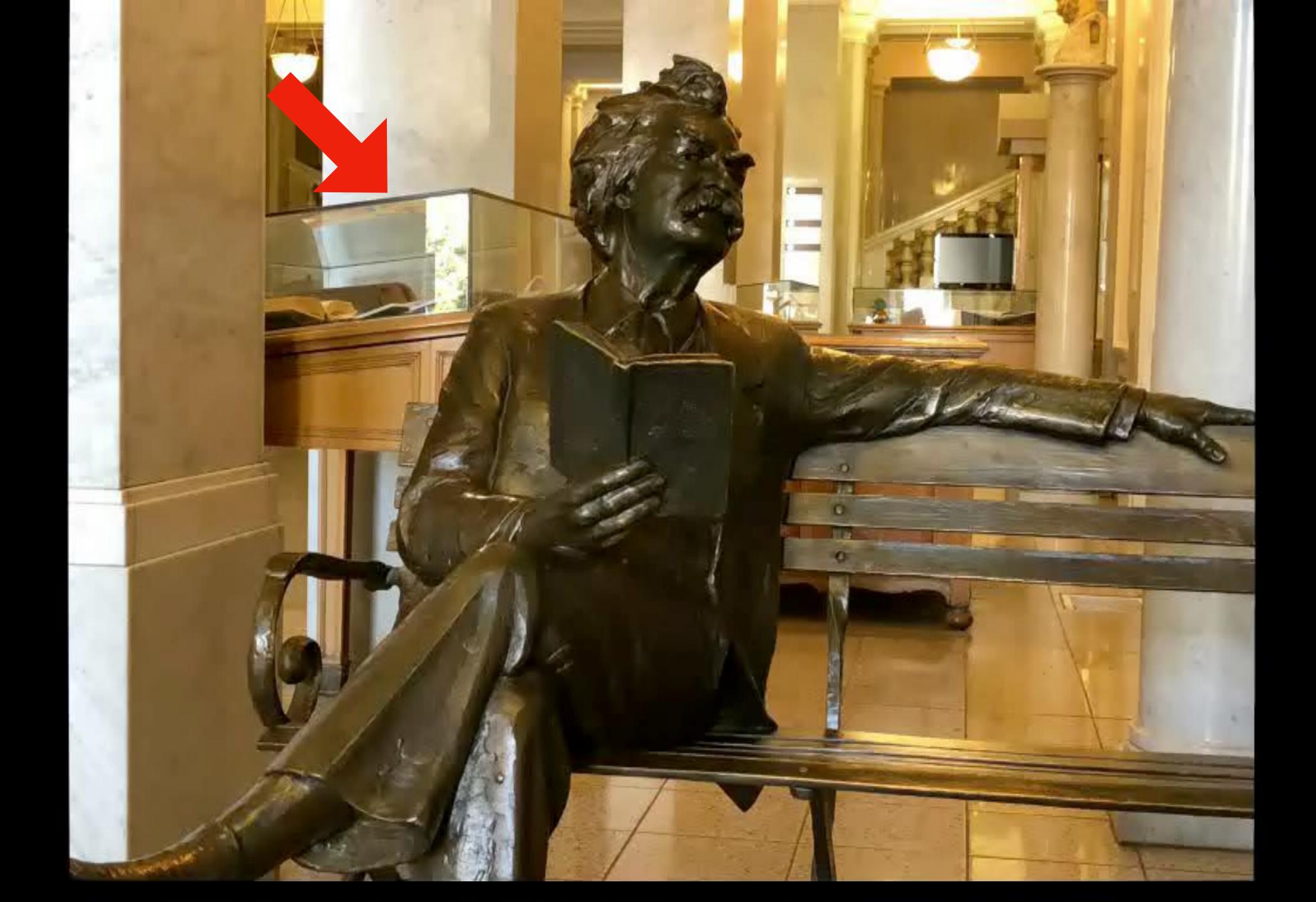
Plane 24

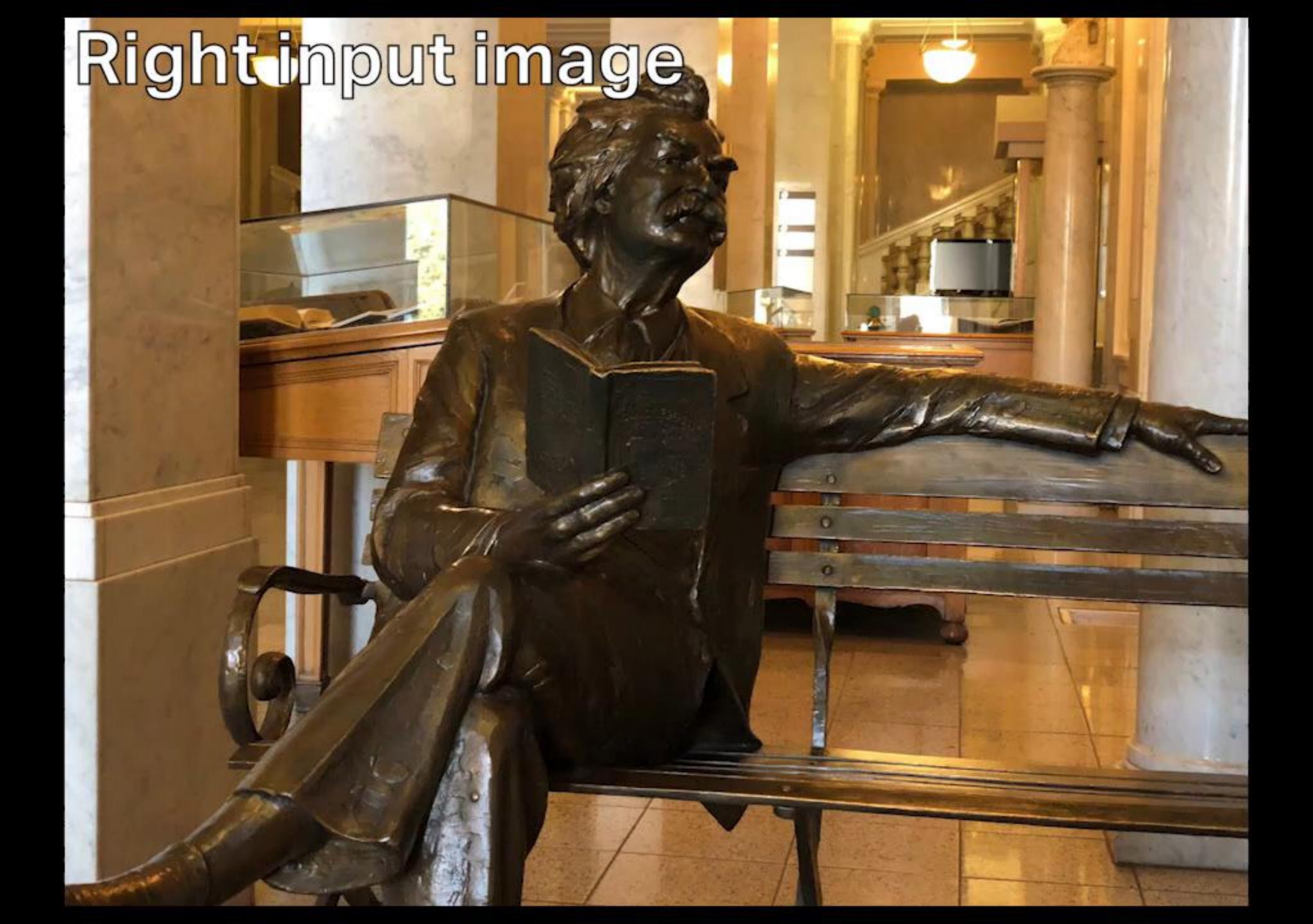
Plane 26



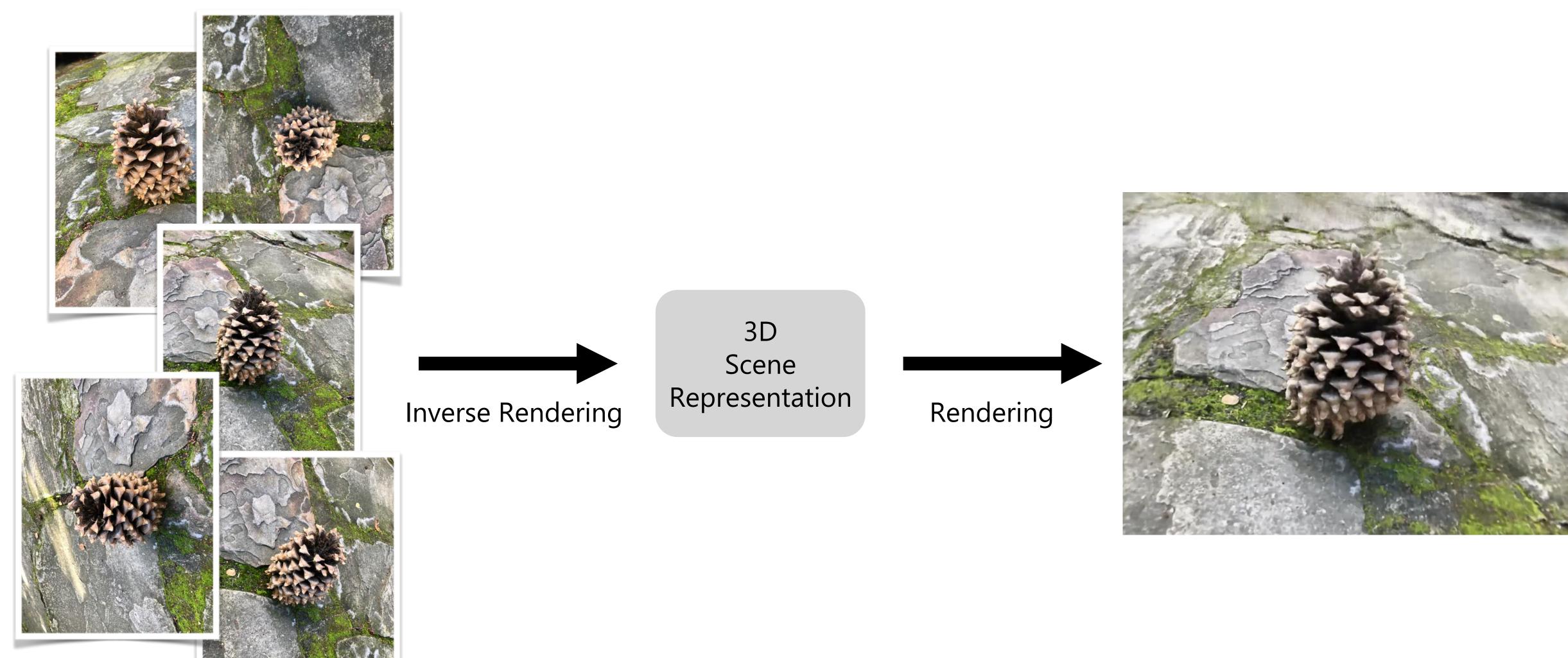
Extrapolating Cellphone Footage

1.4

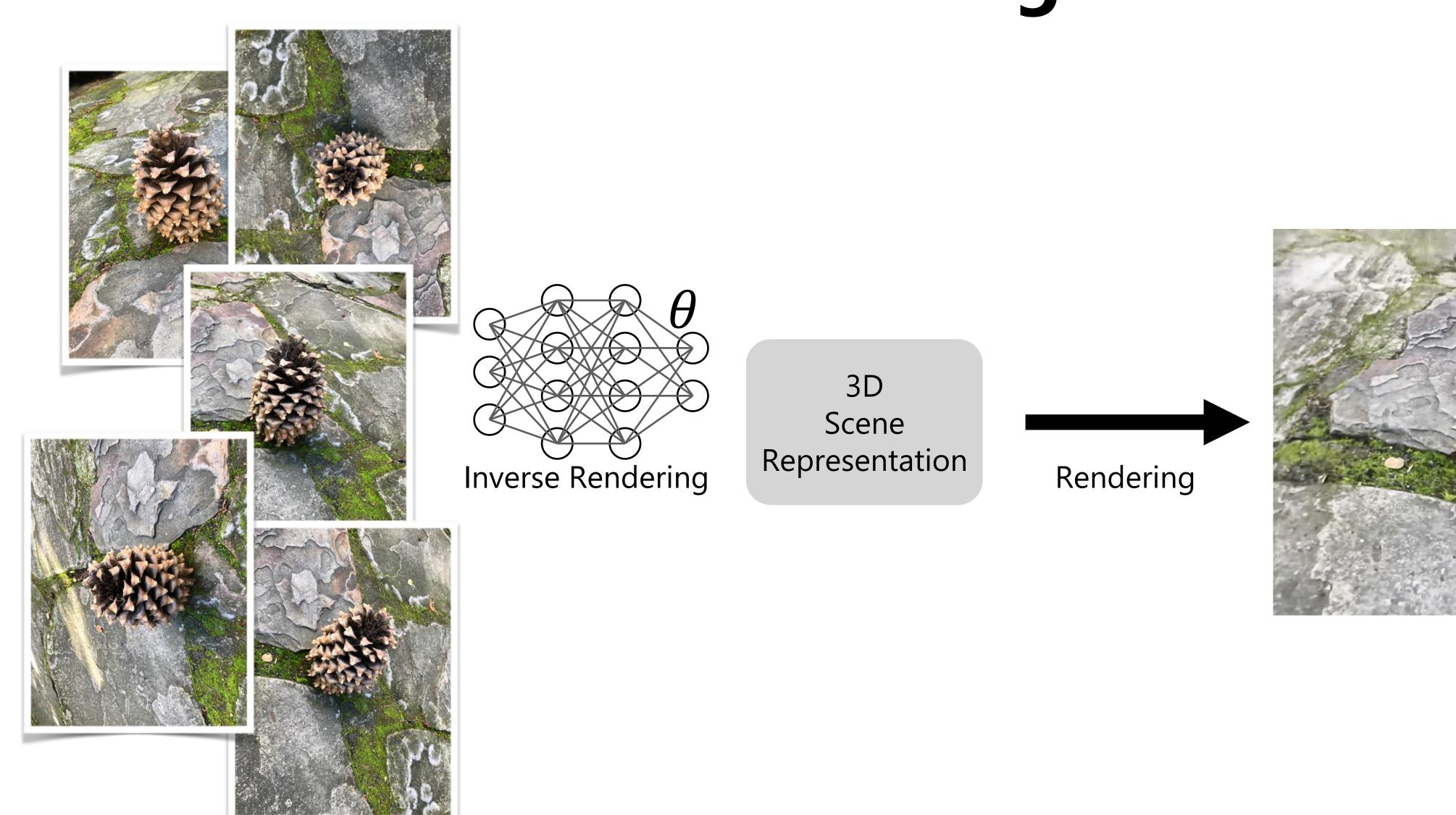




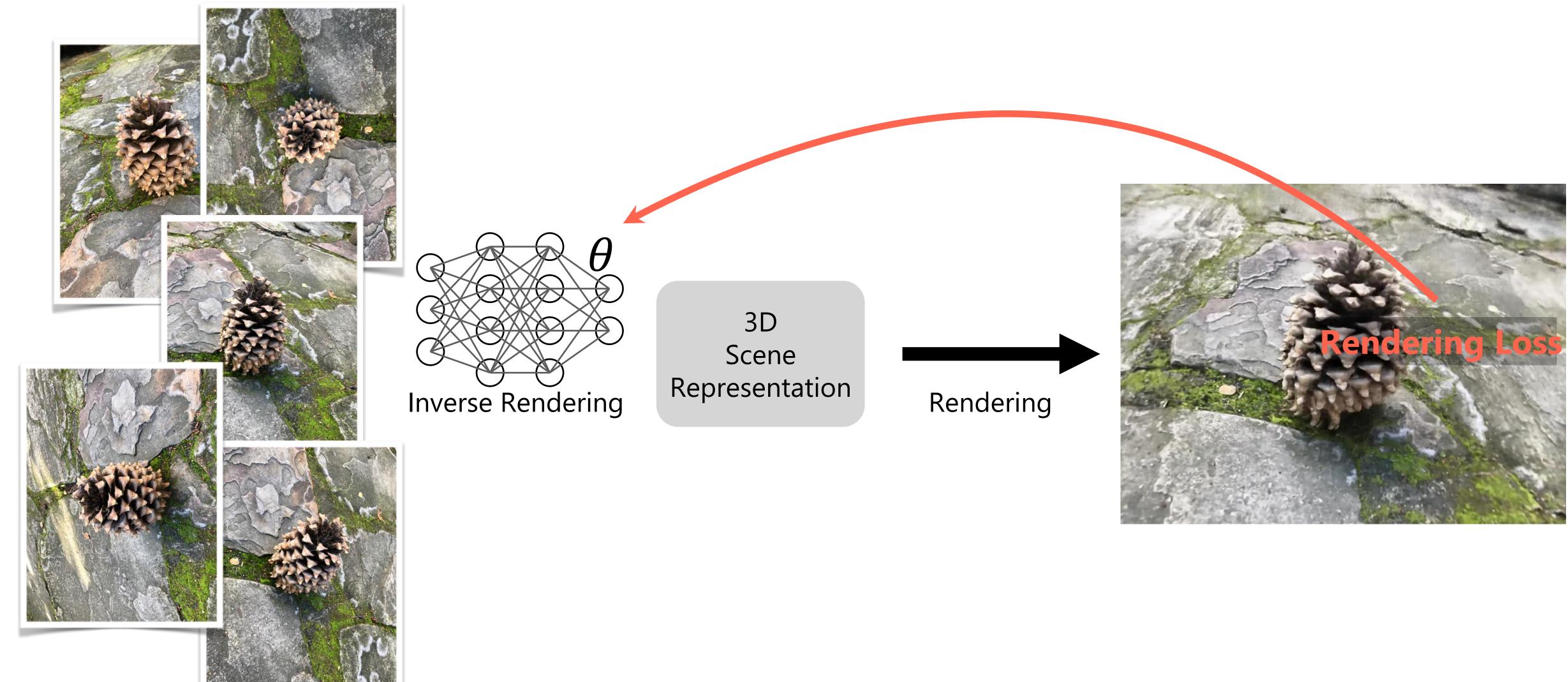
Computer vision as inverse rendering



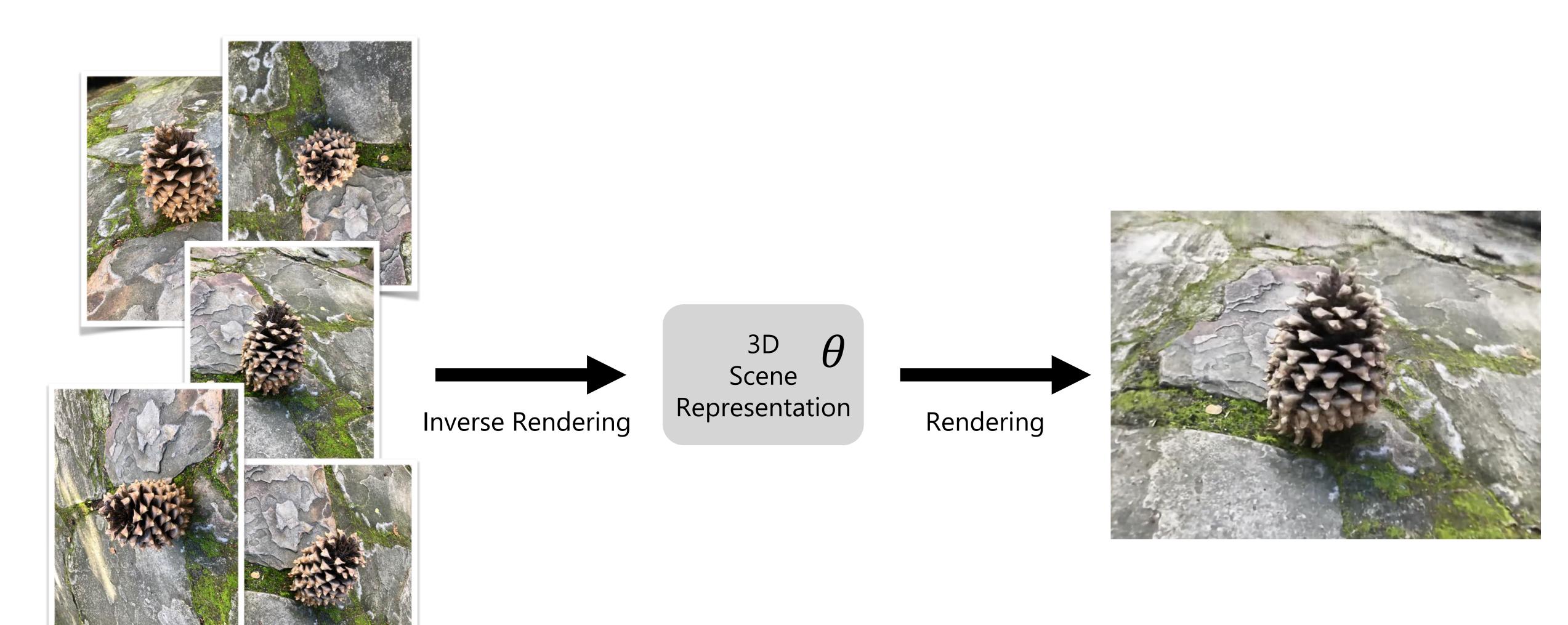
Paradigm 1: "Feedforward" inverse rendering



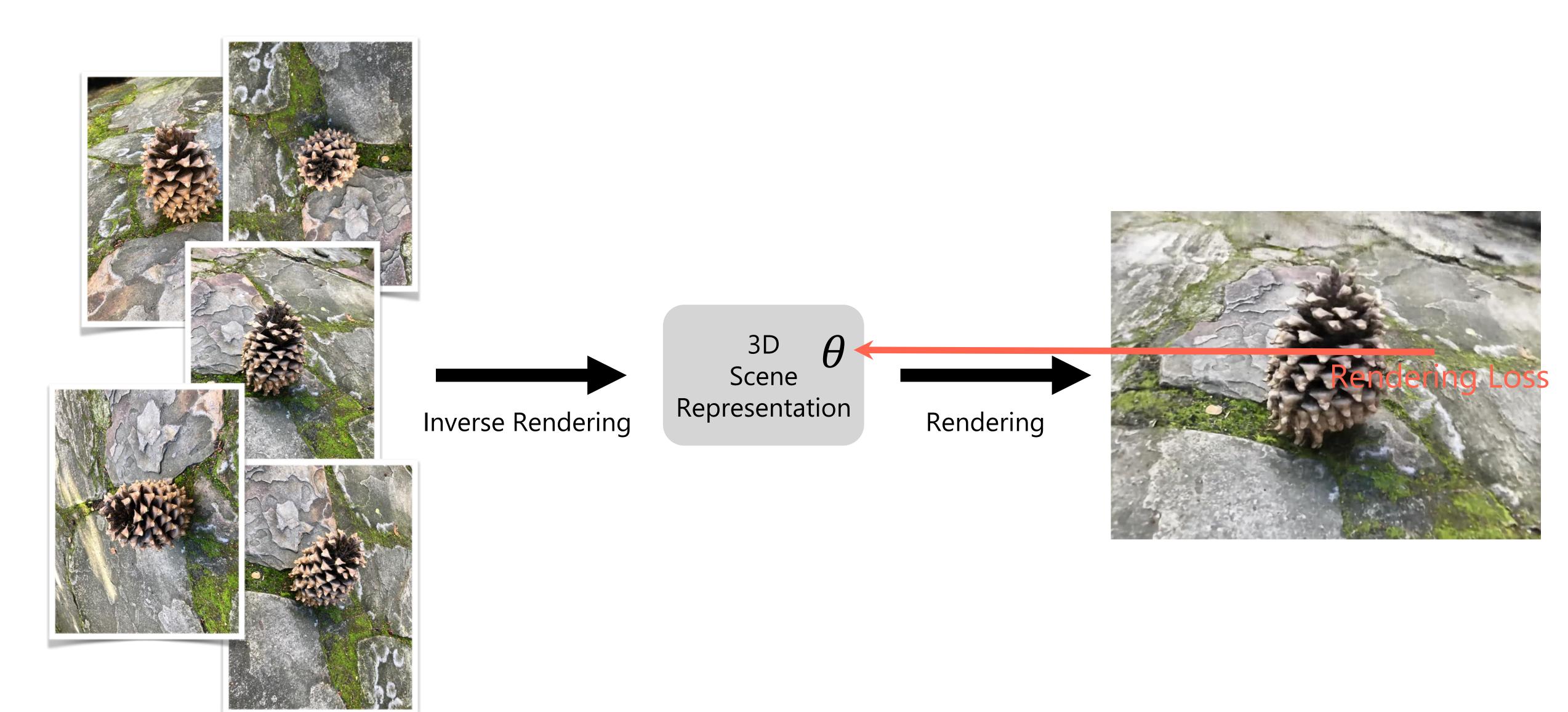
Paradigm 1: "Feedforward" inverse rendering



Paradigm 2: "Render-and-compare"

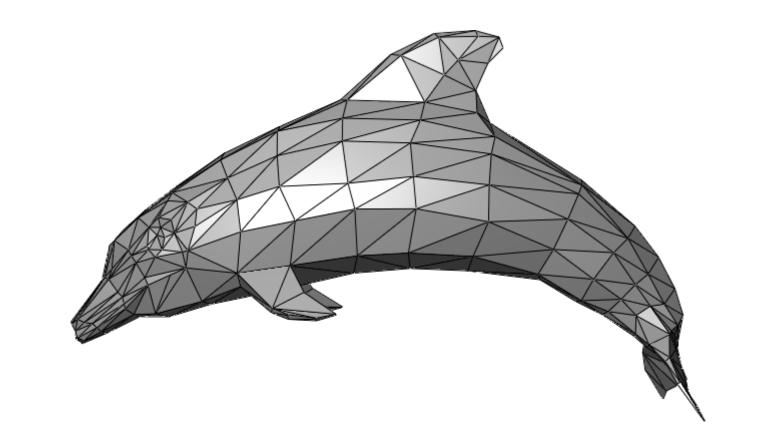


Paradigm 2: "Render-and-compare"



What representation to use?

 Could use triangle meshes, but hard to differentiate during rendering



 Multiplane images (MPIs) are easy to differentiate, but only allow for rendering a small range of views

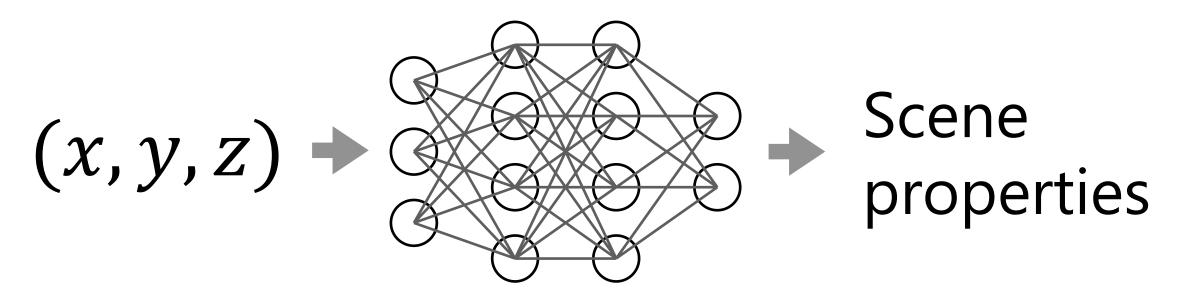
NeRF == Differentiable Rendering with a Neural Volumetric Representation

Barron et al 2021, Mip-NeRF 360: Unbounded Anti-Aliased Neural Radiance Fields

