CS5670: Computer Vision ### Binocular Stereo ### What is this? Single image stereogram, https://en.wikipedia.org/wiki/Autostereogram ### **Announcements** Project 3 due tomorrow, Friday, March 18 at 8pm (code), Monday, March 21 at 8pm (artifact) - Project 4 (Stereo) to be released on Tuesday, March 22, due Friday, April 1, by 8pm - To be done in groups of two "Mark Twain at Pool Table", no date, UCR Museum of Photography https://giphy.com/gifs/wigglegram-706pNfSKyaDug # Stereo Vision as Localizing Points in 3D - An object point will project to some point in our image - That image point corresponds to a ray in the world - Two rays intersect at a single point, so if we want to localize points in 3D we need 2 eyes ### **Stereo** - Given two images from different viewpoints - How can we compute the depth of each point in the image? - Based on how much each pixel moves between the two images # **Epipolar geometry** epipolar lines Two images captured by a purely horizontal translating camera (rectified stereo pair) $x_2 - x_1 =$ the *disparity* of pixel (x_1, y_1) ## **Disparity = inverse depth** http://stereo.nypl.org/view/41729 (Or, hold a finger in front of your face and wink each eye in succession.) # Your basic stereo matching algorithm ### Match Pixels in Conjugate Epipolar Lines - Assume brightness constancy - This is a challenging problem - Hundreds of approaches - A good survey and evaluation: http://www.middlebury.edu/stereo/ # Your basic stereo matching algorithm For each epipolar line For each pixel in the left image - compare with every pixel on same epipolar line in right image - pick pixel with minimum match cost Improvement: match windows ### Stereo matching based on SSD ### Window size W = 3 W = 20 ### Effect of window size - Smaller window - + more detail - more noise - Larger window - + less noise - less detail ### Better results with adaptive window - T. Kanade and M. Okutomi, <u>A Stereo Matching Algorithm with an Adaptive Window: Theory and Experiment</u>, ICRA 1991. - D. Scharstein and R. Szeliski. <u>Stereo matching with nonlinear diffusion</u>. IJCV, July 1998 ### **Stereo results** - Data from University of Tsukuba - Similar results on other images without ground truth Scene Ground truth ### Results with window search Window-based matching (best window size) Ground truth ### Better methods exist... Graph cuts-based method Ground truth Boykov et al., <u>Fast Approximate Energy Minimization via Graph Cuts</u>, International Conference on Computer Vision 1999. For the latest and greatest: http://www.middlebury.edu/stereo/ - What defines a good stereo correspondence? - 1. Match quality - Want each pixel to find a good match in the other image - 2. Smoothness - If two pixels are adjacent, they should (usually) move about the same amount • Find disparity map \emph{d} that minimizes an \emph{energy} $\emph{function } E(\emph{d})$ Simple pixel / window matching $$E(d) = \sum_{(x,y)\in I} C(x,y,d(x,y))$$ $$C(x, y, d(x, y)) = \frac{\text{SSD distance between windows}}{I(x, y) \text{ and } J(x + d(x, y), y)}$$ Simple pixel / window matching: choose the minimum of each column in the DSI independently: $$d(x,y) = \underset{d'}{\operatorname{arg\,min}} C(x,y,d')$$ # **Greedy selection of best match** Better objective function $$E(d) = E_d(d) + \lambda E_s(d)$$ match cost smoothness cost smoothness cost Adjacent pixels should (usually) move about the same amount $$E(d) = E_d(d) + \lambda E_s(d)$$ match cost: $$E_d(d) = \sum_{(x,y) \in I} C(x,y,d(x,y))$$ smoothness cost: $$E_s(d) = \sum_{(p,q) \in \mathcal{E}} V(d_p,d_q)$$ $\mathcal E$: set of neighboring pixels # Smoothness cost $E_s(d) = \sum_{(p,q) \in \mathcal{E}} V(d_p, d_q)$ How do we choose *V*? $$V(d_p,d_q) = |d_p - d_q|$$ $L_1 \, \mathrm{distance}$ $$V(d_p, d_q) = \begin{cases} 0 & \text{if } d_p = d_q \\ 1 & \text{if } d_p \neq d_q \end{cases}$$ "Potts model" ### **Smoothness cost** $$E(d) = E_d(d) + \lambda E_s(d)$$ - If λ = infinity, then we only consider smoothness - Optimal solution is a surface of constant depth/disparity - Fronto-parallel surface In practice, want to balance data term with smoothness term ## **Dynamic programming** $$E(d) = E_d(d) + \lambda E_s(d)$$ Can minimize this independently per scanline using dynamic programming (DP) ### **Dynamic programming** - Finds "smooth", low-cost path through DPI from left to right - Visiting a node incurs its data cost, switching disparities from one column to the next also incurs a (smoothness) cost # **Dynamic Programming** ## **Dynamic programming** Can we apply this trick in 2D as well? • No: the shortest path trick only works to find a 1D path ### Stereo as a minimization problem $$E(d) = E_d(d) + \lambda E_s(d)$$ - The 2D problem has many local minima - Gradient descent doesn't work well - And a large search space - $-n \times m$ image w/ k disparities has k^{nm} possible solutions - Finding the global minimum is NP-hard in general - Good approximations exist (e.g., graph cuts algorithms) # **Questions?** # **Depth from disparity** $$disparity = x - x' = \frac{baseline*f}{z}$$ ### Real-time stereo Nomad robot searches for meteorites in Antartica - Used for robot navigation (and other tasks) - Several real-time stereo techniques have been developed (most based on simple discrete search) ### Stereo reconstruction pipeline - Steps - Calibrate cameras - Rectify images - Compute disparity - Estimate depth #### What will cause errors? - Camera calibration errors - Poor image resolution - Occlusions - Violations of brightness constancy (specular reflections) - Large motions - Low-contrast image regions ### Active stereo with structured light Li Zhang's one-shot stereo - Project "structured" light patterns onto the object - simplifies the correspondence problem - basis for active depth sensors, such as Kinect and iPhone X (using IR) # Active stereo with structured light https://ios.gadgethacks.com/news/watch-iphone-xs-30k-ir-dots-scan-your-face-0180944/ ## Laser scanning Digital Michelangelo Project http://graphics.stanford.edu/projects/mich/ - Optical triangulation - Project a single stripe of laser light - Scan it across the surface of the object - This is a very precise version of structured light scanning The Digital Michelangelo Project, Levoy et al. ### 3D Photography on your Desk # **Questions?**