CS5670: Computer Vision

Single-View Modeling

Single-View Modeling

- Readings

Ames Room

- Mundy and Zisserman. Geometric Invariance in Computer Vision, Appendix: Projective Geometry for Machine Vision, MIT Press, 1992, (read 23.1-23.5, 23.10)
- available online: http://www.cs.cmu.edu/~ph/869/papers/zisser-mundy.pdf

Announcements

- Project 3: Autostitch (Panorama Stitching)
- Due on Friday, March 18, by 7pm
- To be done in groups of 2
- If you need help finding a team member, let us know

Roadmap ahead

- The next few lectures will finish up geometry
- Next up is recognition / learning
- We already know about camera geometry \& panoramas
- Coming up
- Single-view modeling (today)
- Two-view geometry
- Multi-view geometry

Ames Room

Forced perspective in film

How Lord of the Rings used forced perspective shots with a moving camera https://www.youtube.com/watch?v=QWMFpxkGO s

Projective geometry-what's it good for?

- Uses of projective geometry
- Drawing
- Measurements
- Mathematics for projection
- Undistorting images
- Camera pose estimation
- Object recognition

Applications of projective geometry

Vermeer's Music Lesson

Making measurements in images

WARBY PARKER
Measure your pupillary distance (PD)

Your PD is the distance between your pupils. To measure it, follow the instructions below - once you submit your photo, our team of experts will determine your PD and email you once we've applied it to your order.

Measurements on planes

Approach: unwarp then measure

Point and line duality

- A line I is a homogeneous 3 -vector
- It is \perp to every point (ray) \mathbf{p} on the line: $\mathbf{I} \cdot \mathbf{p}=0$

What is the line \mathbf{I} spanned by points \mathbf{p}_{1} and $\mathbf{p}_{\mathbf{2}}$?

- \mathbf{I} is \perp to $\mathbf{p}_{\mathbf{1}}$ and $\mathbf{p}_{\mathbf{2}} \Rightarrow \mathbf{I}=\mathbf{p}_{\mathbf{1}} \times \mathbf{p}_{\mathbf{2}}$
- I can be interpreted as a plane normal

What is the intersection of two lines \mathbf{I}_{1} and $\mathbf{I}_{\mathbf{2}}$?

- p is \perp to I_{1} and $\mathbf{I}_{\mathbf{2}} \Rightarrow p=\mathbf{I}_{\mathbf{1}} \times \mathbf{I}_{\mathbf{2}}$

Points and lines are dual in projective space

Example

What is the line passing through points \mathbf{p} and \mathbf{q} ?

$$
\mathbf{p} \times \mathbf{q}
$$

Example

Answer: the set of points (x, y) such that. $\left[\begin{array}{l}x \\ y \\ 1\end{array}\right]=0 \quad, y-200=0$
i.e.,

Example

What is the line passing through points \mathbf{p} and \mathbf{r} ?

$$
\mathbf{p} \times \mathbf{r}=\left[\begin{array}{c}
100 \\
200 \\
1
\end{array}\right] \times\left[\begin{array}{c}
150 \\
150 \\
1
\end{array}\right]=\left[\begin{array}{c}
200 \cdot 1-150 \cdot 1 \\
150 \cdot 1-100 \cdot 1 \\
100 \cdot 150-150 \cdot 200
\end{array}\right]=\left[\begin{array}{c}
50 \\
50 \\
-15000
\end{array}\right] \sim\left[\begin{array}{c}
1 \\
1 \\
-300
\end{array}\right]
$$

i.e., all points (x, y) such that $x+y=300$

Question time

Consider the above image, with four points $\mathbf{p}, \mathbf{q}, \mathbf{r}, \mathbf{s}$, labeled (assume these are 2D homogeneous points).

What is a simple expression for the point of intersection between the line through \mathbf{p} and \mathbf{r} and the line through \mathbf{q} and \mathbf{s} ?

slido

Consider the following image, with four points p, q, r, s, labeled (assume these are 2D homogeneous points).

What is a simple expression for the point of intersection between the line through p and r and the line through q and s ?
(i) Start presenting to display the poll results on this slide.

Question time

Consider the above image, with four points $\mathbf{p}, \mathbf{q}, \mathbf{r}, \mathbf{s}$, labeled (assume these are 2D homogeneous points).

What is a simple expression for the point of intersection between the line through \mathbf{p} and \mathbf{r} and the line through \mathbf{q} and \mathbf{s} ?

