CS5760: Computer Vision Image alignment

Reading

- Szeliski (2 ${ }^{\text {nd }}$ edition): Chapter 8.1

Announcements

- Project 2 due Thursday, March 3 by 8pm
- Please get started now if you haven't already!
- Report due next Monday, March 7 by 11:59pm on CMSX
- Take-home midterm to be released after February Break
- To be released at 2:15pm Thursday, March 3
- Due Tuesday, March 8 by 1pm
- Open book, open note (but no Google)
- To be done on your own

Computing transformations

- Given a set of matches between images A and B
- How can we compute the transform T from A to B ?

- Find transform T that best "agrees" with the matches

Computing transformations

Simple case: translations

How do we solve for
$\left(\mathbf{x}_{t}, \mathbf{y}_{t}\right)$?
$\left(\mathbf{x}_{t}, \mathbf{y}_{t}\right)$

Simple case: translations

Displacement of match $i=\left(\mathbf{x}_{i}^{\prime}-\mathbf{x}_{i}, \mathbf{y}_{i}^{\prime}-\mathbf{y}_{i}\right)$

$$
\left(\mathbf{x}_{t}, \mathbf{y}_{t}\right)=\left(\frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i}^{\prime}-\mathbf{x}_{i}, \frac{1}{n} \sum_{i=1}^{n} \mathbf{y}_{i}^{\prime}-\mathbf{y}_{i}\right)
$$

Another view

$$
\begin{aligned}
\mathbf{x}_{i}+\mathbf{x}_{\mathbf{t}} & =\mathrm{x}_{i}^{\prime} \\
\mathbf{y}_{i}+\mathbf{y}_{\mathbf{t}} & =\mathbf{y}_{i}^{\prime}
\end{aligned}
$$

- System of linear equations
- What are the knowns? Unknowns?
- How many unknowns? How many equations (per match)?

Another view

$$
\begin{aligned}
\mathbf{x}_{i}+\mathbf{x}_{\mathbf{t}} & =\mathbf{x}_{i}^{\prime} \\
\mathbf{y}_{i}+\mathbf{y}_{\mathbf{t}} & =\mathbf{y}_{i}^{\prime}
\end{aligned}
$$

- Problem: more equations than unknowns
- "Overdetermined" system of equations
- We will find the least squares solution

Least squares formulation

- For each point

$$
\begin{array}{r}
\left(\mathbf{x}_{i}, \mathbf{y}_{i}\right) \\
\mathbf{x}_{i}+\mathbf{x}_{\mathbf{t}}=\mathbf{x}_{i}^{\prime} \\
\mathbf{y}_{i}+\mathbf{y}_{\mathbf{t}}=\mathbf{y}_{i}^{\prime}
\end{array}
$$

- we define the residuals as

$$
\begin{aligned}
r_{\mathbf{x}_{i}}\left(\mathbf{x}_{t}\right) & =\left(\mathbf{x}_{i}+\mathbf{x}_{t}\right)-\mathbf{x}_{i}^{\prime} \\
r_{\mathbf{y}_{i}}\left(\mathbf{y}_{t}\right) & =\left(\mathbf{y}_{i}+\mathbf{y}_{t}\right)-\mathbf{y}_{i}^{\prime}
\end{aligned}
$$

Least squares formulation

- Goal: minimize sum of squared residuals

$$
C\left(\mathbf{x}_{t}, \mathbf{y}_{t}\right)=\sum_{i=1}^{n}\left(r_{\mathbf{x}_{i}}\left(\mathbf{x}_{t}\right)^{2}+r_{\mathbf{y}_{i}}\left(\mathbf{y}_{t}\right)^{2}\right)
$$

- "Least squares" solution
- For translations, is equal to mean (average) displacement

Least squares formulation

- Can also write as a matrix equation

$$
\begin{aligned}
& {\left[\begin{array}{cc}
1 & 0 \\
0 & 1 \\
1 & 0 \\
0 & 0 \\
0 & 1 \\
\vdots \\
1 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{c}
x_{t} \\
y_{t}
\end{array}\right]=\left[\begin{array}{c}
x_{1}^{\prime}-x_{1} \\
y_{1}^{\prime}-y_{1} \\
x_{2}^{\prime}-x_{2} \\
y_{2}^{\prime}-y_{2} \\
\vdots \\
\vdots \\
x_{n}^{\prime}-x_{n} \\
y_{n}^{\prime}-y_{n}
\end{array}\right]} \\
& \underset{2 n \times 2}{\mathbf{A}} \underset{2 \times 1}{\mathbf{t}}=\underset{2 n \times 1}{\mathbf{b}}
\end{aligned}
$$

