CS5670: Computer Vision
Neural Rendering & Neural Radiance Fields (NeRFs)

Many slides based on material from Pratul Srinivasan



Announcements

* Project 5 released today, due Wednesday, May 4, 2022
(8:00 pm)

— To be done In groups of 2

» Sample final exam online — see Ed Stem

* Final exam in-class on May 10



Project 5 Demo
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Neural Radiance Fields (NeRF) as an approach to inverse rendering
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Deep learning for 3D reconstruction

 Previously: we reconstruct geometry by running stereo or
multi-view stereo on a set of images

— "Classical” approach

* How can we leverage powerful tools of deep learning?
— Deep neural networks
— GPU-accelerated stochastic gradient descent



NeRF and related methods - Key ideas

« We need to create a loss function and a scene
representation that we can optimize using gradient
descent to reconstruct the scene

* Differentiable rendering



Side Topic: Stereo Photography
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Stereo Photography

Queen Victoria at World Fair, 1851



Stereo Photography




Issue: Narrow Baseline

~06.5 cm
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Problem Statement
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Challenges

Extrapolation Non-Lambertian Effects

Large disocclusion Reflections, transparencies, etc.
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Stereo Magnification: Learning View
Synthesis using Multiplane Images

Tinghut Zhou, Richard Tucker, John Flynn, Graham Fyfte,
Noah Snavely

SIGGRAPH 2013



Multiplane Camera (1937)

—

Image credits: Disney (from 1957)


https://www.youtube.com/watch?v=kN-eCBAOw60

Multiplane Images (MPIs)

Each plane is at a fixed
depth and encoded by
an RGBA image

Reference ™ i
Viewpoint V



View Synthesis using Multiplane Images
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View Synthesis using Multiplane Images

Synthesized image
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Properties of Multiplane Images

Models disocclusion

Models soft edges and
non-Lambertian effects

Efficient for view synthesis

Dittferentiable rendering




Learning Multiplane Images

Multiplane Image

Input views RGB




Learning Multiplane Images

Rendered views Ground-truth
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Common architecture for mapping images to
Images: UNet architecture
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Training Data

Input views Target view

Need massive set of
triplets with known
camera poses




RealEstate10K

4gkKCuYEgY4 ~ 5 tracked sequences ORB_SLAMZ viswalisaticae
arag - rotate
scrn‘? - 1n/out

left/right - frame
wW/dowm ~ sequence
f - frusta

2 - Ie0m
space - animate

SLAM

2d: 4QkXCUYEQYd sequence: & / 9
time: 143.60s - 147,73
tracked frames: 100 map points: 46342

frame at 147.659s (147685211ps):
4795 sap points
field of view: x«79.89, y=350.45
miacothness: 0.01

10 million frames from 80,000 video clips from 10,000 videos
https://google.github.io/realestate10k/



https://google.github.io/realestate10k/

RealEstate10K dataset
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https://google.github.io/realestate10k/

Sampling Training Examples

Input Input TarTget
(Extrapolated)



Sampling Training Examples
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Results
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Multi-plane Image (MPI)

Plane O Plane 9
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Reference input view Plane 13 Plane 16







Extrapolating Cellphone Footage
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Paradigm 1: “Feedforward” inverse
rendering
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Paradigm 1: “Feedforward” inverse
rendering
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Paradigm 2: “Render-and-compare”
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Paradigm 2: “Render-and-compare”
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What representation to use?

» Could use triangle meshes, but
hard to differentiate during
rendering

» Multiplane images (MPIs) are easy
to differentiate, but only allow for
rendering a small range of views






NeRF == Differentiable Rendering with
a Neural Volumetric Representation



Barron et al 2021, Mip-NeRF 360: Unbounded Anti-Aliased Neural Radiance Fields
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Neural Volumetric Rendering




O

Rendering

guerying the radiance value
along rays through 3D space

I

What color?




Volumetric

continuous, differentiable
rendering model without
concrete ray/surface intersections
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Neural

using a neural network as a
scene representation, rather

than a voxel grid of data
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NeRF: Representing
Scenes as Neural Radiance

Fields for View Synthesis
ECCV 2020

Ben Mildenhall* Pratul Srinivasan* Matt Tancik*
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Optimize a NeRF
model

Given a set of sparse views of an 3D reconstruction viewable
object with known camera poses from any angle



NeRF Overview

> Volumetric rendering

> Neural networks as representations for spatial data

> Neural Radiance Fields (NeRF)

o



NeRF Overview

> Volumetric rendering



S.Chandrasekhar

weme — Traditional volumetric rendering

*

> Theory of volume rendering co-opted from physics in the
1980s: absorption, emission, out-scattering/in-scattering

Ray tracing simulated cumulus cloud [Kajiya]

Chandrasekhar 1950, Radiative Transfer
Kajiya 1984, Ray Tracing Volume Densities

o O



Traditional volumetric rendering

> Adapted for visualising medical data and linked with
alpha compositing

Pt.Reyes = Foreground over Hillside over Background.