Answer: $(\mathbf{p} \times \mathbf{r}) \times(\mathbf{q} \times \mathbf{s})$

Ideal points and lines

- Ideal point ("point at infinity")
$-p \cong(x, y, 0)-$ parallel to image plane
- It has infinite image coordinates
- Ideal line
- I $\cong(\mathrm{a}, \mathrm{b}, 0)$ - parallel to image plane
- Corresponds to a line in the image (finite coordinates)
- goes through image origin (principal point)

3D projective geometry

- These concepts generalize naturally to 3D
- Homogeneous coordinates
- Projective 3D points have four coords: $\mathbf{P}=(X, Y, Z, W)$
- Duality
- A plane \mathbf{N} is also represented by a 4 -vector
- Points and planes are dual in 3D: $\mathbf{N} \mathbf{P}=0$
- Three points define a plane, three planes define a point

3D to 2D: perspective projection

$$
\text { Projection: } \quad \mathbf{p}=\left[\begin{array}{c}
w \\
w y \\
w
\end{array}\right]=\left[\begin{array}{cccc}
* & * & * & * \\
* & * & * & * \\
* & * & * & *
\end{array}\right]\left[\begin{array}{c}
x \\
Y \\
Z \\
1
\end{array}\right]=\boldsymbol{\Pi} \mathbf{P}
$$

Figure 23.4
A perspective view of a set of parallel lines in the plane. All of the lines converge to a single vanishing point.

Vanishing points (1D)

- Vanishing point
- projection of a point at infinity
- can often (but not always) project to a finite point in the image

$$
\begin{aligned}
& \text { camera } \\
& \text { center }
\end{aligned}
$$

Vanishing points (2D)

Vanishing points

- Properties
- Any two parallel lines (in 3D) have the same vanishing point \mathbf{v}
- The ray from \mathbf{C} through \mathbf{v} is parallel to the lines
- An image may have more than one vanishing point
- in fact, every image point is a potential vanishing point

One-point perspective

Two-point perspective

Three-point perspective

Questions?

Vanishing lines

- Multiple Vanishing Points
- Any set of parallel lines on the plane define a vanishing point
- The union of all of these vanishing points is the horizon line
- also called vanishing line
- Note that different planes (can) define different vanishing

Vanishing lines

- Multiple Vanishing Points
- Any set of parallel lines on the plane define a vanishing point
- The union of all of these vanishing points is the horizon line - also called vanishing line
- Note that different planes (can) define different vanishing

Computing vanishing points

Computing vanishing points

$$
\mathbf{P}_{t}=\left[\begin{array}{c}
P_{X}+t D_{X} \\
P_{Y}+t D_{Y} \\
P_{Z}+t D_{Z} \\
1
\end{array}\right] \cong\left[\begin{array}{c}
P_{X} / t+D_{X} \\
P_{Y} / t+D_{Y} \\
P_{Z} / t+D_{Z} \\
1 / t
\end{array}\right]
$$

- Properties $\mathbf{v}=\boldsymbol{\Pi 1} \mathbf{P}_{\infty}$
- \mathbf{P}_{∞} is a point at infinity \mathbf{v} is its projection
- Depends only on line direction
- Parallel lines $\mathbf{P}_{0}+t \mathbf{D}, \mathbf{P}_{1}+t \mathbf{D}$ intersect at \mathbf{P}_{∞}

Computing vanishing lines

- Properties
- I is intersection of horizontal plane through \mathbf{C} with image plane
- Compute I from two sets of parallel lines on ground plane
- All points at same height as \mathbf{C} project to I
- points higher than C project above I
- Provides way of comparing height of objects in the scene

Fun with vanishing points

Lots of fun with vanishing points

Perspective cues

Perspective cues

Perspective cues

Comparing heights

Measuring height

Computing vanishing points (from lines)

Intersect $p_{1} q_{1}$ with $p_{2} q_{2}$

$$
v=\left(p_{1} \times q_{1}\right) \times\left(p_{2} \times q_{2}\right)
$$

Least squares version

- Better to use more than two lines and compute the "closest" point of intersection
- See notes by Bob Collins for one good way of doing this:
- http://www-2.cs.cmu.edu/~ph/869/www/notes/vanishing.txt

Measuring height without a ruler

Measuring height without a ruler

Compute Z from image measurements

- Need more than vanishing points to do this

The cross ratio

- A Projective Invariant
- Something that does not change under projective transformations (including perspective projection)

The cross-ratio of 4 collinear points

$$
\frac{\left\|\mathbf{P}_{3}-\mathbf{P}_{1}\right\|\left\|\mathbf{P}_{4}-\mathbf{P}_{2}\right\|}{\left\|\mathbf{P}_{3}-\mathbf{P}_{2}\right\|\left\|\mathbf{P}_{4}-\mathbf{P}_{1}\right\|} \quad \mathbf{P}_{i}=\left[\begin{array}{c}
X_{i} \\
Y_{i} \\
Z_{i} \\
1
\end{array}\right]
$$

- $4!=24$ different orders (but only 6 distinct values) This is the fundamental invariant of projective geometry

$$
\frac{\left\|\mathbf{P}_{1}-\mathbf{P}_{3}\right\|\left\|\mathbf{P}_{4}-\mathbf{P}_{2}\right\|}{\left\|\mathbf{P}_{1}-\mathbf{P}_{2}\right\|\left\|\mathbf{P}_{4}-\mathbf{P}_{3}\right\|}
$$

Measuring height

Finding the vertical (z) vanishing point

Measuring height

Measuring height

What if the point on the ground plane \mathbf{b}_{0} is not known?