Least squares

$$
\mathbf{A t}=\mathbf{b}
$$

- Find \mathbf{t} that minimizes

$$
\|\mathbf{A} \mathbf{t}-\mathbf{b}\|^{2}
$$

- To solve, form the normal equations

$$
\begin{gathered}
\mathbf{A}^{\mathrm{T}} \mathbf{A} \mathbf{t}=\mathbf{A}^{\mathrm{T}} \mathbf{b} \\
\mathbf{t}=\left(\mathbf{A}^{\mathrm{T}} \mathbf{A}\right)^{-1} \mathbf{A}^{\mathrm{T}} \mathbf{b}
\end{gathered}
$$

Questions?

Least squares: linear regression

Linear regression

Linear regression

$$
\left[\begin{array}{cc}
x_{1} & 1 \\
x_{2} & 1 \\
\vdots & \\
x_{n} & 1
\end{array}\right]\left[\begin{array}{c}
m \\
b
\end{array}\right]=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right]
$$

Affine transformations

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

- How many unknowns?
- How many equations per match?
- How many matches do we need?

Affine transformations

- Residuals:

$$
\begin{aligned}
r_{x_{i}}(a, b, c, d, e, f) & =\left(a x_{i}+b y_{i}+c\right)-x_{i}^{\prime} \\
r_{y_{i}}(a, b, c, d, e, f) & =\left(d x_{i}+e y_{i}+f\right)-y_{i}^{\prime}
\end{aligned}
$$

- Cost function:

$$
\begin{aligned}
& C(a, b, c, d, e, f)= \\
& \quad \sum_{i=1}^{n}\left(r_{x_{i}}(a, b, c, d, e, f)^{2}+r_{y_{i}}(a, b, c, d, e, f)^{2}\right)
\end{aligned}
$$

Affine transformations

- Matrix form

$$
\begin{aligned}
& {\left[\begin{array}{cccccc}
x_{1} & y_{1} & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & x_{2} & y_{2} & 1 \\
& & & & & \\
& & & & & \\
x_{n} & y_{n} & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & x_{n} & y_{n} & 1
\end{array}\right]\left[\begin{array}{c}
a \\
b \\
c \\
d \\
e \\
f
\end{array}\right]=\left[\begin{array}{c}
x_{1}^{\prime} \\
y_{1}^{\prime} \\
x_{2}^{\prime} \\
y_{2}^{\prime} \\
\vdots \\
x_{n}^{\prime} \\
y_{n}^{\prime}
\end{array}\right]} \\
& \text { A } \\
& \mathbf{t}_{6}=\mathbf{b}
\end{aligned}
$$

Homographies

To unwarp (rectify) an image

- solve for homography \mathbf{H} given \mathbf{p} and \mathbf{p}^{\prime}
- solve equations of the form: $w \mathbf{p}^{\prime}=\mathbf{H p}$
- linear in unknowns: w and coefficients of \mathbf{H}
- H is defined up to an arbitrary scale factor
- how many matches are necessary to solve for \mathbf{H} ?

Solving for homographies

$$
\begin{gathered}
{\left[\begin{array}{c}
x_{i}^{\prime} \\
y_{i}^{\prime} \\
1
\end{array}\right] \cong\left[\begin{array}{lll}
h_{00} & h_{01} & h_{02} \\
h_{10} & h_{11} & h_{12} \\
h_{20} & h_{21} & h_{22}
\end{array}\right]\left[\begin{array}{c}
x_{i} \\
y_{i} \\
1
\end{array}\right]} \\
x_{i}^{\prime}=\frac{h_{00} x_{i}+h_{01} y_{i}+h_{02}}{h_{20} x_{i}+h_{21} y_{i}+h_{22}} \\
y_{i}^{\prime}=\frac{h_{10} x_{i}+h_{11} y_{i}+h_{12}}{h_{20} x_{i}+h_{21} y_{i}+h_{22}} \\
\text { Not linear! } \\
x_{i}^{\prime}\left(h_{20} x_{i}+h_{21} y_{i}+h_{22}\right)=h_{00} x_{i}+h_{01} y_{i}+h_{02} \\
y_{i}^{\prime}\left(h_{20} x_{i}+h_{21} y_{i}+h_{22}\right)=h_{10} x_{i}+h_{11} y_{i}+h_{12}
\end{gathered}
$$