Alpha compositing [Porter and Duff]

Levoy 1988, Display of Surfaces from Volume Data
Max 1995, Optical Models for Direct Volume Rendering
Porter and Duff 1984, Compositing Digital Images
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Traditional volumetric rendering

> Modern path tracers use sophisticated Monte Carlo
methods to render volumetric effects

Physically-based Monte Carlo rendering [Novak et al]

Novak et al 2018, Monte Carlo methods for physically based volume rendering

(0 0)



Volumetric formulation for NeRF

Scene is a cloud of colored fog

o

Max and Chen 2010, Local and Global Illumination in the Volume Rendering Integral



Volumetric formulation for NeRF

Ray r(t) = o + td

Camera Consider a ray traveling through the scene, and a point

at distance t along this ray. We look up its color ¢(t),
and its opacity (alpha value) a(t)

O N



Volumetric formulation for NeRF

P|[no hits before t] = T (t)

But ¢ may also be blocked by earlier points along the

ray. T (t): probability that the ray didn't hit any particles
earlier.
T(t) is called “transmittance”



Volume rendering estimation: integrating color along a
ray

Rendering model for ray r(t) = o + td:

/ Z lia;c; . /
final rendered \
color along ray welights

colors

How much light is blocked earlier along ray:

1—1
= [[ (1 —a;)
j=1

3D volume

Computing the color for a
set of rays through the
pixels of an image yields
a rendered Image




Volume rendering estimation: integrating color along a
ray

3D volume

Slight modification: a is not directly stored in the volume,
but instead is derived from a stored volume density
sigma (o) that i1s multiplied by the distance between

sampI&si de:ItaiS)i_ exp (—O'i 51)

w



Volume rendering estimation: integrating color along a
ray

3D volume

How do we store the values of
C, o at each point in space?



NeRF Overview

> Neural networks as representations for spatial data

O



Toy problem: storing 2D image data

(X, ¥) (r,9,0)

Usually we store an image as a
2D grid of RGB color values

O N



Toy problem: storing 2D image data

Fo
(x,7) —»III—» (r, g, b)

What if we train a simple fully-connected
network (MLP) to do this instead?



Recall the TensorFlow playground

Q-

DATA

Which dataset do
you want to use?

*»

Ratio of training to
test data: 50%
—0

Noise: 0

Batch size: 10
—0

Same concept as before, except we are computing an image, instead of a classifier!

Tinker With a Neural Network Right Here in Your Browser.

Epoch

000,000

FEATURES

Which properties

do you want to

feed in?

X

X,

il
il

Don't Worry, You Can't Break It. We Promise.

Learning rate

0.03

+_

+_

4 neurons

QR -

This is the output
from one neuron.
Hover to see it

larnar

Activation

Regularization

None

2 HIDDEN LAYERS

+_

2 neurons

The outputs are

mixed with varying
weights, shown
by the thickness of
the lines.

Regularization rate

0

OUTPUT

Test loss 0.505
Training loss 0.502

Problem type

Classification

v



Naive approach fails!

Ground truth image Neural network output fit
with gradient descent
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Problem:

“Standard” coordinate-based MLPs cannot represent
high frequency functions

(0 0)



Solution:

Pass input coordinates through a
high frequency mapping first



Example mapping: “positional encoding”

\% —>III—> y
Sin(v),cos V)
sin(2v), cos(2v)
sin(4v), cos(4v) _>III_> y

Sim(QL_1 ), cos( 2L lv



Positional encoding

Raw encoding of a number x "Positional encoding” of a number x



Problem solved!

Ground truth image Neural network output without Neural network output with
high frequency mapping high frequency mapping

(0 0)



Sometimes a better input encoding is all you
need o

Epoch Leaming rate Activation Regularization Regularization rate Problem type
4
U'C'O, 1 31 0.03 Tanh Mone 0 Classification

DATA FEATURES + — 2 HIDDEN LAYERS OUTPUT

Which dataset do Which properties do Test loss 0.001
you want to use? you want to feed in? + - Y Training loss 0.000

4 neurons 2 neurons
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Recall “squared” encoding in TensorFlow Playground



NeRF Overview

> Neural Radiance Fields (NeRF)

(0 0)



NeRF = volume rendering +
coordinate-based network



How do we store the values of ¢, o at each point in space

MLP
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How do we store the values of ¢, o at each point in space
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How do we store the values of ¢, o at each point in space

enccding
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How do we store the values of ¢, o at each point in space
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How do we store the values of ¢, o at each point in space
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How do we store the values of ¢, o at each point in space

Positional
enccding

-3,03

b

4
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How do we store the values of ¢, o at each point in space

enccding

:

Positional
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How do we store the values of ¢, o at each point in space
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Extension: view-dependent field

MLP

N | | et
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the input to the MLP =

allows for capturing and
rendering view-dependent
effects (e.g., shiny surfaces)

/D point
I \ Include the ray direction in
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Putting 1t all together
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Train network using gradient descent
to reproduce all input views of scene

Volume rendering of  Ground truth
MLP colors/densities iImage

|-
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Results
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NeRF encodes convincing view-dependent effects using
directional dependence

101



NeRF encodes convincing view-dependent effects using
directional dependence
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NeRF encodes detailed scene geometry with occlusion effects




NeRF encodes detailed scene geometry with occlusion effects

~ . ¢

B B <

J!";.. -

’ ‘\ )““ -

‘,J. > ' r

f <> | : $

00!30000,.. P AR Huooo‘ .

' . b - '

\\q9.| _ O'O . ‘.




NeRF encodes detailed scene geometry
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Summary

» Represent the scene as volumetric colored “fog”

» Store the fog color and density at each point as an MLP
mapping 3D position (X, y, z) to color c and density o

» Render image by shooting a ray through the fog for each
pixel

* Optimize MLP parameters by rendering to a set of known
viewpoints and comparing to ground truth images



NeRF in the Wild (NeRF-W)
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Martin-Brualla*, Radwan*, Sajjadi*, Barron, Dosovitskiy, Duckworth.
NeRF in the Wild. CVPR 2021.

https://www.youtube.com/watch?v=mRAKVQJ|5LRA



https://www.youtube.com/watch?v=mRAKVQj5LRA

Questions?