- Here the person is standing on the box, height of box is known
- Use one side of the box to help find $\mathbf{b}_{\mathbf{0}}$ as shown above

3D modeling from a photograph

St. Jerome in his Study, H. Steenwick
Bringing Pictorial Space to Life: Computer Techniques for the Analysis of Paintings. Antonio Criminisi, Martin Kemp, Andrew Zisserman. 2002.

3D modeling from a photograph

3D modeling from a photograph

Flagellation, Piero della Francesca

3D modeling from a photograph

video by Antonio Criminisi

3D modeling from a photograph

Flagellation. Piero della Francesca. c1453.

Related problem: camera calibration

- Goal: estimate the camera parameters
- Version 1: solve for 3×4 projection matrix

$$
\mathbf{X}=\left[\begin{array}{c}
w x \\
w y \\
w
\end{array}\right]=\left[\begin{array}{llll}
* & * & * & * \\
* & * & * & * \\
* & * & * & *
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]=\boldsymbol{\Pi} \mathbf{X}
$$

- Version 2: solve for camera parameters separately
- intrinsics (focal length, principal point, pixel size)
- extrinsics (rotation angles, translation)
- radial distortion

Vanishing points and projection matrix

- $\boldsymbol{\pi}_{1}=\boldsymbol{\Pi}\left[\begin{array}{llll}1 & 0 & 0 & 0\end{array}\right]^{T}=\mathbf{v}_{\mathrm{x}}$ (X vanishing point)
- similarly, $\boldsymbol{\pi}_{2}=\mathbf{v}_{\mathrm{Y}}, \boldsymbol{\pi}_{3}=\mathbf{v}_{\mathrm{Z}}$
- $\boldsymbol{\pi}_{4}=\boldsymbol{\Pi}\left[\begin{array}{llll}0 & 0 & 0 & 1\end{array}\right]^{T}=$ projection of world origin

$$
\boldsymbol{\Pi}=\left[\begin{array}{llll}
\mathbf{v}_{X} & \mathbf{v}_{Y} & \mathbf{v}_{Z} & \mathbf{o}
\end{array}\right]
$$

Not So Fast! We only know v's up to a scale factor

$$
\boldsymbol{\Pi}=\left[\begin{array}{llll}
a \mathbf{v}_{X} & b \mathbf{v}_{Y} & c \mathbf{v}_{Z} & \mathbf{o}
\end{array}\right]
$$

- Can fully specify by providing 3 reference points with known coordinates

Calibration using a reference object

- Place a known object in the scene
- identify correspondence between image and scene
- compute mapping from scene to image

Issues

- must know geometry very accurately
- must know 3D -> 2D correspondence

AR codes

ArUco

Estimating the projection matrix

- Place a known object in the scene
- identify correspondence between image and scene
- compute mapping from scene to image

$$
\left[\begin{array}{c}
u_{i} \\
v_{i} \\
1
\end{array}\right] \cong\left[\begin{array}{llll}
m_{00} & m_{01} & m_{02} & m_{03} \\
m_{10} & m_{11} & m_{12} & m_{13} \\
m_{20} & m_{21} & m_{22} & m_{23}
\end{array}\right]\left[\begin{array}{c}
X_{i} \\
Y_{i} \\
Z_{i} \\
1
\end{array}\right]
$$

Alternative: multi-plane calibration

Images courtesy Jean-Yves Bouguet

Advantage

- Only requires a plane
- Don't have to know positions/orientations
- Good code available online! (including in OpenCV)
- Matlab version by Jean-Yves Bouget: http://www.vision.caltech.edu/bouguetj/calib doc/index.html
- Amy Tabb's camera calibration software: https://github.com/amy-tabb/basic-camera-calibration

Single-image depth prediction using deep learning

Image

Depth map

MiDaS depth prediction

Ranftl et al. Towards Robust Monocular Depth Estimation: Mixing Datasets for Zero-shot Cross-dataset Transfer.

OUTPUT IMAGE

Latency: 5.69 s
https://gradio.app/g/AK391/MiDaS

Single-image depth prediction

Ceci n 'est pas une pine.
Picture credit: Magritte, The Treachery of Images, and the Berkeley Computer Vision Group

Miangoleh*, Dille*, Mai, Paris, and Aksoy.
Boosting Monocular Depth Estimation Models to High-Resolution via Content-Adaptive Multi-Resolution Merging.

Deep geometry prediction

- More on this topic later!

Questions?

