CS5670: Computer Vision

Two-view geometry

Reading

• Reading: Szeliski 2nd Edition, Ch. 11.3, 12.1

Fundamental matrix song

http://danielwedge.com/fmatrix/

Back to stereo

• Where do epipolar lines come from?

Two-view geometry

Where do epipolar lines come from?

- This *epipolar geometry* of two views is described by a Very Special \mathbf{F} x3 matrix , called the *fundamental matrix*
- ${f F}$ maps (homogeneous) *points* in image 1 to *lines* in image 2!
- The epipolar line (in image 2) of point ${f p}$
- Epipolar constraint on corresponding point $\mathbf{q}^T\mathbf{F}\mathbf{p}=0$

• Two Special points: \mathbf{e}_1 and \mathbf{e}_2 (the *epipoles*): projection of one camera into the other

- Two Special points: \mathbf{e}_1 and \mathbf{e}_2 (the *epipoles*): projection of one camera into the other
- All of the epipolar lines in an image pass through the epipole
- Epipoles may or may not be inside the image

Epipoles

Properties of the Fundamental Matrix

- f Fp is the epipolar line associated witf p
- $\mathbf{F}^T\mathbf{q}$ is the epipolar line associated wird
- $\mathbf{F}\mathbf{e}_1 = \mathbf{0}$ al $\mathbf{F}^T\mathbf{e}_2 = \mathbf{0}$
- \mathbf{F} is rank 2
- How many parameters $doe \mathbf{F}$ have?

Example

Demo

https://www.cs.cornell.edu/courses/cs5670/2022sp/demos/ FundamentalMatrix/?demo=demo1

- Why does F exist?
- Let's derive it...

 ${f K}_1$: intrinsics of camera 1 ${f K}_2$: intrinsics of camera 2

 ${f R}_{.}$: rotation of image 2 w.r.t. camera 1

 $ilde{\mathbf{p}} = \mathbf{K}_1^{-1} \mathbf{p}$: ray through \mathbf{p} in camera 1's (and world) coordinate system

 $ilde{\mathbf{q}} = \mathbf{K}_2^{-1} \mathbf{q}$: ray through \mathbf{q} in camera 2's coordinate system

- $\tilde{\mathbf{p}}$, $\mathbf{R}^T \tilde{\mathbf{q}}$, ant are coplanar
- epipolar plane can be represented as with its norm $\mathbf{t} imes ilde{\mathbf{p}}$

$$(\mathbf{R}^T \tilde{\mathbf{q}})^T (\mathbf{t} \times \tilde{\mathbf{p}}) = 0$$

- One more substitution:
 - Cross product with t (on left) can be represented as a 3x3 matrix

$$[\mathbf{t}]_{\times} = \left[egin{array}{cccc} 0 & -t_z & t_y \ t_z & 0 & -t_x \ -t_y & t_x & 0 \end{array}
ight] \quad \mathbf{t} imes ilde{\mathbf{p}} = [\mathbf{t}]_{ imes} ilde{\mathbf{p}}$$

$$\tilde{\mathbf{q}}^T \mathbf{R} (\mathbf{t} \times \tilde{\mathbf{p}}) = 0$$

$$\tilde{\mathbf{q}}^T \mathbf{R} [\mathbf{t}]_{\times} \tilde{\mathbf{p}} = 0$$

 $ilde{\mathbf{p}} = \mathbf{K}_1^{-1} \mathbf{p}$: ray through \mathbf{p} in camera 1's (and world) coordinate system

 $ilde{\mathbf{q}} = \mathbf{K}_2^{-1} \mathbf{q}$: ray through **q** in camera 2's coordinate system

$$\tilde{\mathbf{q}}^T \mathbf{R} [\mathbf{t}]_{\times} \tilde{\mathbf{p}} = 0$$

$$\tilde{\mathbf{q}}^T \mathbf{E} \tilde{\mathbf{p}} = 0$$

$$\mathbf{E} \leftarrow \text{the Essential matrix}$$

Cross-product as linear operator

Useful fact: Cross product with a vector **t** can be represented as multiplication with a (*skew-symmetric*) 3x3 matrix

$$egin{aligned} \left[\mathbf{t}
ight]_{ imes} &= \left[egin{array}{ccc} 0 & -t_z & t_y \ t_z & 0 & -t_x \ -t_y & t_x & 0 \end{array}
ight] \ \mathbf{t} imes \mathbf{ ilde{p}} &= \left[\mathbf{t}
ight]_{ imes} \mathbf{ ilde{p}} \end{aligned}$$