querying the radiance value along rays through 3D space

continuous, differentiable rendering model without concrete ray/surface intersections

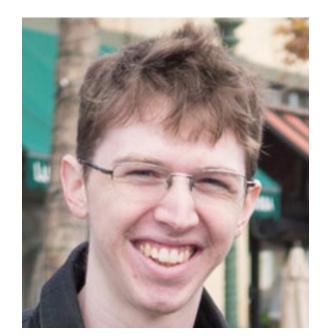
using a neural network as a scene representation, rather than a voxel grid of data



Multi-layer Perceptron (Neural Network)

NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis ECCV 2020

Ben Mildenhall*



UC Berkeley

Pratul Srinivasan*

UC Berkeley

Matt Tancik*

UC Berkeley



Jon Barron

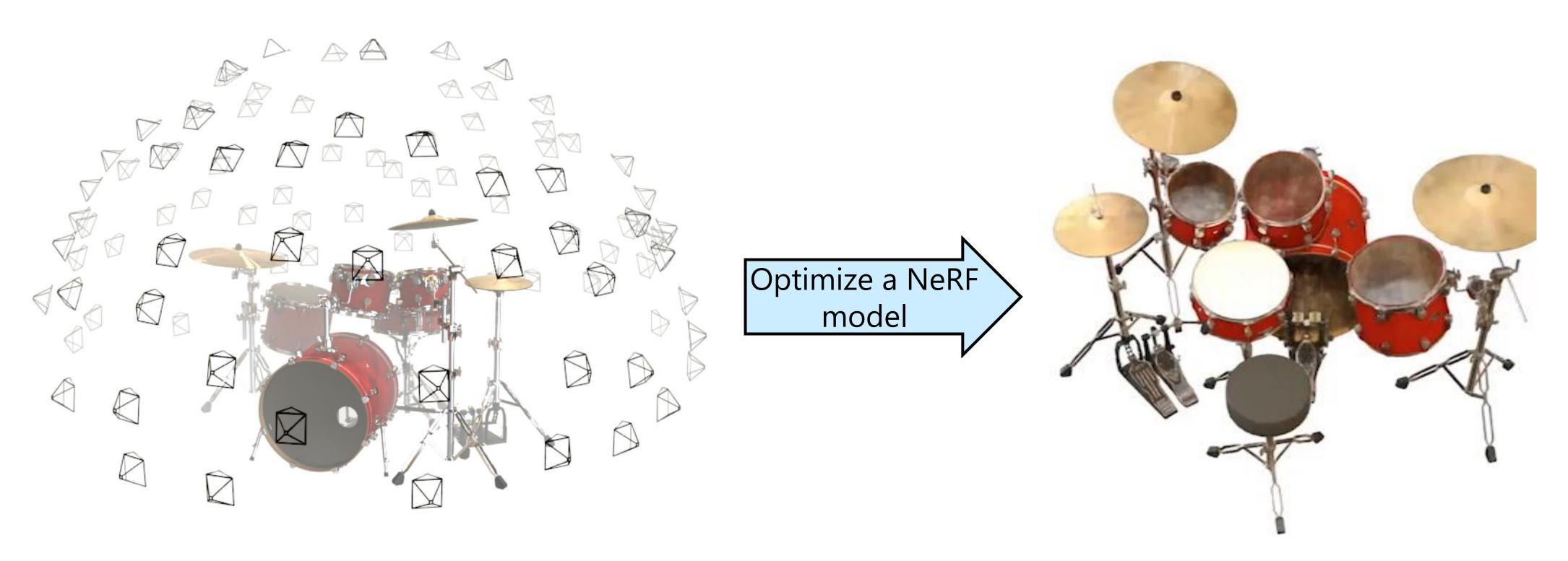
Google Research

Ravi Ramamoorthi

UC San Diego

Ren Ng

UC Berkeley



Given a set of sparse views of an object with known camera poses

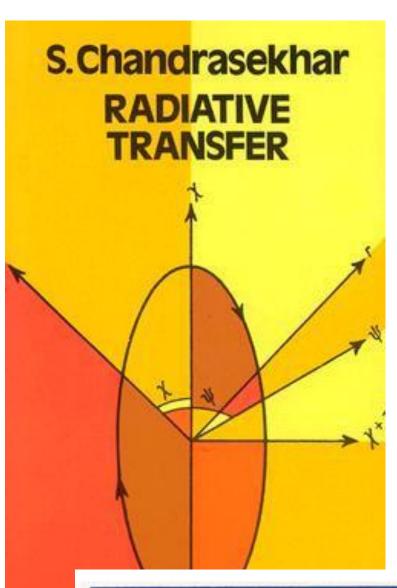
3D reconstruction viewable from any angle

NeRF Overview

- Volumetric rendering
- Neural networks as representations for spatial data
- ► Neural Radiance Fields (NeRF)

NeRF Overview

- Volumetric rendering
- Neural networks as representations for spatial data
- ► Neural Radiance Fields (NeRF)