Solving for homographies

$$
\begin{aligned}
x_{i}^{\prime}\left(h_{20} x_{i}+h_{21} y_{i}+h_{22}\right) & =h_{00} x_{i}+h_{01} y_{i}+h_{02} \\
y_{i}^{\prime}\left(h_{20} x_{i}+h_{21} y_{i}+h_{22}\right) & =h_{10} x_{i}+h_{11} y_{i}+h_{12}
\end{aligned}
$$

$$
\left[\begin{array}{ccccccccc}
x_{i} & y_{i} & 1 & 0 & 0 & 0 & -x_{i}^{\prime} x_{i} & -x_{i}^{\prime} y_{i} & -x_{i}^{\prime} \\
0 & 0 & 0 & x_{i} & y_{i} & 1 & -y_{i}^{\prime} x_{i} & -y_{i}^{\prime} y_{i} & -y_{i}^{\prime}
\end{array}\right]\left[\begin{array}{l}
h_{00} \\
h_{01} \\
h_{02} \\
h_{10} \\
h_{11} \\
h_{12} \\
h_{20} \\
h_{21} \\
h_{22}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

Solving for homographies

$$
\left[\begin{array}{cccccccccc}
x_{1} & y_{1} & 1 & 0 & 0 & 0 & -x_{1}^{\prime} x_{1} & -x_{1}^{\prime} y_{1} & -x_{1}^{\prime} \\
0 & 0 & 0 & x_{1} & y_{1} & 1 & -y_{1}^{\prime} x_{1} & -y_{1}^{\prime} y_{1} & -y_{1}^{\prime} \\
x_{n} & y_{n} & 1 & 0 & 0 & 0 & -x_{n}^{\prime} x_{n} & -x_{n}^{\prime} y_{n} & -x_{n}^{\prime} \\
0 & 0 & 0 & x_{n} & y_{n} & 1 & -y_{n}^{\prime} x_{n} & -y_{n}^{\prime} y_{n} & -y_{n}^{\prime}
\end{array}\right]\left[\begin{array}{c}
h_{00} \\
h_{01} \\
h_{02} \\
h_{10} \\
h_{11} \\
h_{12} \\
h_{20} \\
h_{21} \\
h_{22}
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
0
\end{array}\right]
$$

Defines a least squares problemminimize $\|\mathrm{Ah}-0\|^{2}$

- Sinceh is only defined up to scale, solve for unit vehor
- Solution: $\hat{\mathbf{h}}=$ eigenvector $\mathbf{A}^{T} \mathbf{A} \quad$ with smallest eigenvalue
- Works with 4 or more points

Recap: Two Common Optimization Problems

Problem statement

```
minimize |Ax - b| |
(least squares solution to \(\mathbf{A x}=\mathbf{b}\) )
```


Problem statement

$\operatorname{minimize} \quad \mathbf{x}^{T} \mathbf{A}^{T} \mathbf{A} \mathbf{x}$ s.t. $\mathbf{x}^{T} \mathbf{x}=1$
(non-trivial lsq solution to $\mathbf{A x}=0$)

Solution

$$
\begin{aligned}
& \mathbf{x}=\left(\mathbf{A}^{T} \mathbf{A}\right)^{-1} \mathbf{A}^{T} \mathbf{b} \\
& \mathbf{x}=\mathbf{A} \backslash \mathbf{b} \text { (matlab) }
\end{aligned}
$$

Solution

$$
\begin{aligned}
& {[\mathbf{v}, \lambda]=\operatorname{eig}\left(\mathbf{A}^{T} \mathbf{A}\right)} \\
& \lambda_{1}<\lambda_{2 \ldots . n}: \mathbf{x}=\mathbf{v}_{1}
\end{aligned}
$$

Computing transformations

Questions?

Image alignment algorithm

Given images A and B

1. Compute image features for A and B
2. Match features between A and B
3. Compute homography between A and B using least squares on set of matches

What could go wrong?

Outliers

outliers