 ${f K}_1$: intrinsics of camera 1

 \mathbf{K}_2 : intrinsics of camera 2

 ${f R}$: rotation of image 2 w.r.t. camera 1

$$\mathbf{q}^{T}\mathbf{K}_{2}^{-T}\mathbf{R}\left[\mathbf{t}\right]_{\times}\mathbf{K}_{1}^{-1}\mathbf{p} = 0$$

$$\mathbf{F} \leftarrow \text{the Fundamental matrix}$$

Rectified case

$$\mathbf{R} = \mathbf{I}_{3 \times 3} \\ \mathbf{t} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^T \qquad \mathbf{E} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix}$$

Working out the math

Stereo image rectification

- reproject image planes onto a common plane
 - plane parallel to the line between optical centers
- pixel motion is horizontal after this transformation
- two homographies, one for each input image reprojection
 - C. Loop and Z. Zhang. <u>Computing</u>
 <u>Rectifying Homographies for Stereo</u>
 <u>Vision</u>. CVPR 1999.

Original stereo pair

Relationship between F matrix and homography?

Images taken from the same center of projection? Use a homography!

Questions?

Estimating F

- If we don't know **K**₁, **K**₂, **R**, or **t**, can we estimate **F** for two images?
- Yes, given enough correspondences

Estimating F – 8-point algorithm

The fundamental matrix F is defined by

$$\mathbf{x}^{\prime T}\mathbf{F}\mathbf{x} = 0$$

for any pair of matches x and x' in two images.

• Let
$$\mathbf{x} = (u, v, 1)^{\mathsf{T}}$$
 and $\mathbf{x}' = (u', v', 1)^{\mathsf{T}}$, $\mathbf{F} = \begin{bmatrix} f_{11} & f_{12} & f_{13} \\ f_{21} & f_{22} & f_{23} \\ f_{31} & f_{32} & f_{33} \end{bmatrix}$ each match gives a linear equation

$$uu'f_{11} + vu'f_{12} + u'f_{13} + uv'f_{21} + vv'f_{22} + v'f_{23} + uf_{31} + vf_{32} + f_{33} = 0$$

8-point algorithm

$$\begin{bmatrix} u_{1}u_{1}^{'} & v_{1}u_{1}^{'} & u_{1}^{'} & u_{1}v_{1}^{'} & v_{1}v_{1}^{'} & v_{1}^{'} & u_{1} & v_{1} & 1\\ u_{2}u_{2}^{'} & v_{2}u_{2}^{'} & u_{2}^{'} & u_{2}v_{2}^{'} & v_{2}v_{2}^{'} & v_{2}^{'} & u_{2} & v_{2} & 1\\ \vdots & \vdots\\ u_{n}u_{n}^{'} & v_{n}u_{n}^{'} & u_{n}^{'} & u_{n}v_{n}^{'} & v_{n}v_{n}^{'} & v_{n}^{'} & u_{n} & v_{n} & 1 \end{bmatrix} \begin{bmatrix} f_{11}\\ f_{12}\\ f_{13}\\ f_{21}\\ f_{22}\\ f_{23}\\ f_{31}\\ f_{32}\\ f_{33} \end{bmatrix} = 0$$
ike with homographies, instead of solvings

• Like with homographies, instead of solving f = 0, we seek unit length f to minimal : least eigenvalue of .

8-point algorithm – Problem?