Traditional volumetric rendering

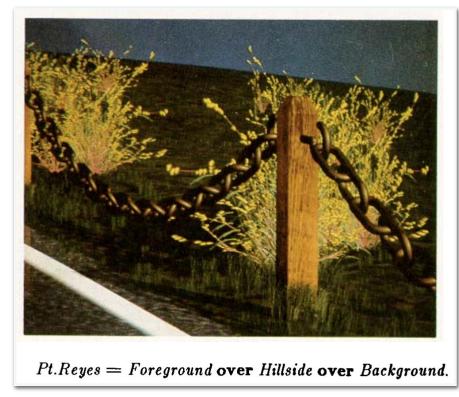
► Theory of volume rendering co-opted from physics in the 1980s: absorption, emission, out-scattering/in-scattering

Ray tracing simulated cumulus cloud [Kajiya]

Chandrasekhar 1950, Radiative Transfer Kajiya 1984, Ray Tracing Volume Densities

Traditional volumetric rendering

Medical data visualisation [Levoy]



Alpha compositing [Porter and Duff]

- ► Theory of volume rendering co-opted from physics in the 1980s: absorption, emission, out-scattering/in-scattering
- Adapted for visualising medical data and linked with alpha compositing

Chandrasekhar 1950, Radiative Transfer Kajiya 1984, Ray Tracing Volume Densiti

Levoy 1988, Display of Surfaces from Volume Data Max 1995, Optical Models for Direct Volume Rendering Porter and Duff 1984, Compositing Digital Images

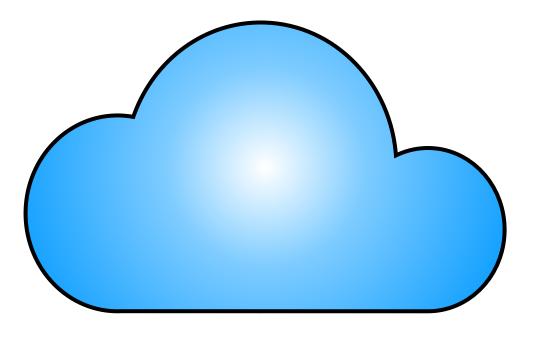
Traditional volumetric rendering



Physically-based Monte Carlo rendering [Novak et al]

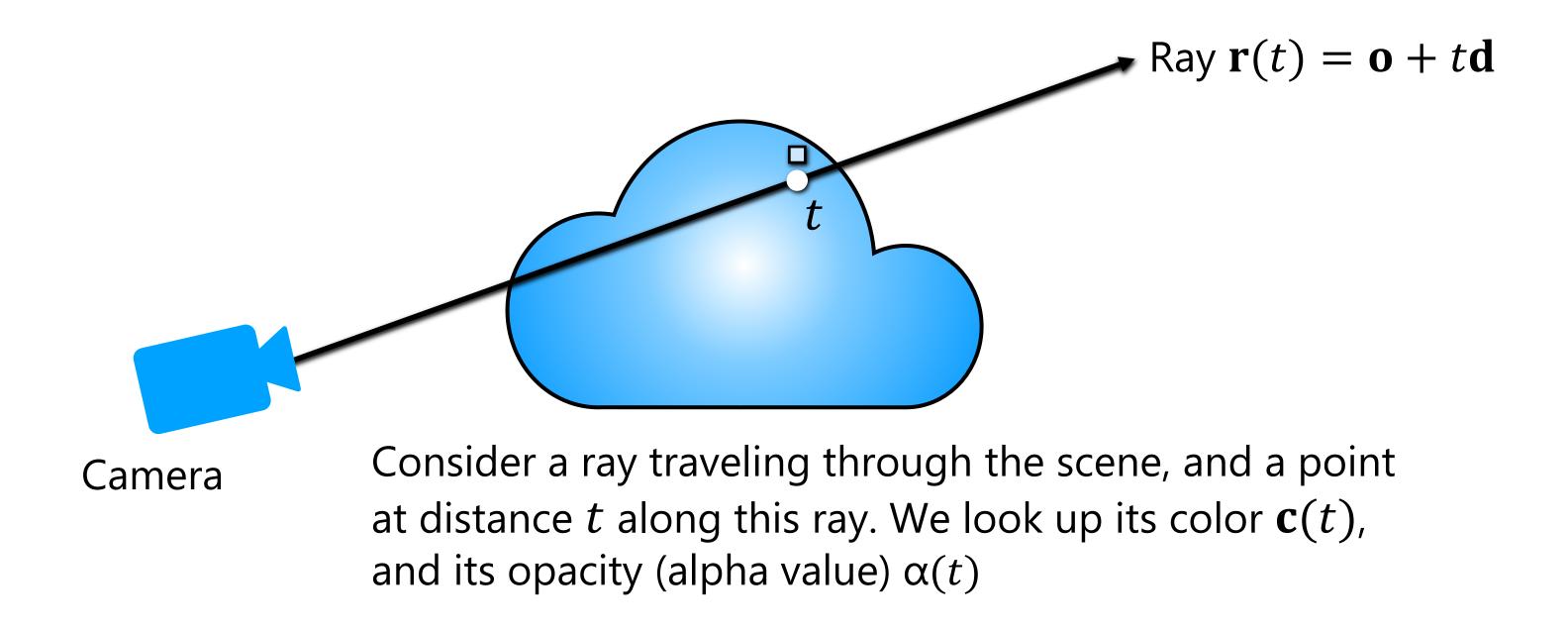
- Theory of volume rendering co-opted from physics in the 1980s: absorption, emission, out-scattering/in-scattering
- Adapted for visualising medical data and linked with alpha compositing
- Modern path tracers use sophisticated Monte Carlo methods to render volumetric effects

Volumetric formulation for NeRF

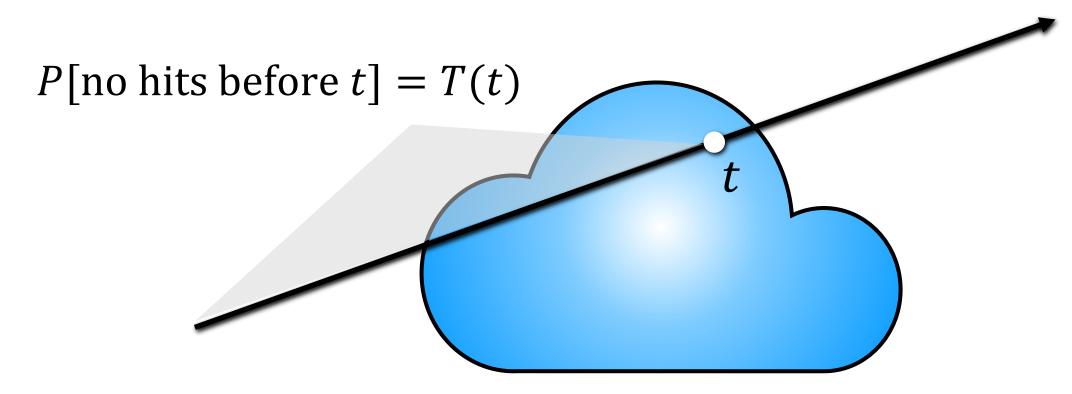


Scene is a cloud of colored fog

Volumetric formulation for NeRF



Volumetric formulation for NeRF

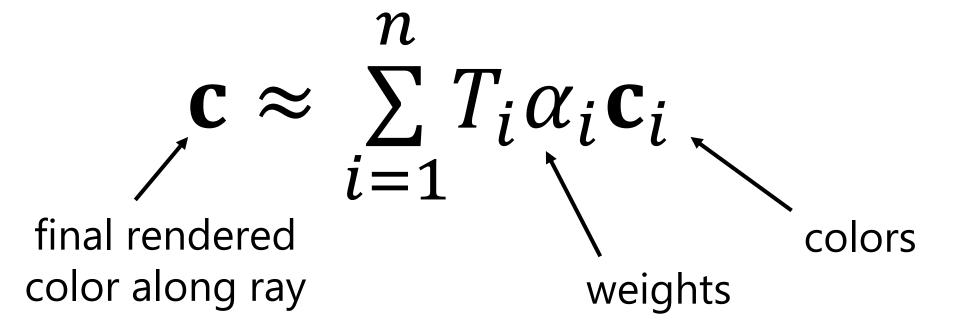


But t may also be blocked by earlier points along the ray. T(t): probability that the ray didn't hit any particles earlier.

T(t) is called "transmittance"

Volume rendering estimation: integrating color along a ray

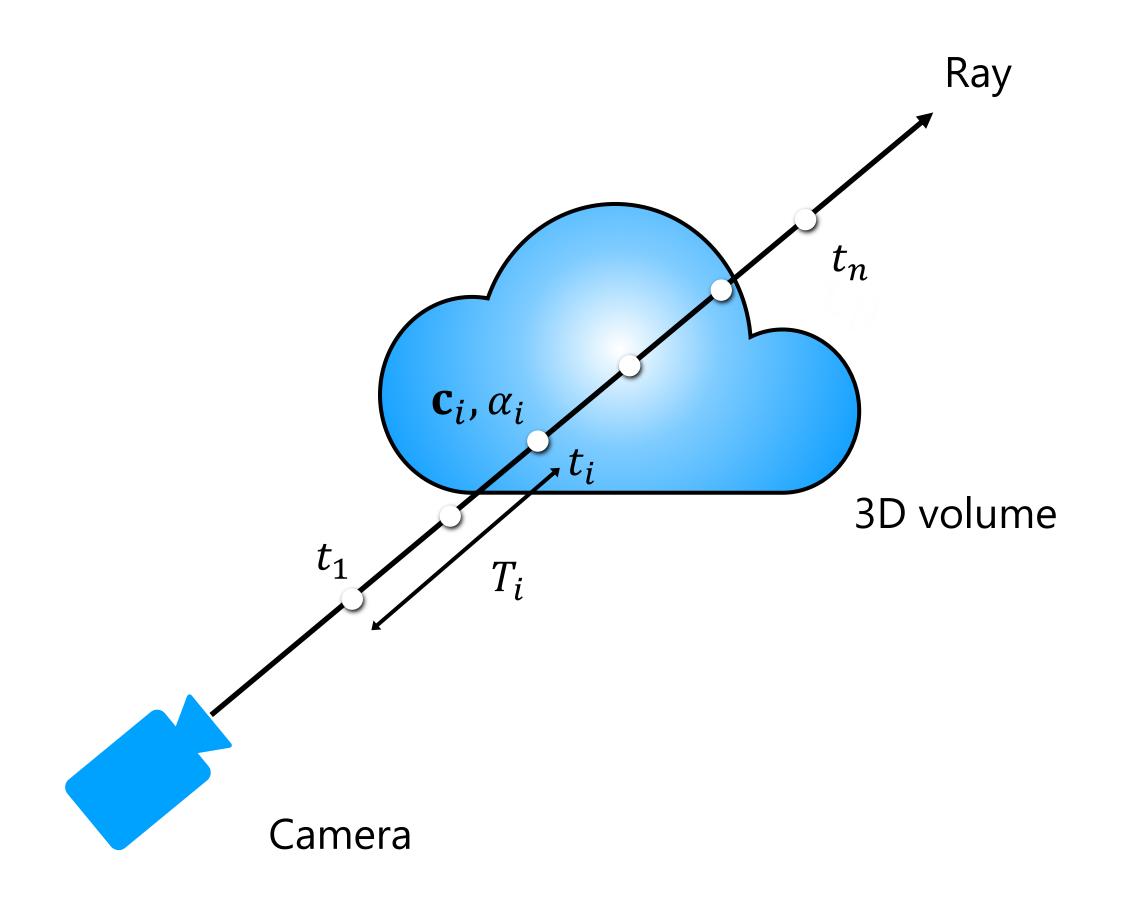
Rendering model for ray $\mathbf{r}(t) = \mathbf{o} + t\mathbf{d}$:



How much light is blocked earlier along ray:

$$T_i = \prod_{j=1}^{i-1} (1 - \alpha_j)$$

Computing the color for a set of rays through the pixels of an image yields a rendered image



Volume rendering estimation: integrating color along a ray

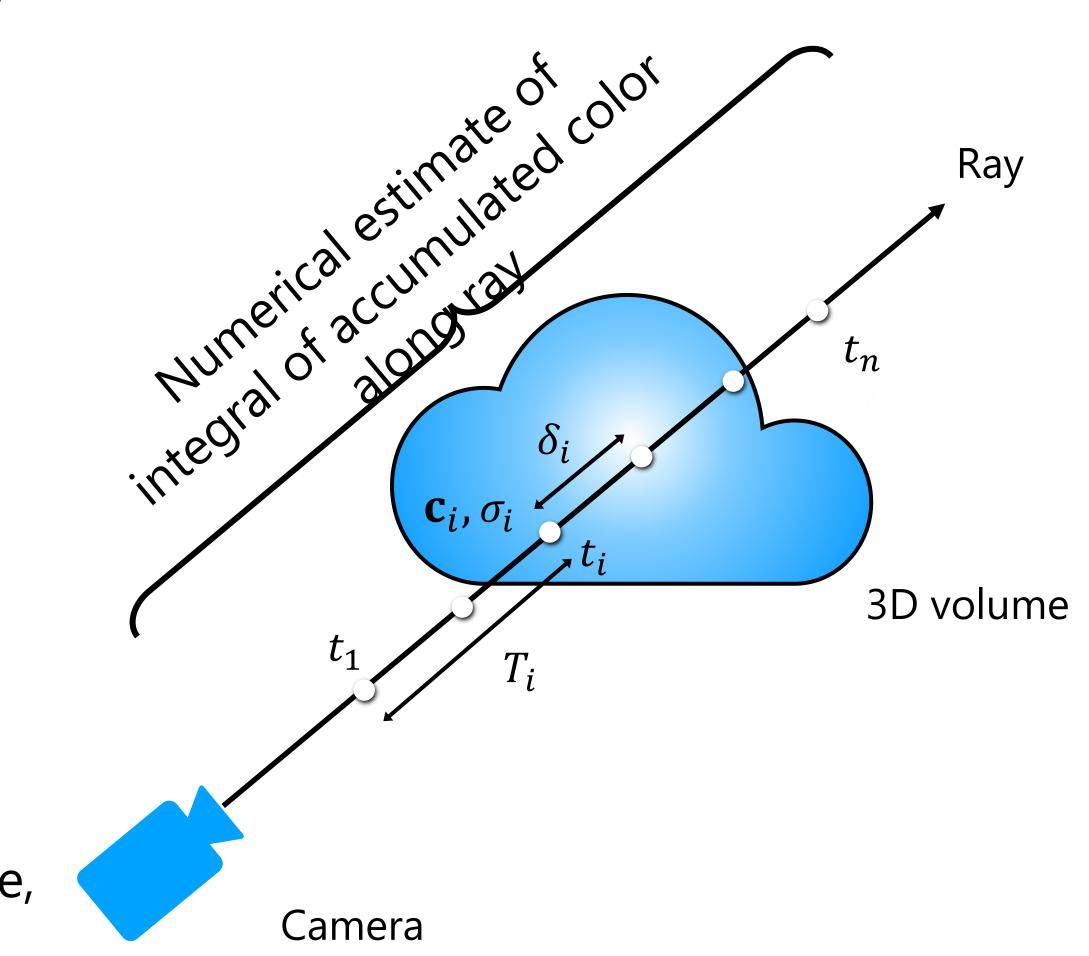
Rendering model for ray $\mathbf{r}(t) = \mathbf{o} + t\mathbf{d}$:

$$\mathbf{c}pprox \sum_{i=1}^{n}T_{i}\alpha_{i}\mathbf{c}_{i}$$
 final rendered color along ray colors

How much light is blocked earlier along ray:

$$T_i = \prod_{j=1}^{i-1} (1 - \alpha_j)$$

Slight modification: α is not directly stored in the volume, but instead is derived from a stored volume density sigma (σ) that is multiplied by the distance between samples $\det^{\delta} 1^{\delta} = \exp(-\sigma_i \delta_i)$



Volume rendering estimation: integrating color along a ray

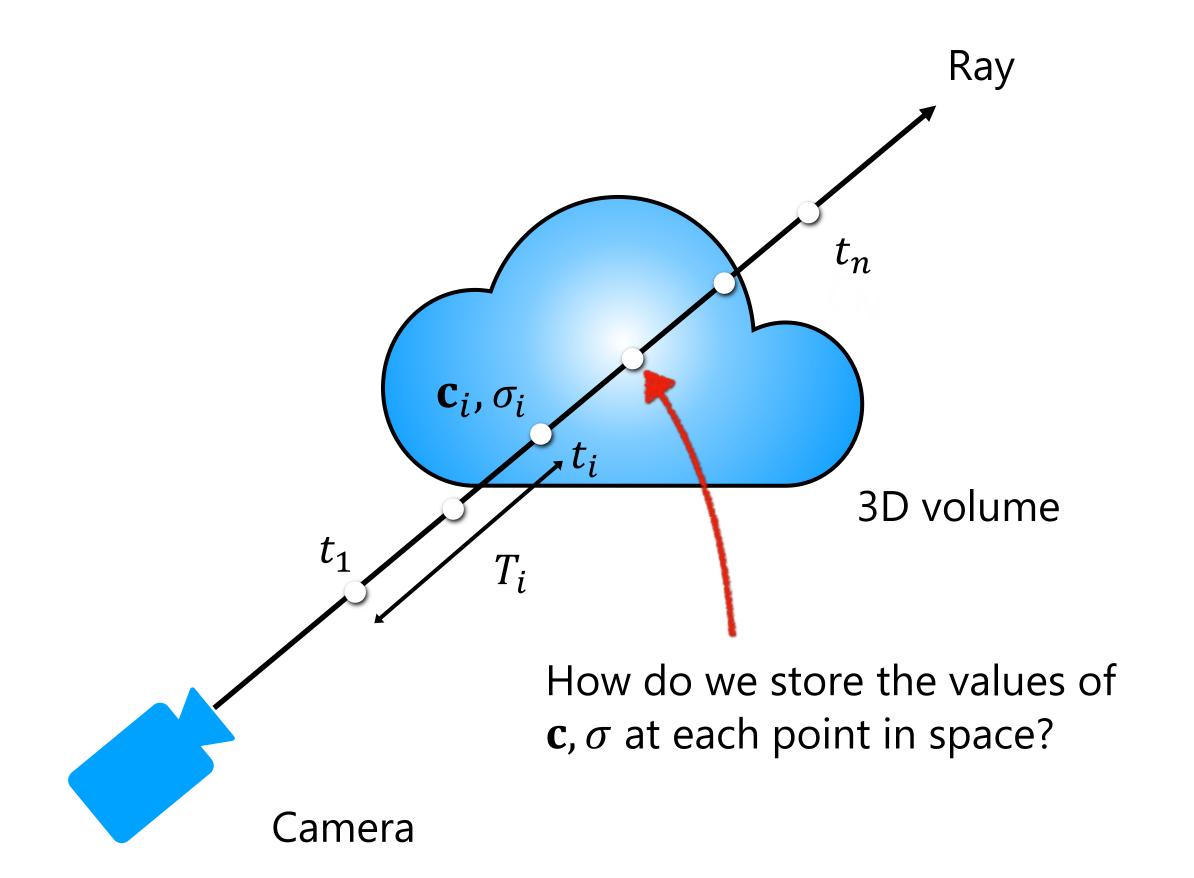
Rendering model for ray $\mathbf{r}(t) = \mathbf{o} + t\mathbf{d}$:

$$\mathbf{c}pprox \sum_{i=1}^{n}T_{i}pprox_{i}\mathbf{c}_{i}$$
 final rendered color along ray colors

How much light is blocked earlier along ray:

$$T_i = \prod_{j=1}^{i-1} (1 - \alpha_j)$$

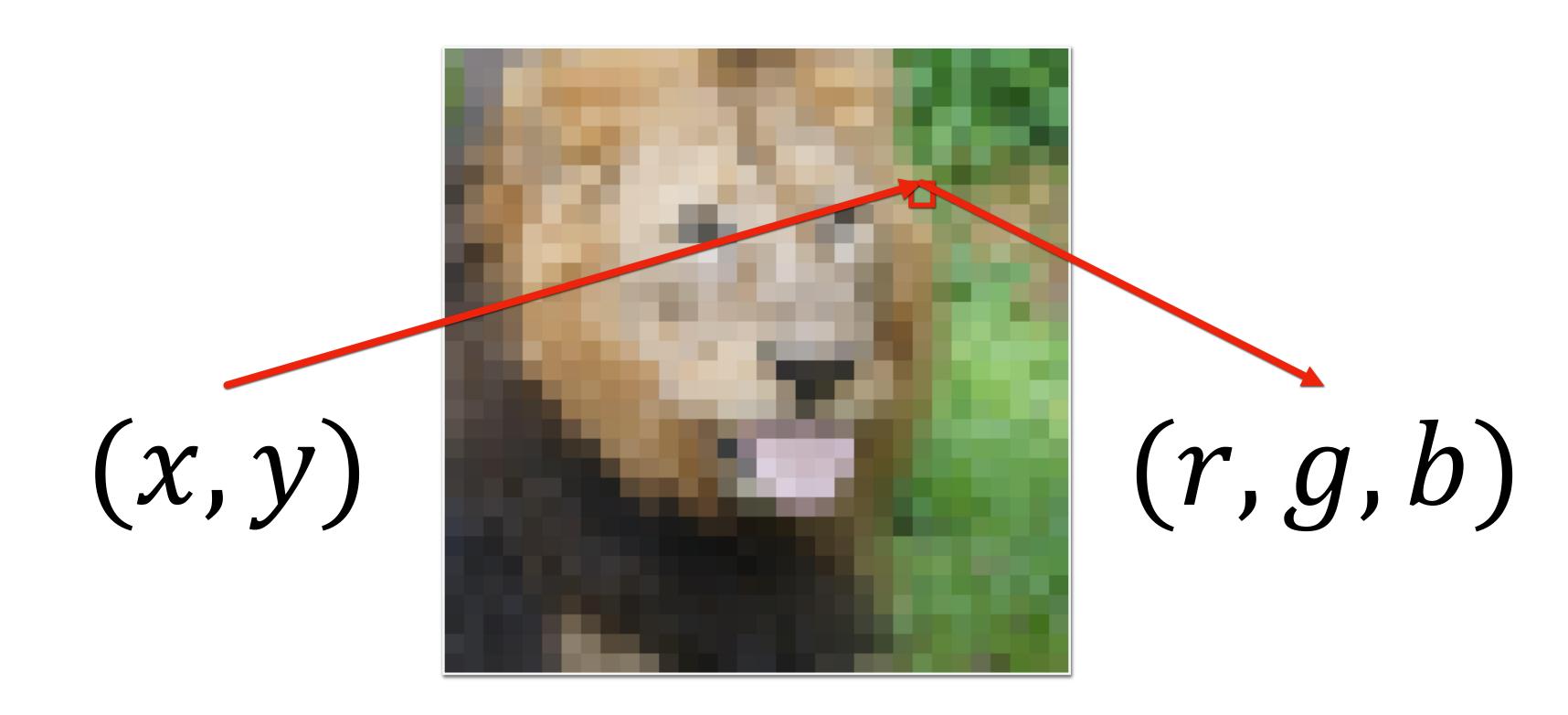
Computing the color for a set of rays through the pixels of an image yields a rendered image



NeRF Overview

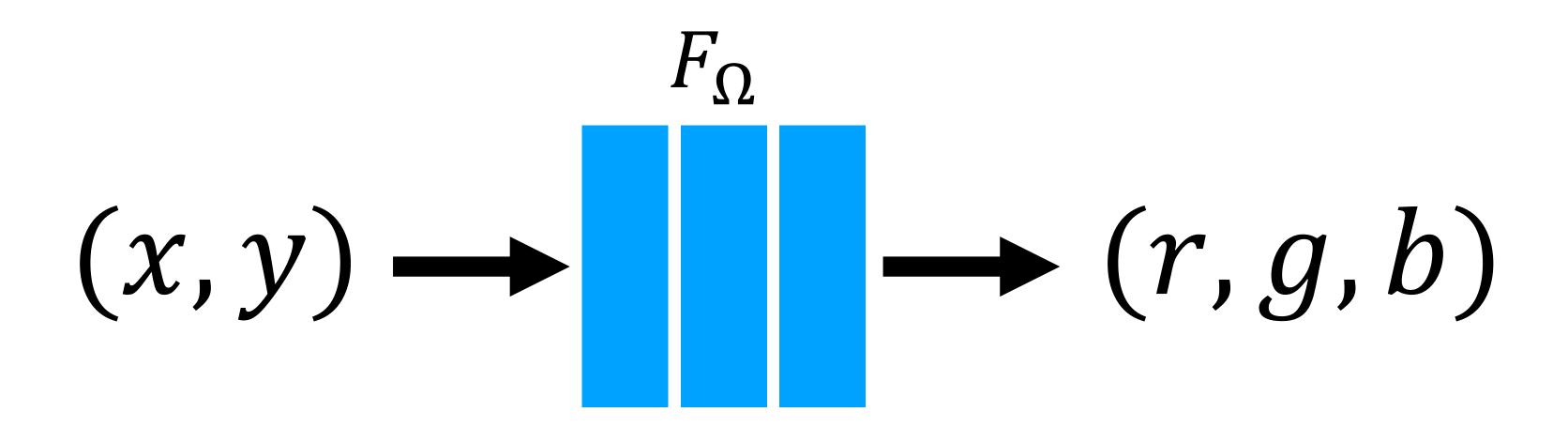
- Volumetric rendering
- Neural networks as representations for spatial data
- ► Neural Radiance Fields (NeRF)

Toy problem: storing 2D image data



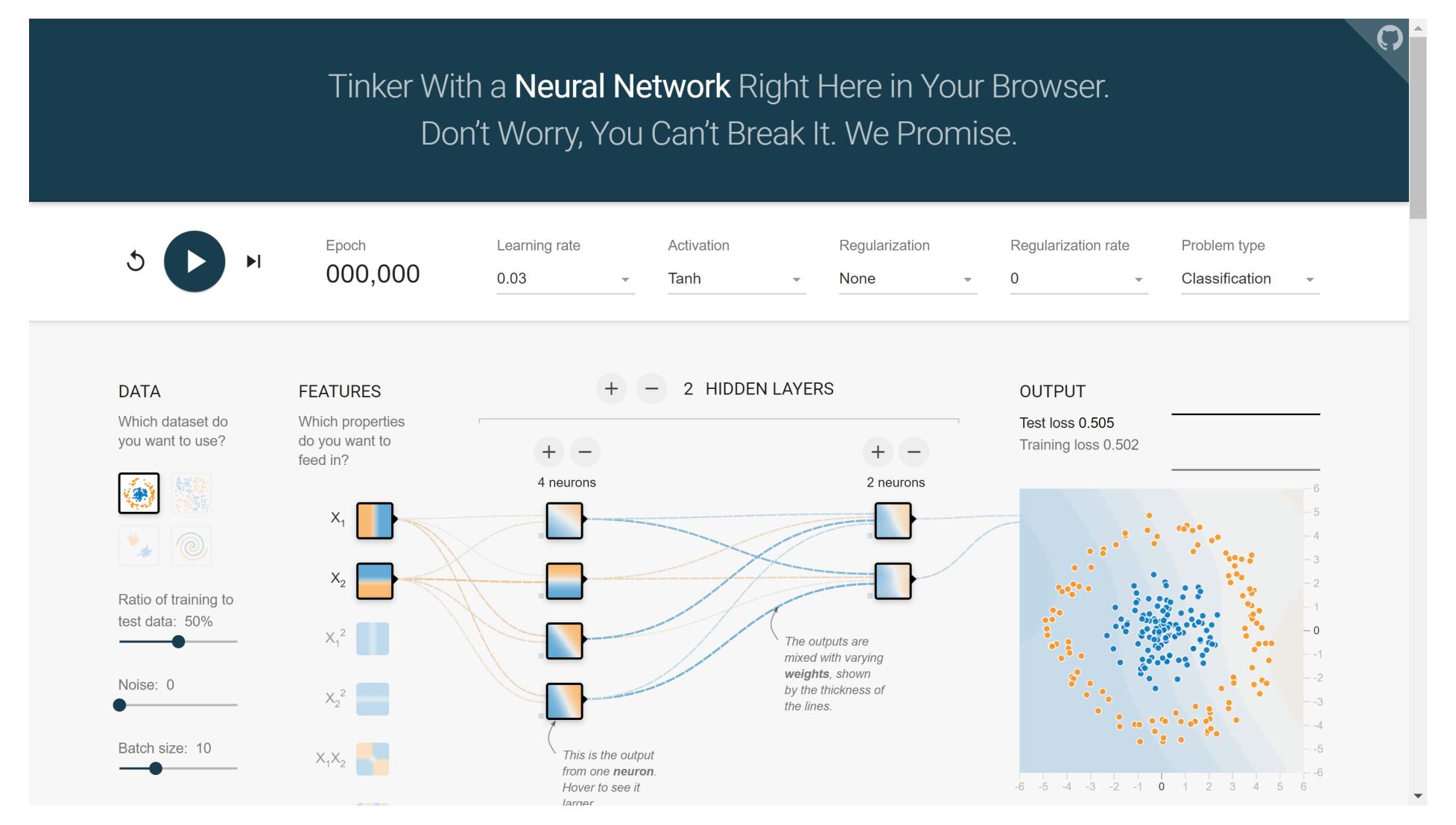
Usually we store an image as a 2D grid of RGB color values

Toy problem: storing 2D image data



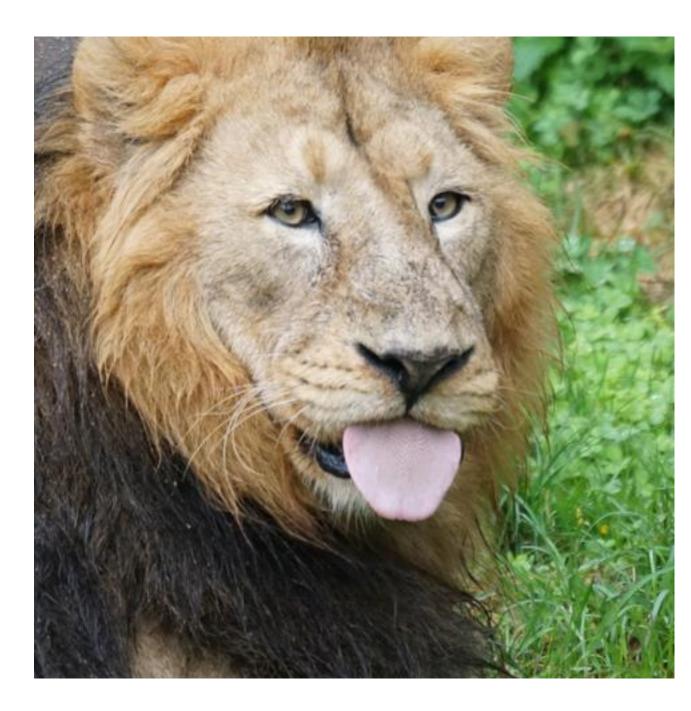
What if we train a simple fully-connected network (MLP) to do this instead?

Recall the TensorFlow playground



Same concept as before, except we are computing an image, instead of a classifier!

Naive approach fails!