- **F** should have rank 2
- To enforce that **F** is of rank 2, **F** is replaced by **F**' that minimizes $||\mathbf{F} \mathbf{F}'||$ subject to the rank constraint.
 - This is achieved by SVD. Le**F** = $\mathbf{U}\Sigma\mathbf{V}^{\mathrm{T}}$, where

$$\Sigma = \begin{bmatrix} \sigma_1 & 0 & 0 \\ 0 & \sigma_2 & 0 \\ 0 & 0 & \sigma_3 \end{bmatrix}, \qquad \text{If et } \begin{bmatrix} \sigma_1 & 0 & 0 \\ 0 & \sigma_2 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

then $\mathbf{F}' = \mathbf{U}\Sigma'\mathbf{V}^{\mathrm{T}}$ is the solution (closest rank-2 matrix to \mathbf{F})

8-point algorithm

```
% Build the constraint matrix
A = [x2(1,:)'.*x1(1,:)' x2(1,:)'.*x1(2,:)' x2(1,:)' ...
    x2(2,:)'.*x1(1,:)' x2(2,:)'.*x1(2,:)' x2(2,:)' ...
    x1(1,:)'
             x1(2,:) ones(npts,1)];
[U,D,V] = svd(A);
% Extract fundamental matrix from the column of V
% corresponding to the smallest singular value.
F = reshape(V(:, 9), 3, 3)';
% Enforce rank2 constraint
[U,D,V] = svd(F);
F = U*diag([D(1,1) D(2,2) 0])*V';
```

8-point algorithm

- Pros: linear, easy to implement and fast
- Cons: susceptible to noise

Problem with 8-point algorithm

$$\begin{bmatrix} u_{1}u_{1}' & v_{1}u_{1}' & u_{1}' & u_{1}v_{1}' & v_{1}v_{1}' & v_{1}' & u_{1} & v_{1} & 1 \\ u_{2}u_{2}' & v_{2}u_{2}' & u_{2}' & u_{2}v_{2}' & v_{2}v_{2}' & v_{2}' & u_{2} & v_{2} & 1 \\ \vdots & \vdots \\ u_{n}u_{n}' & v_{n}u_{n}' & u_{n}' & u_{n}v_{n}' & v_{n}v_{n}' & v_{n}' & u_{n} & v_{n} & 1 \end{bmatrix} \begin{bmatrix} f_{13} \\ f_{21} \\ f_{22} \\ f_{23} \\ f_{31} \\ f_{32} \\ f_{23} \end{bmatrix} = 0$$

Orders of magnitude difference between column of data matrix → least-squares yields poor results

Normalized 8-point algorithm

normalized least squares yields good results Transform image to \sim [-1,1]x[-1,1]

Normalized 8-point algorithm

- Transform input by $\hat{x}_i = Tx_i$ $\hat{x}'_i = Tx'_i$
- Call 8-point on \hat{x}_i , \hat{x}'_i to obtain
- $\mathbf{F} = \mathbf{T}'^{\mathrm{T}} \hat{\mathbf{F}} \mathbf{T}$

Normalized 8-point algorithm

```
[x1, T1] = normalise2dpts(x1);
[x2, T2] = normalise2dpts(x2);
A = [x2(1,:)'.*x1(1,:)' x2(1,:)'.*x1(2,:)' x2(1,:)' ...
    x2(2,:)'.*x1(1,:)' x2(2,:)'.*x1(2,:)' x2(2,:)' ...
    x1(1,:)
               x1(2,:)' ones(npts,1)];
[U,D,V] = svd(A);
F = reshape(V(:, 9), 3, 3)';
[U,D,V] = svd(F);
F = U*diag([D(1,1) D(2,2) 0])*V';
% Denormalise
F = T2'*F*T1;
```

Results (ground truth)

Results (ground truth)

Results (normalized 8-point algorithm)

What about more than two views?

• The geometry of three views is described by a 3 x 3 x 3 tensor called the *trifocal tensor*

The geometry of four views is described by a 3 x 3 x 3 x 3 x 3 x 3
 tensor called the quadrifocal tensor

After this it starts to get complicated...

Large-scale structure from motion

Dubrovnik, Croatia. 4,619 images (out of an initial 57,845).

Total reconstruction time: 23 hours

Number of cores: 352

Questions?