Ground truth image

Neural network output fit with gradient descent

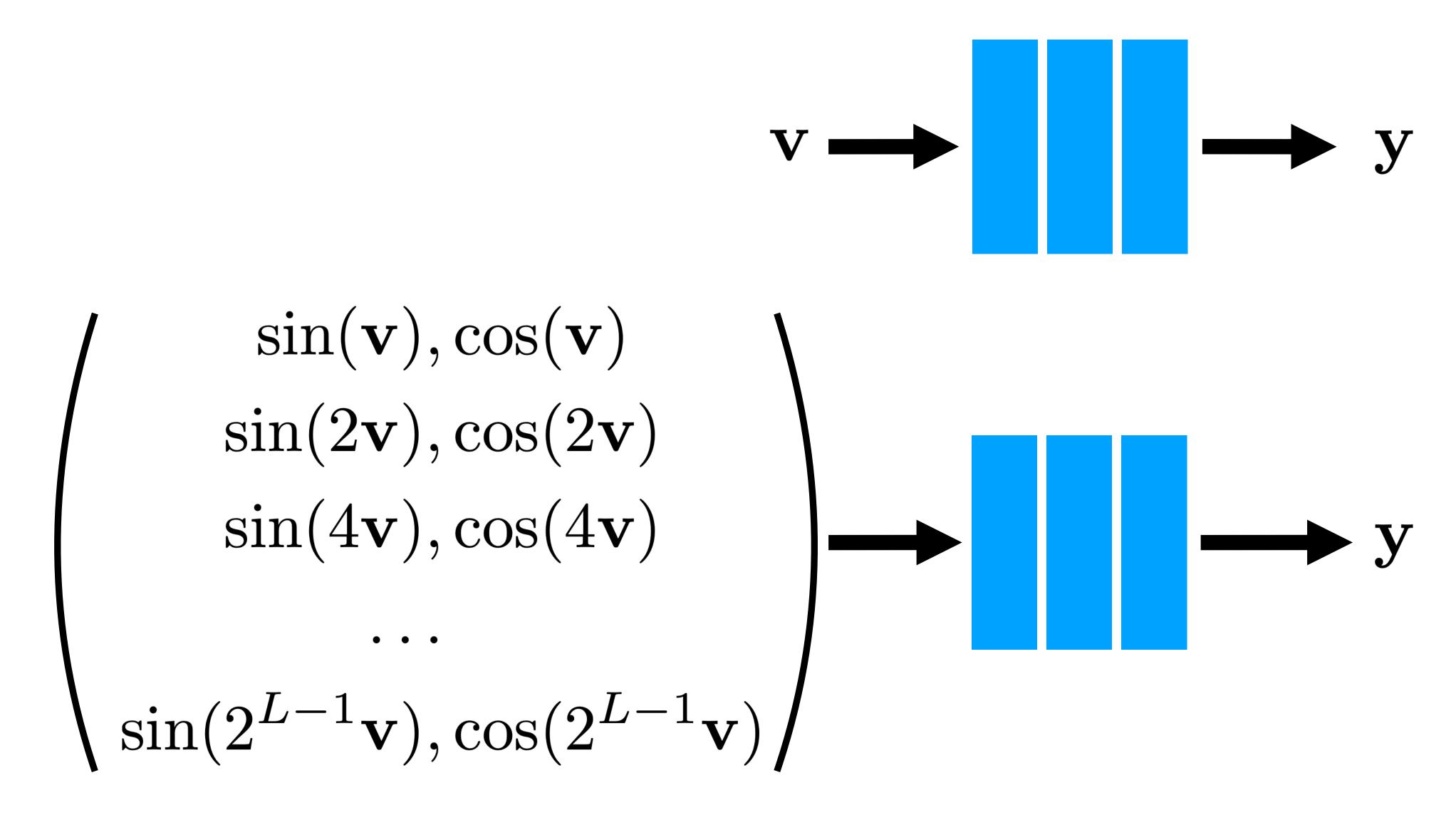
Problem:

"Standard" coordinate-based MLPs cannot represent high frequency functions

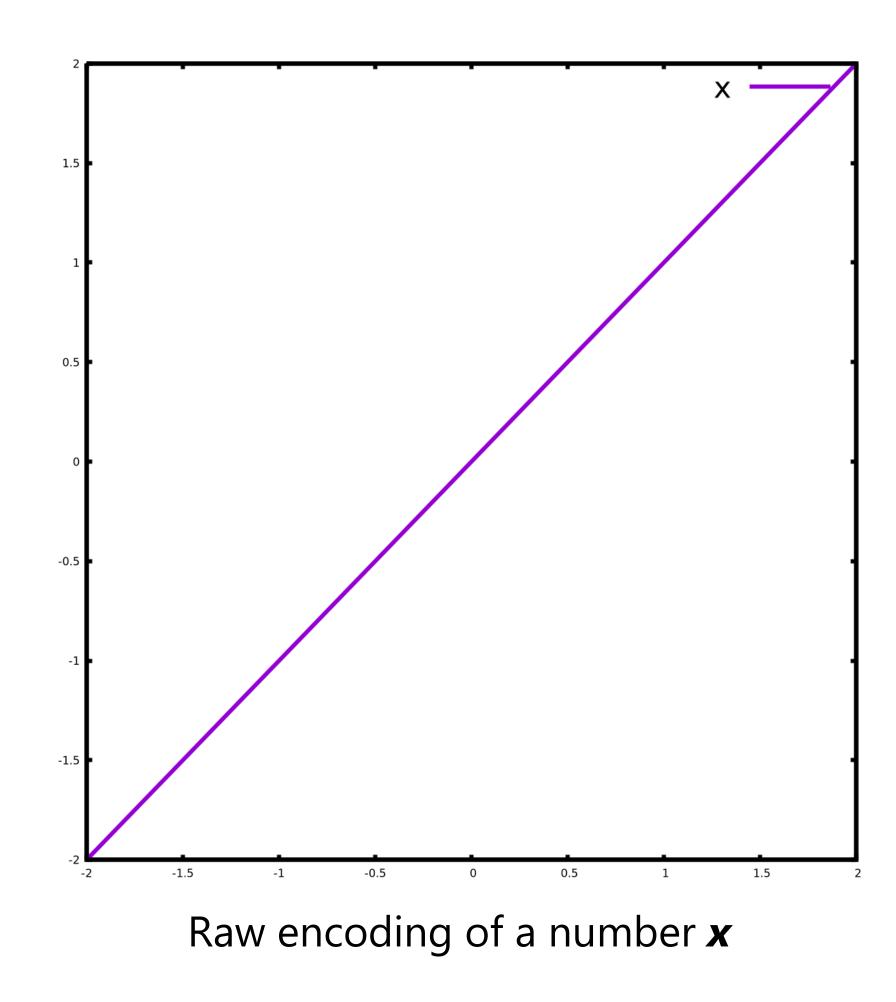
Solution:

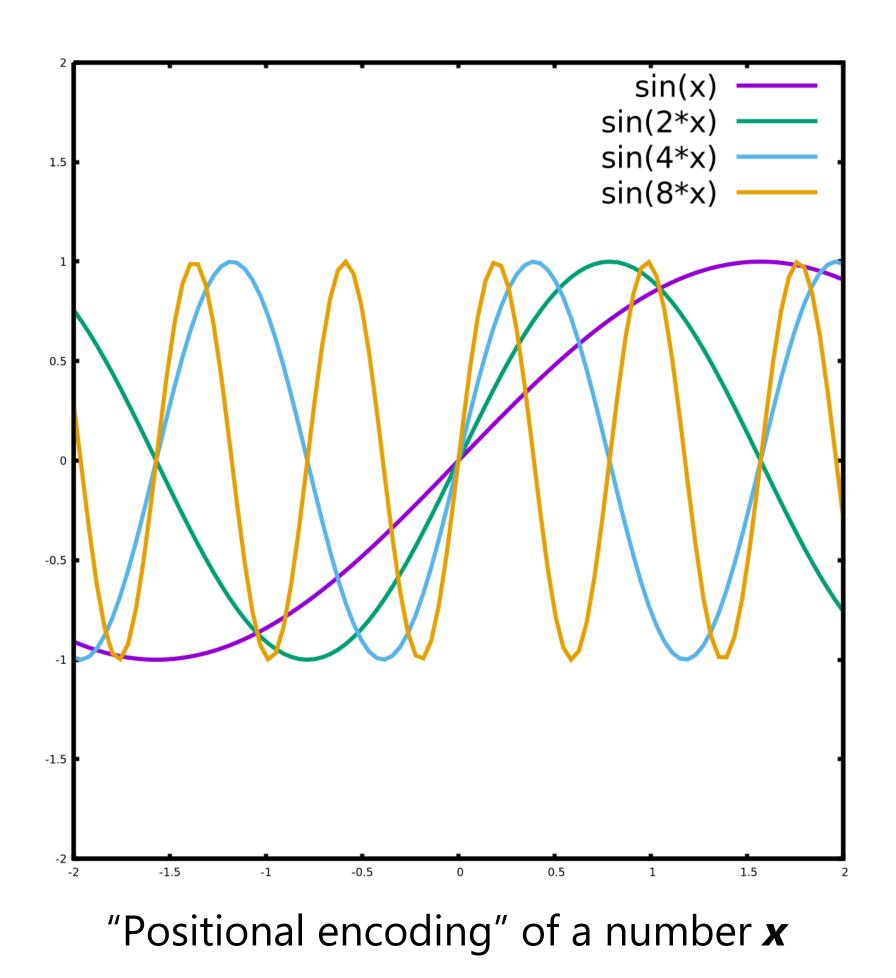
Pass input coordinates through a high frequency mapping first

Example mapping: "positional encoding"

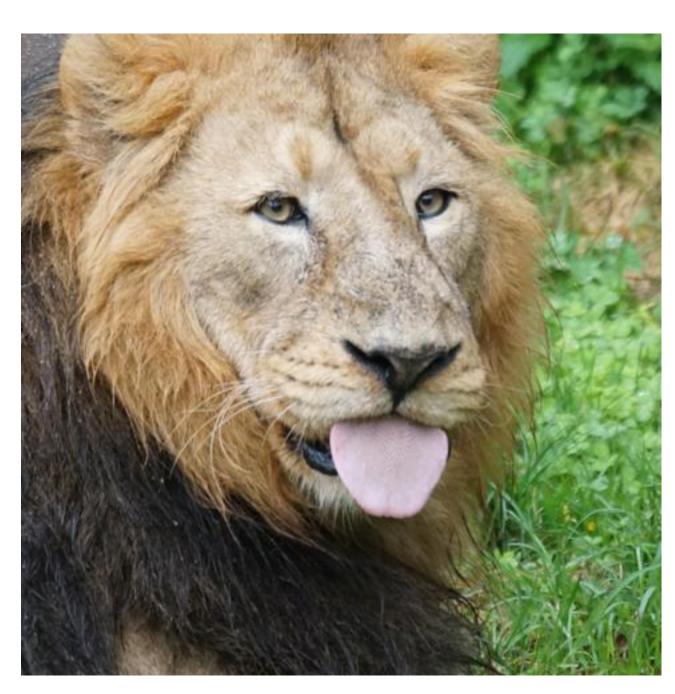


Positional encoding



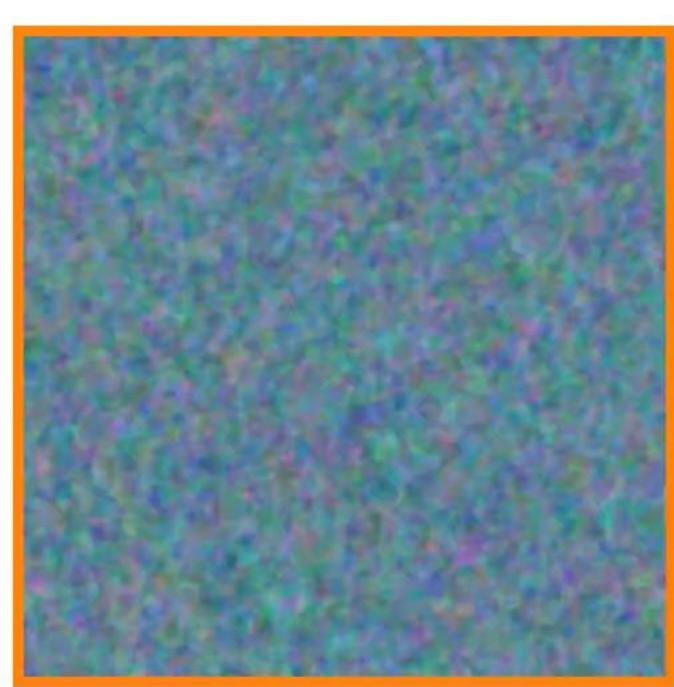


Problem solved!



Ground truth image

Neural network output without high frequency mapping



Neural network output with high frequency mapping

Sometimes a better input encoding is all you need

Regularization

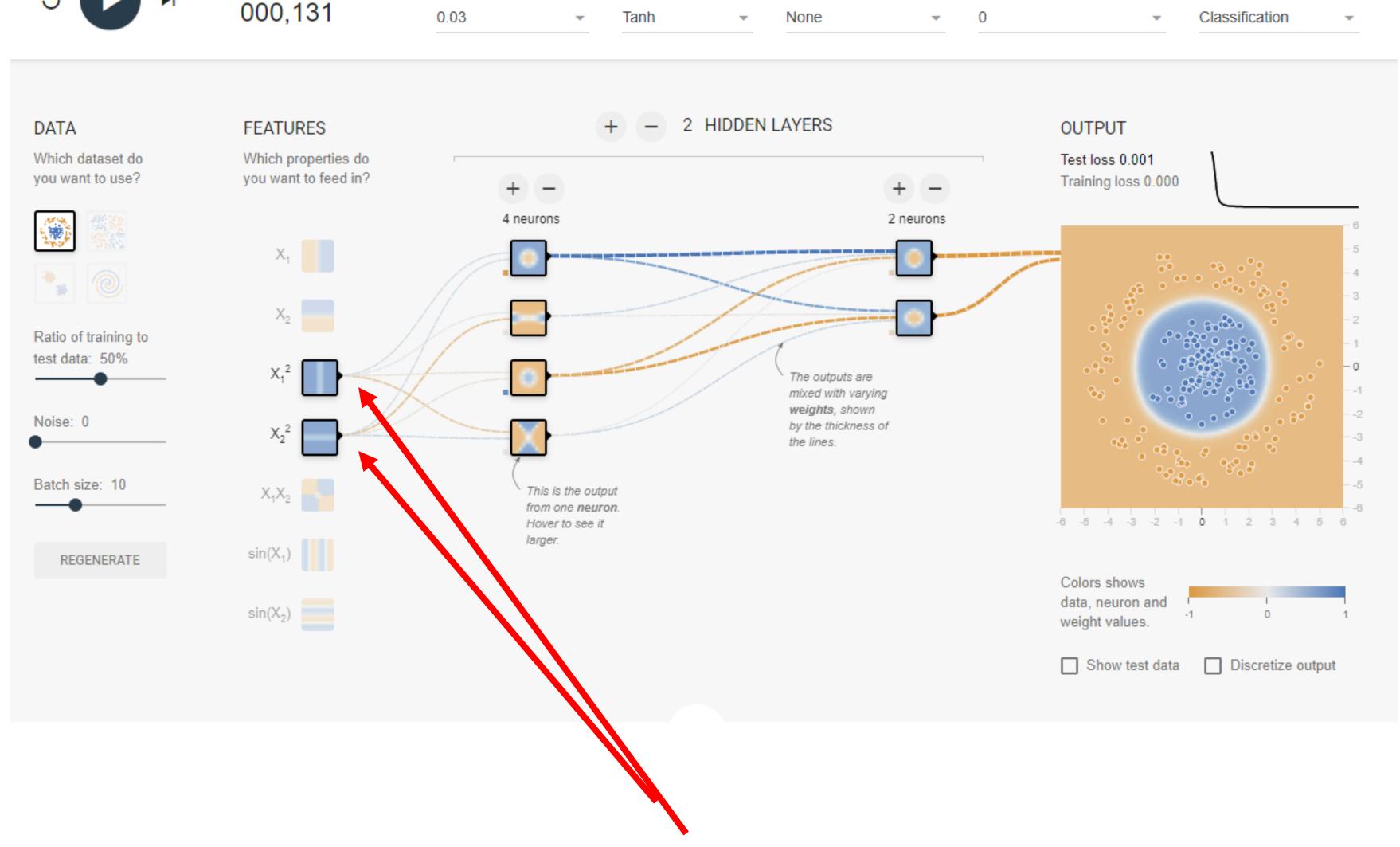
Regularization rate

Problem type

Activation

Epoch

Learning rate

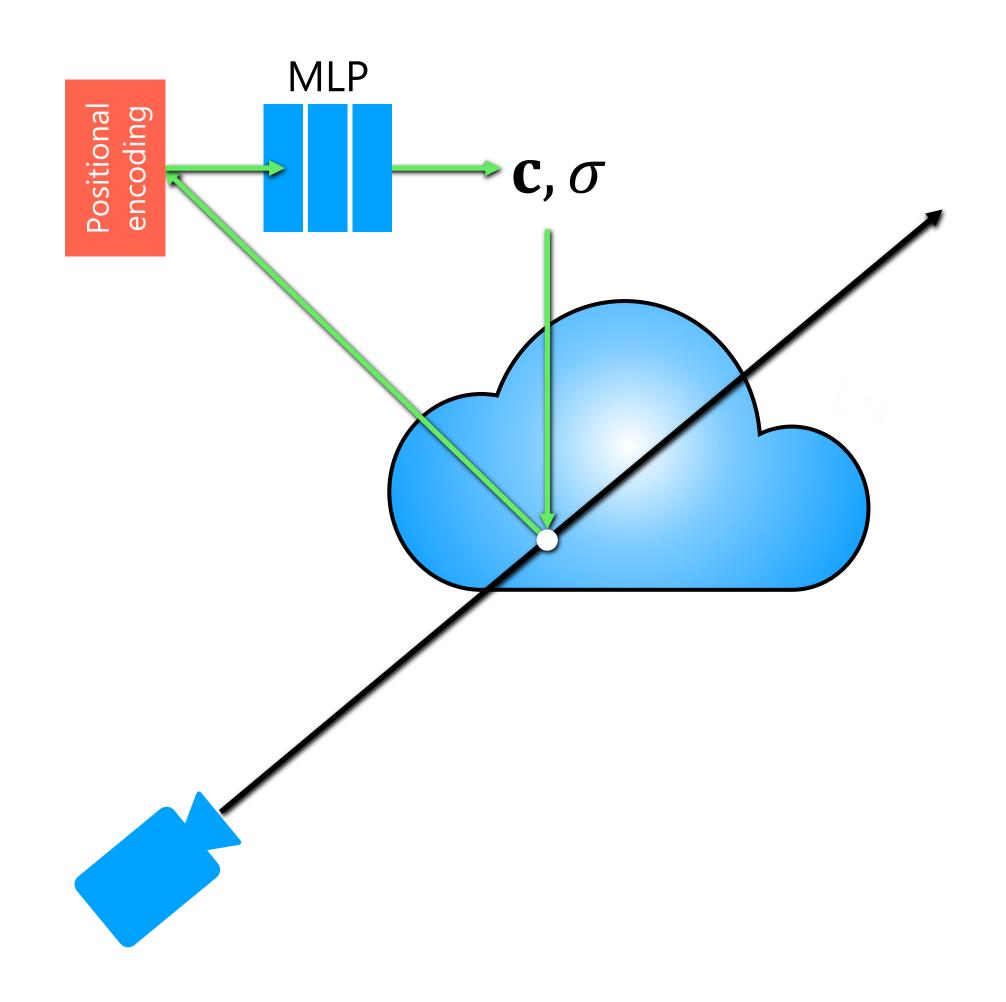


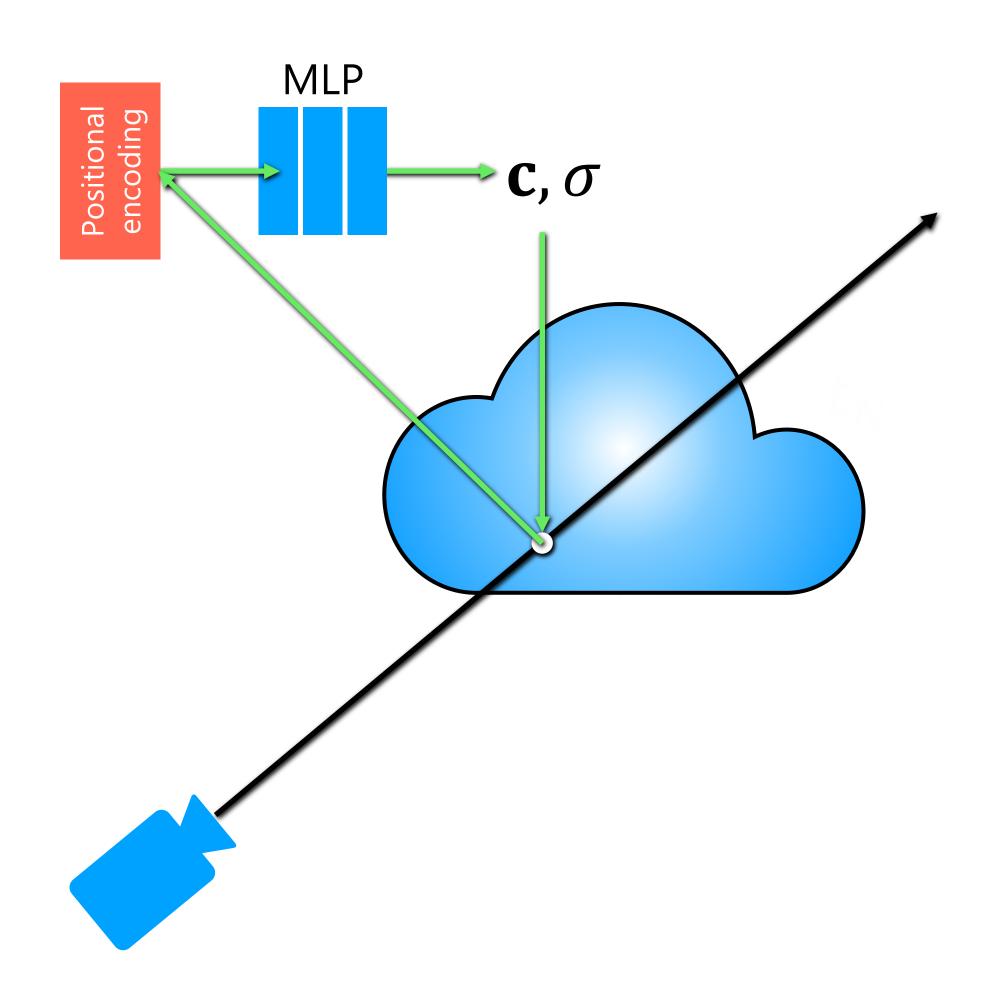
Recall "squared" encoding in TensorFlow Playground

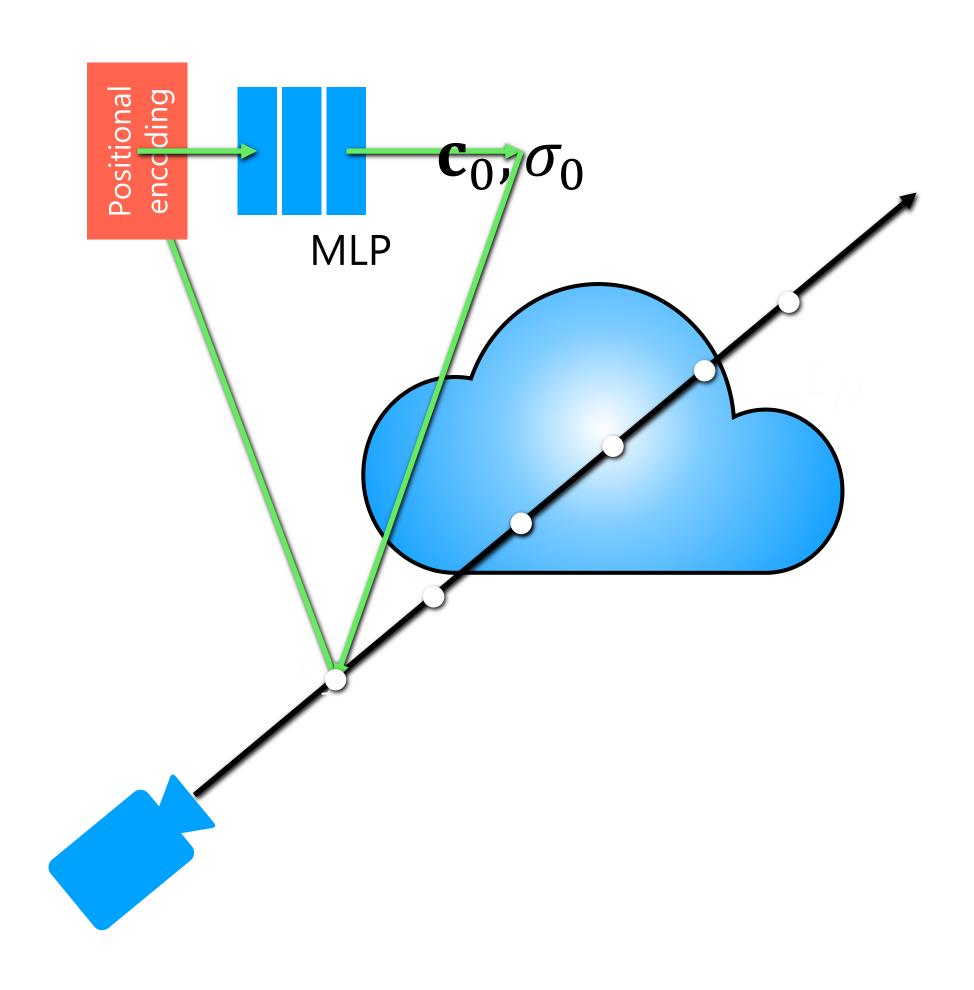
NeRF Overview

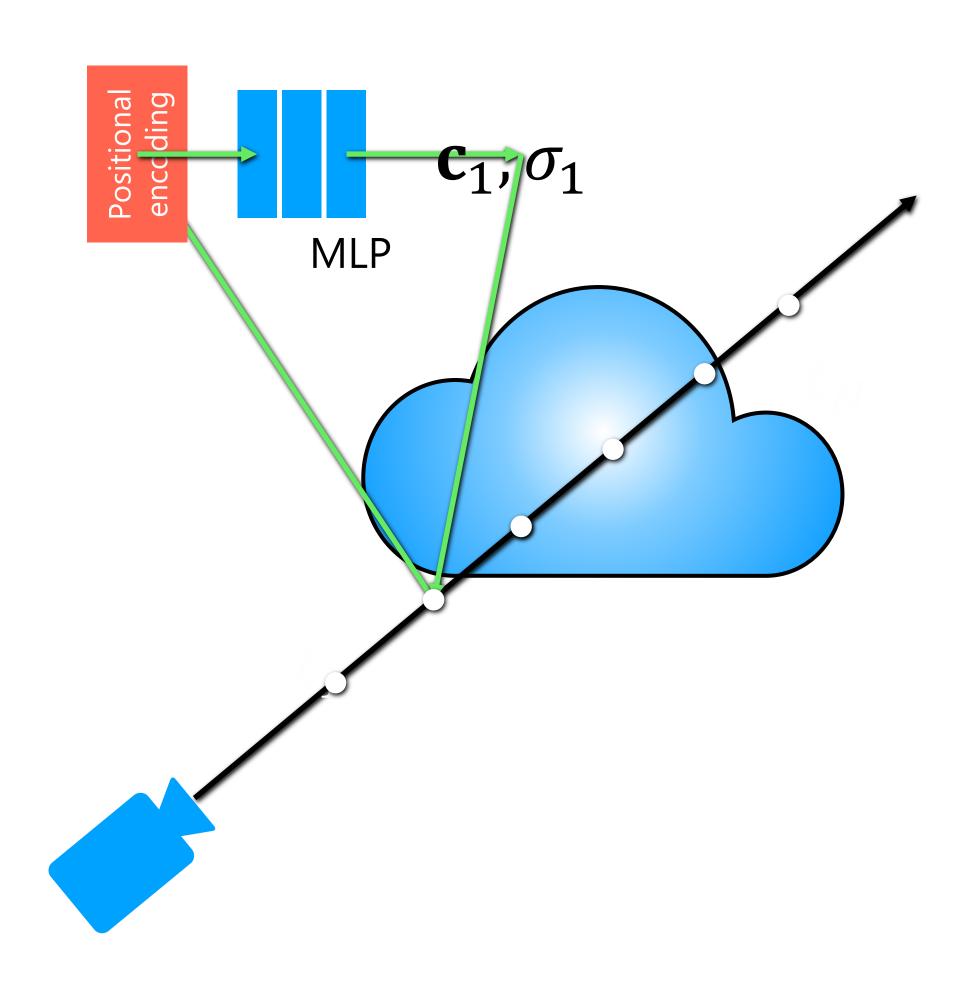
- Volumetric rendering
- Neural networks as representations for spatial data
- ► Neural Radiance Fields (NeRF)

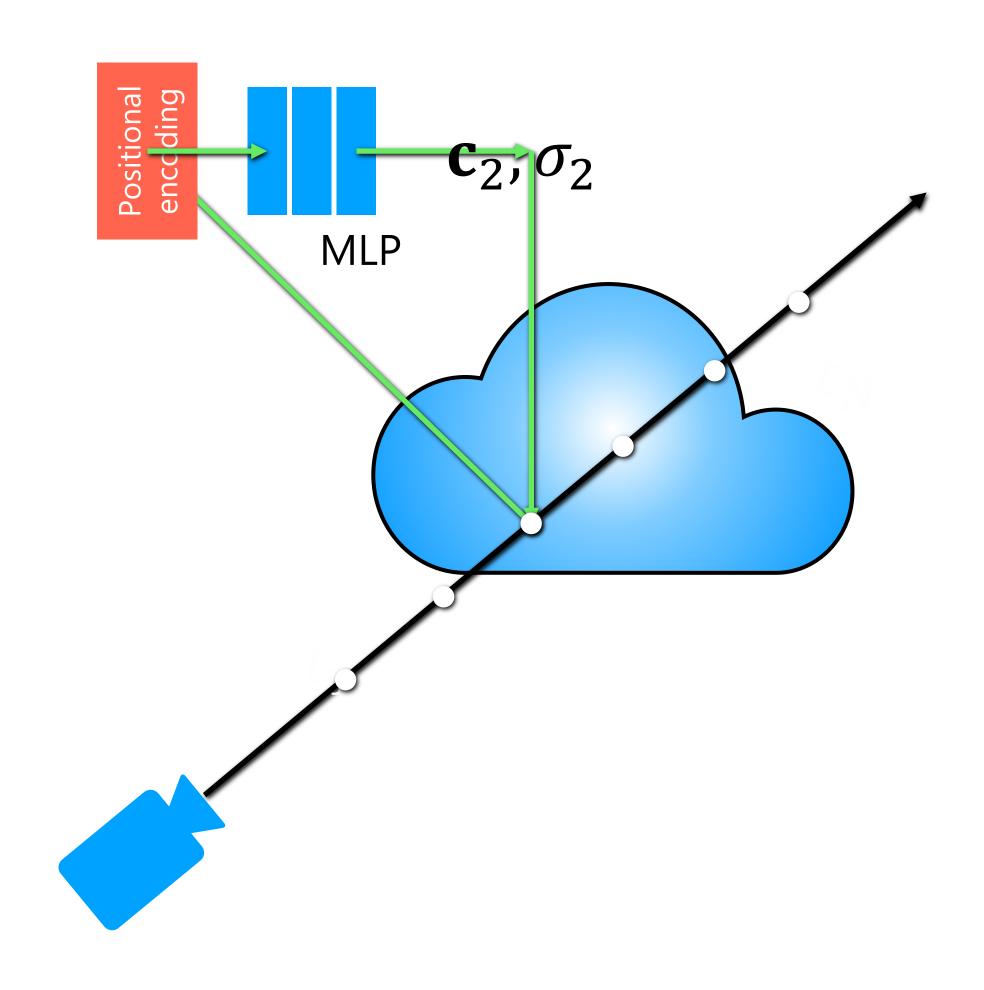
NeRF = volume rendering + coordinate-based network

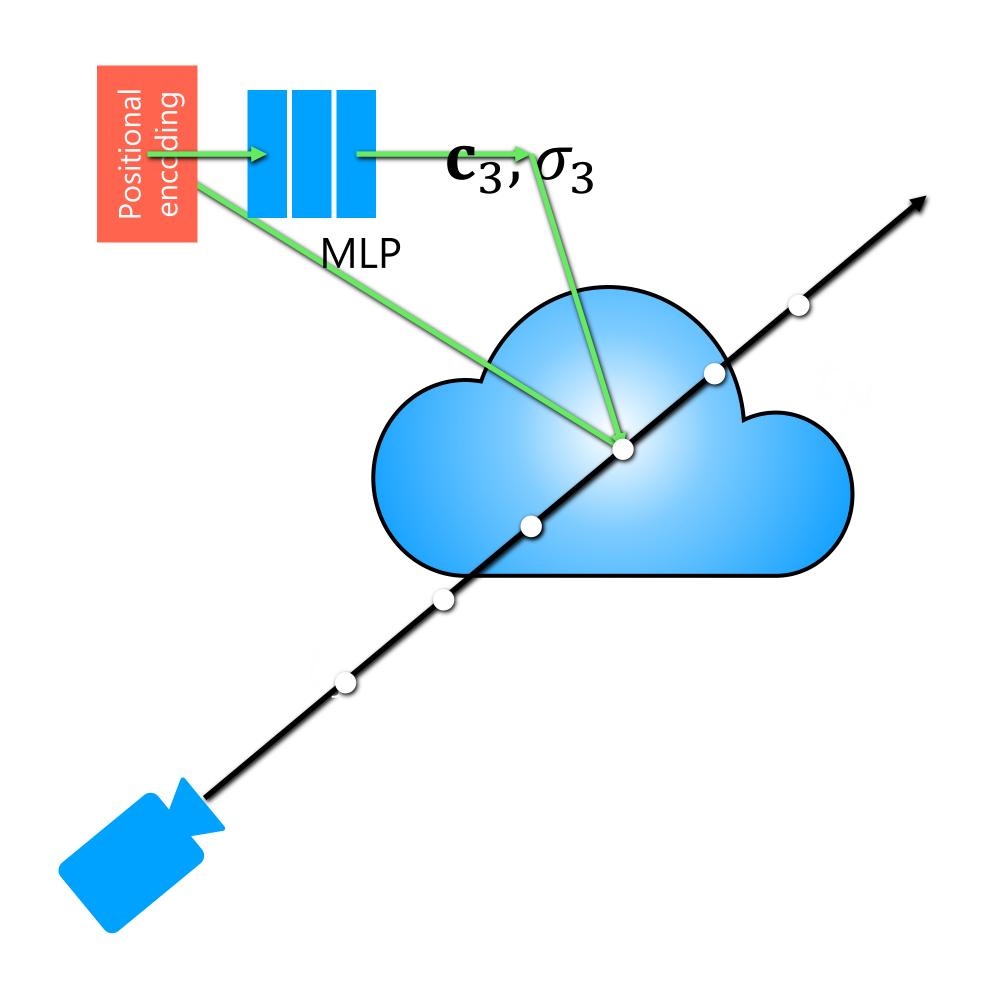


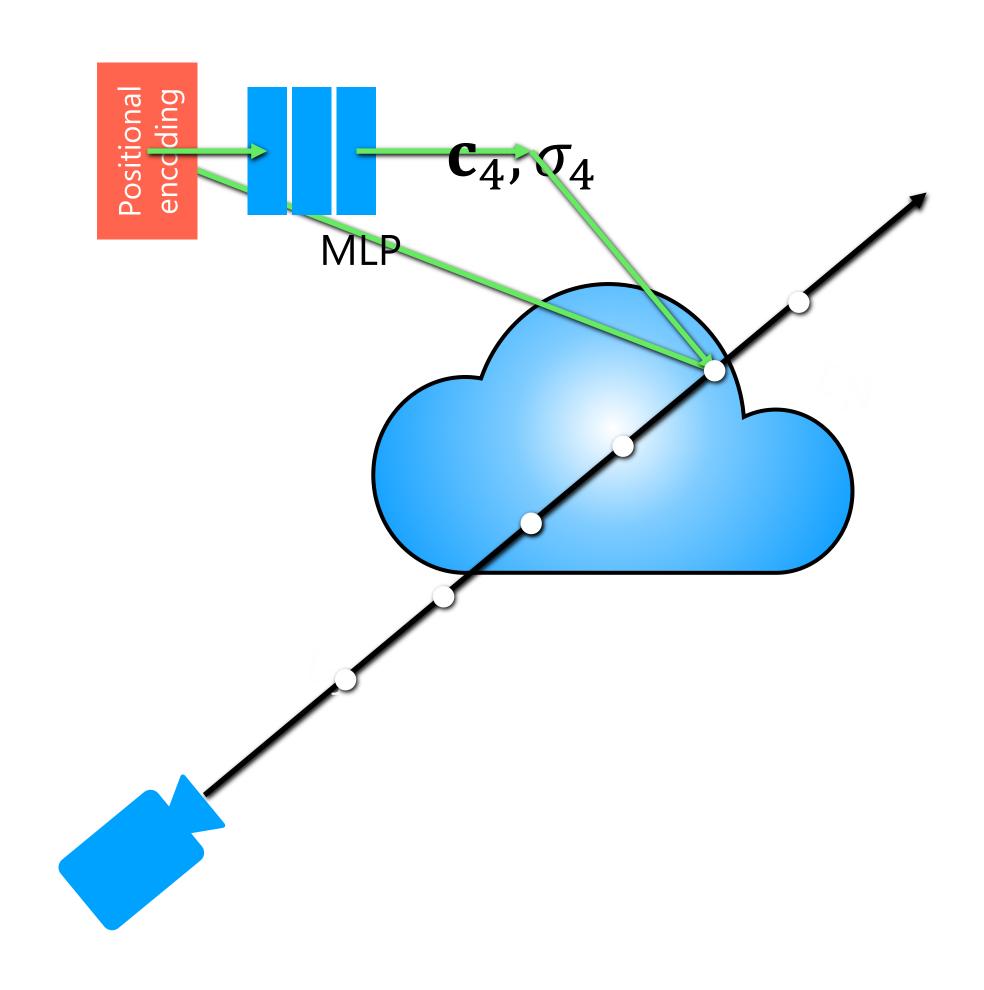


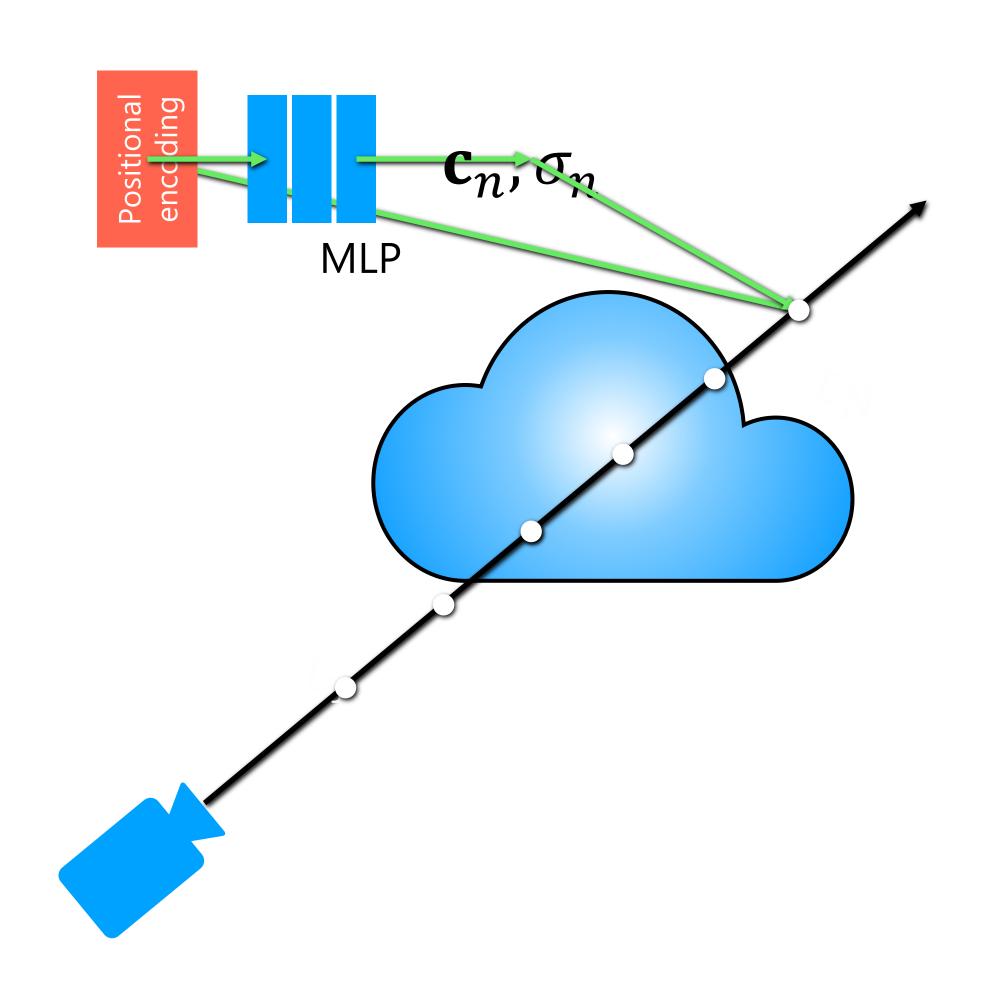




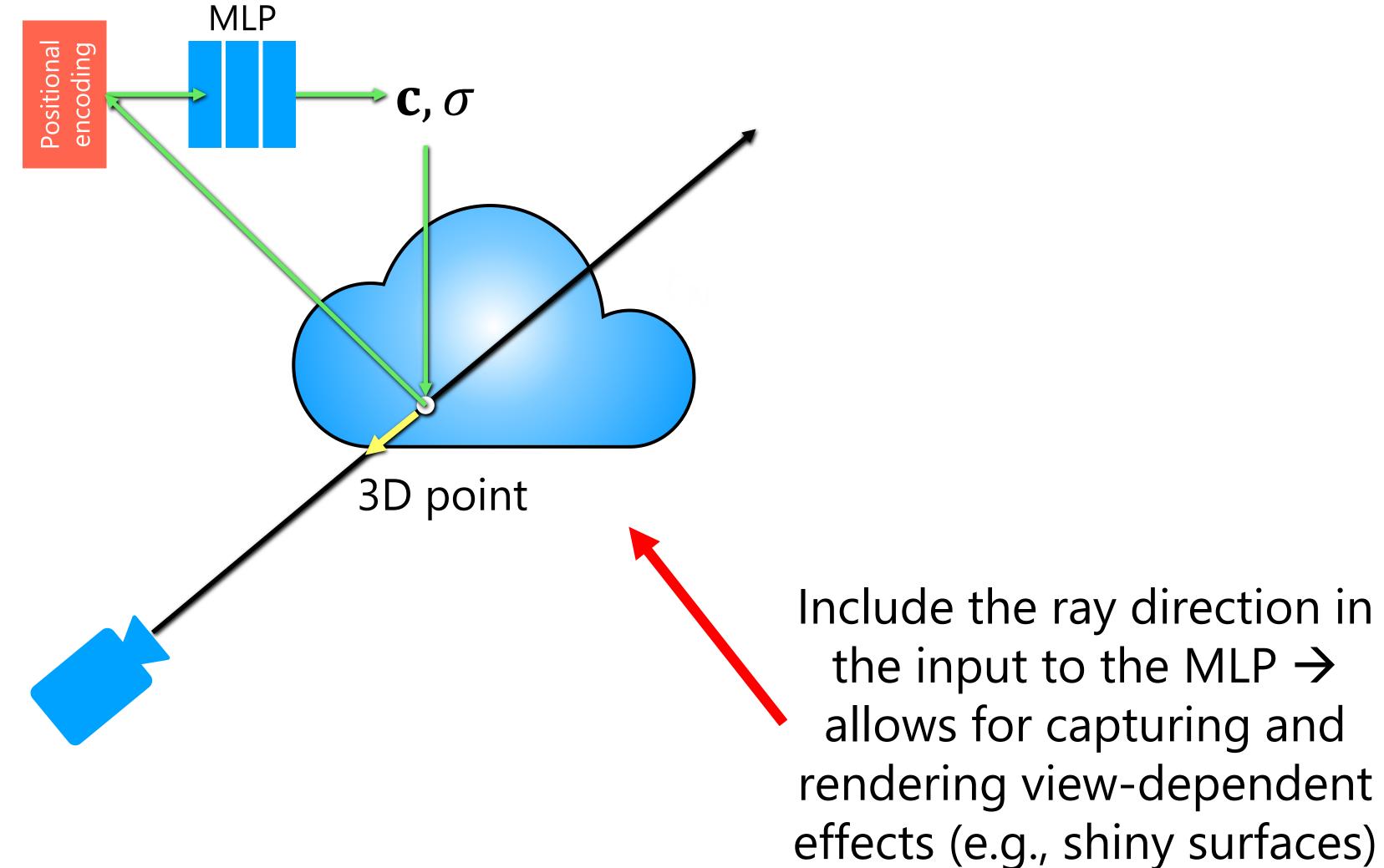




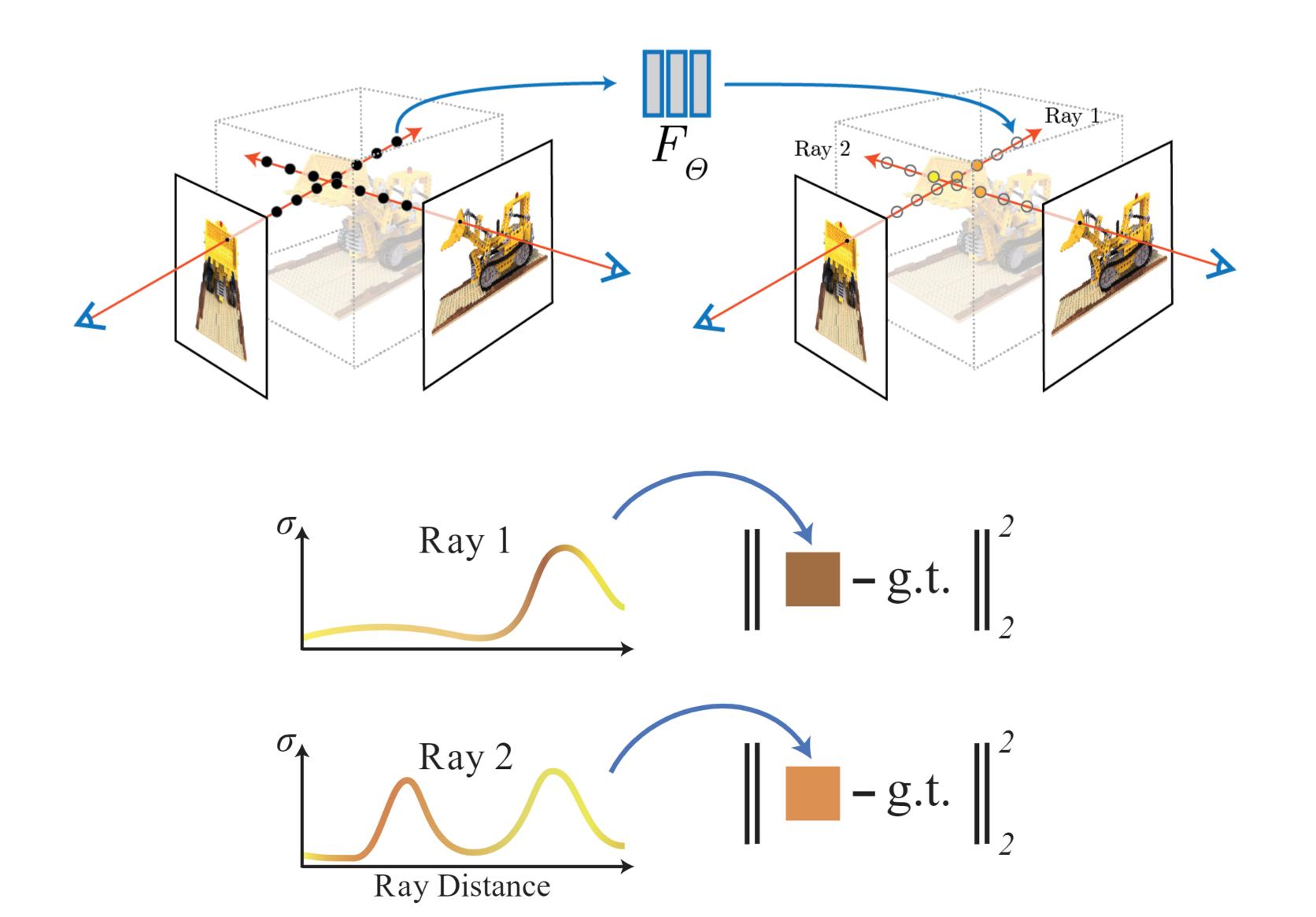




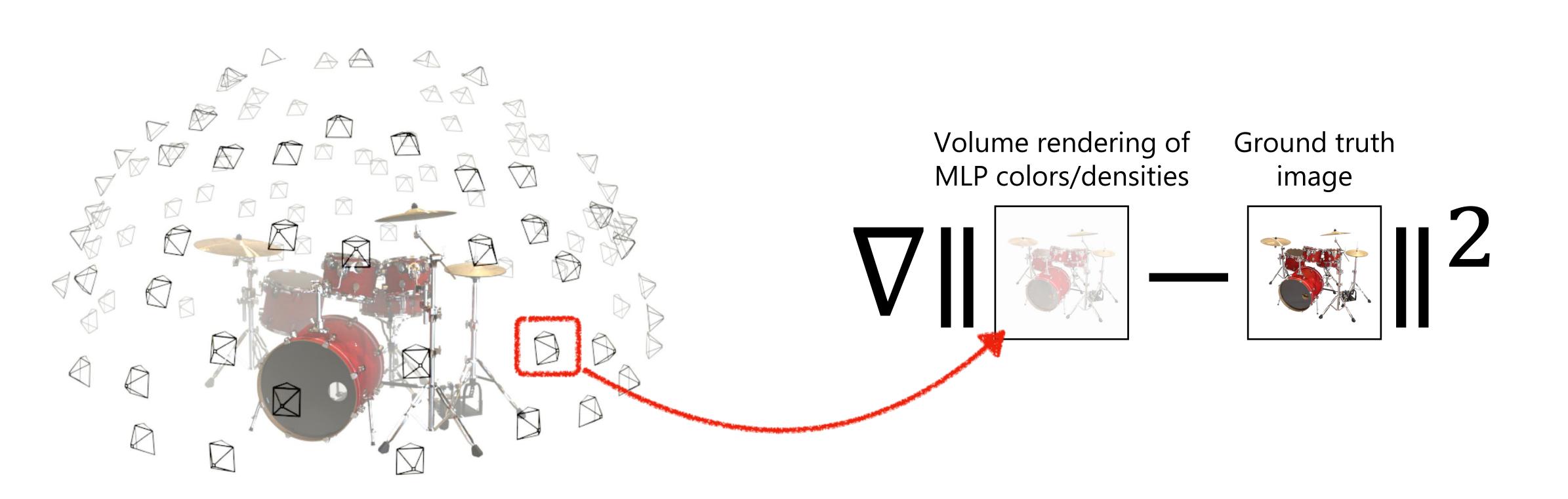
Extension: view-dependent field



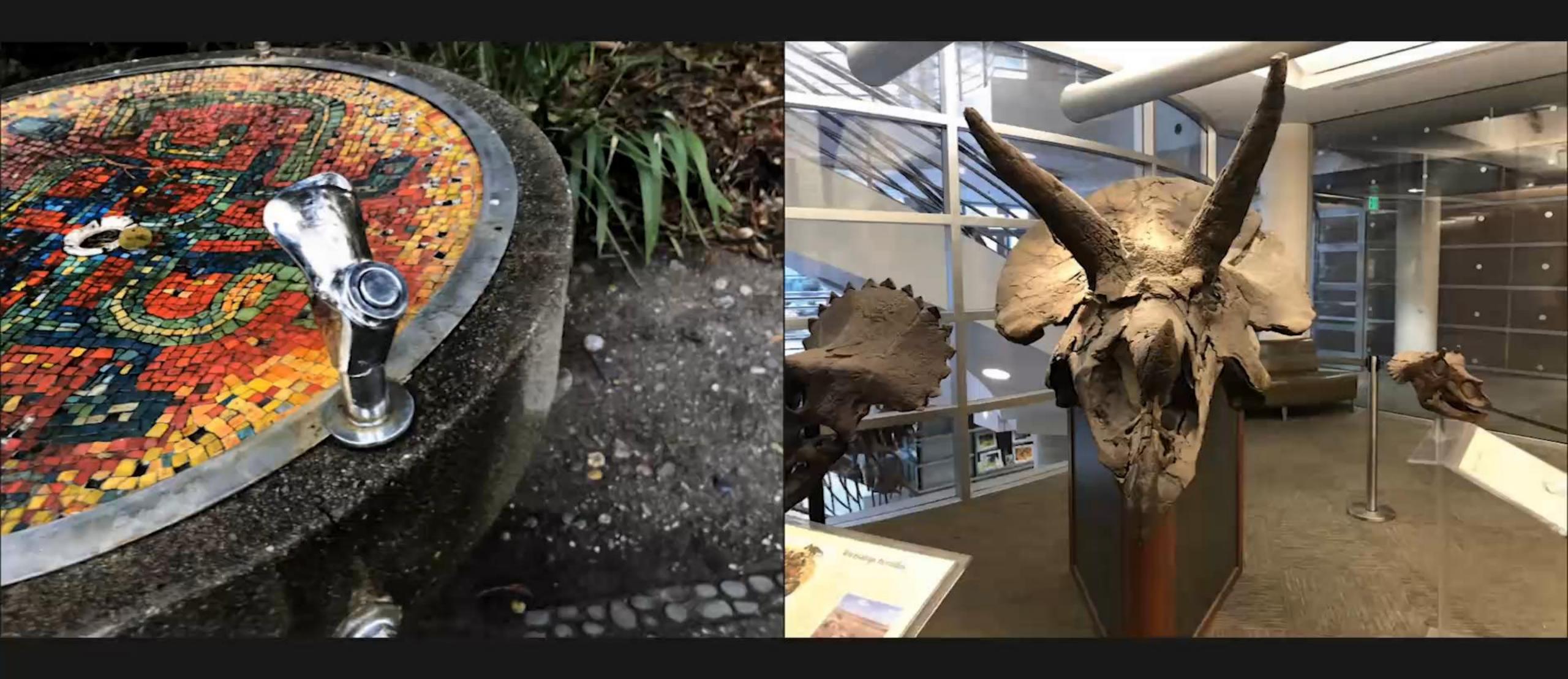
Putting it all together



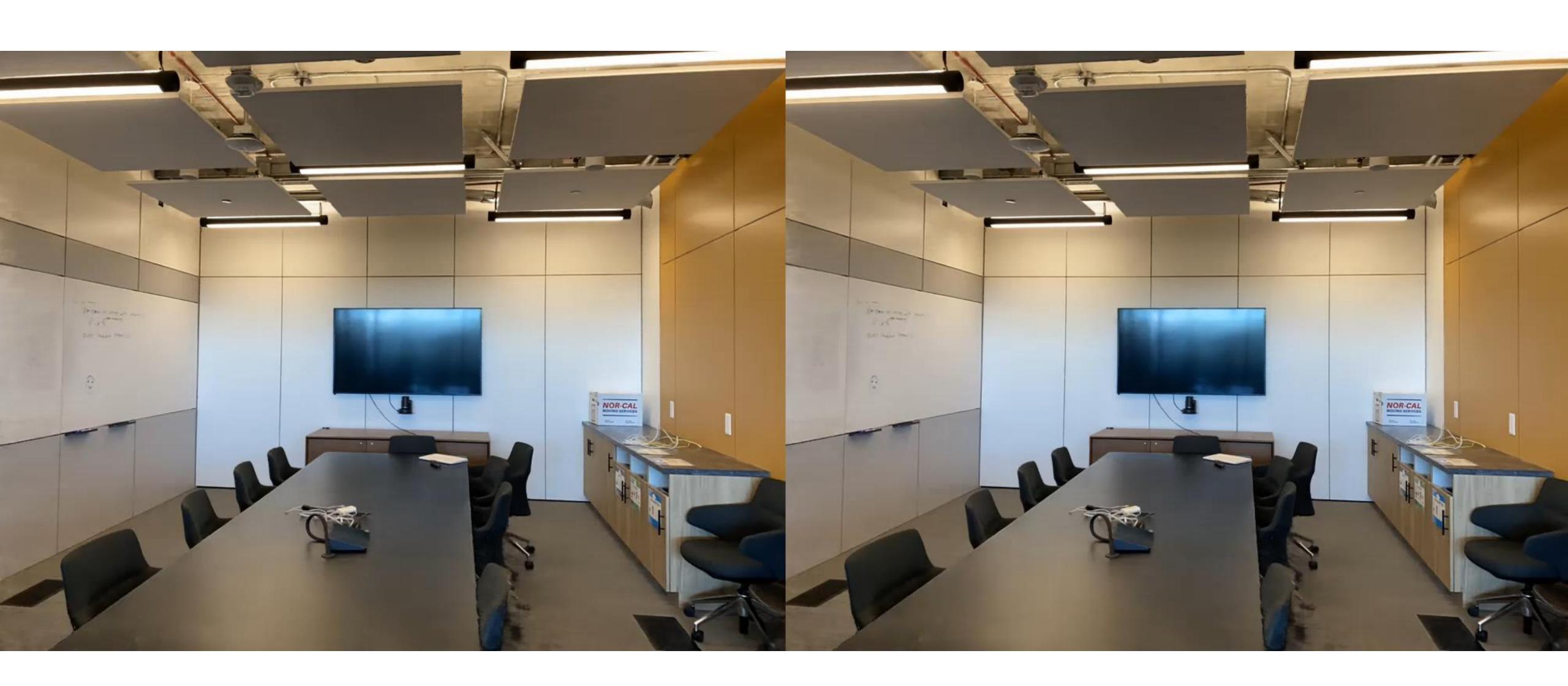
Train network using gradient descent to reproduce all input views of scene



Results



NeRF encodes convincing view-dependent effects using directional dependence

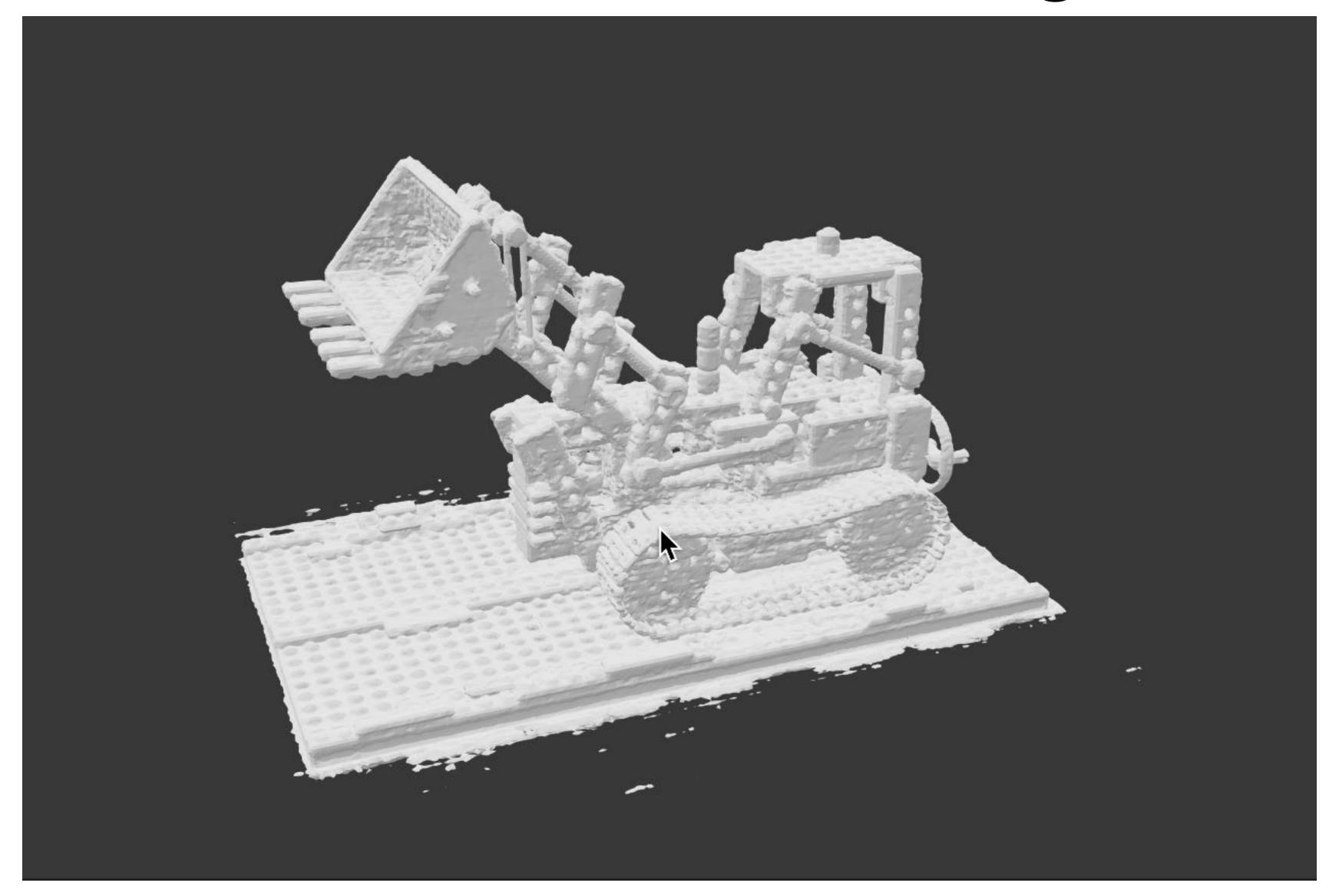


NeRF encodes convincing view-dependent effects using directional dependence

NeRF encodes detailed scene geometry with occlusion effects

NeRF encodes detailed scene geometry with occlusion effects

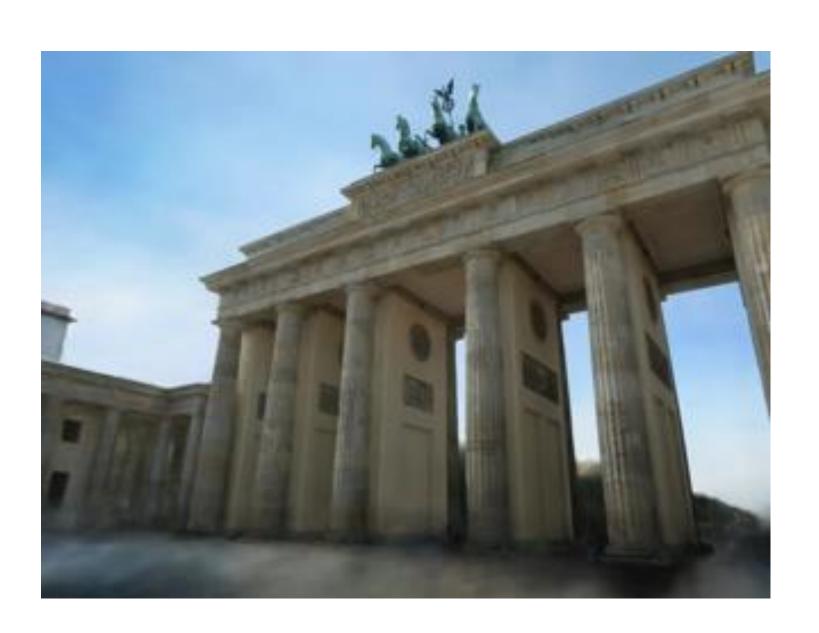
NeRF encodes detailed scene geometry



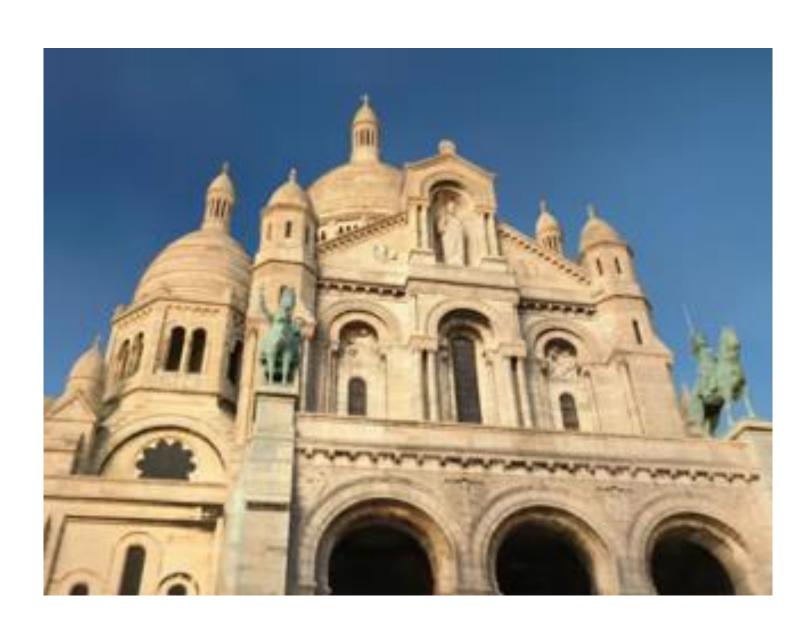
Summary

- Represent the scene as volumetric colored "fog"
- Store the fog color and density at each point as an MLP mapping 3D position (x, y, z) to color c and density σ
- Render image by shooting a ray through the fog for each pixel
- Optimize MLP parameters by rendering to a set of known viewpoints and comparing to ground truth images

NeRF in the Wild (NeRF-W)



Brandenburg Gate



Sacre Coeur

Trevi Fountain

Martin-Brualla*, Radwan*, Sajjadi*, Barron, Dosovitskiy, Duckworth. *NeRF in the Wild*. CVPR 2021.

https://www.youtube.com/watch?v=mRAKVQj5LRA

Questions?