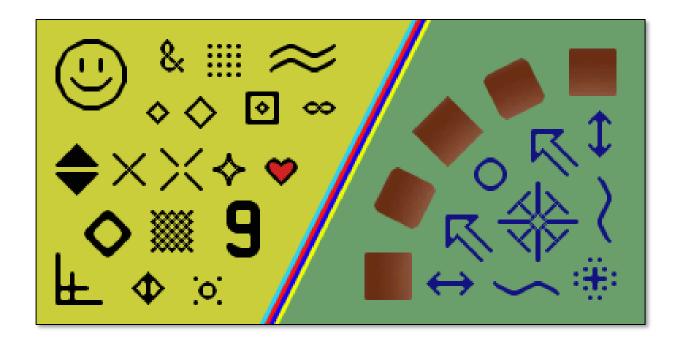
CS5670: Computer Vision

Image Resampling & Interpolation



Announcements

- Project 1 released, due Friday, February 11 by 11:59pm on GitHub Classroom
 - Project to be done solo (teams of one)
 - Artifact due Monday, Feb 14 by 11:59pm
- First quiz next week, format TBA

Image scaling

This image is too big to fit on the screen. How can we generate a half-sized version?

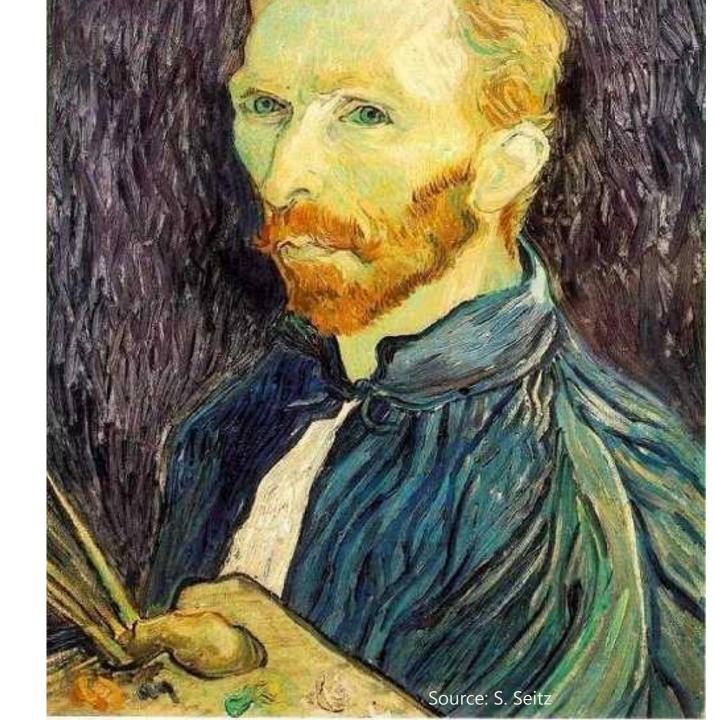
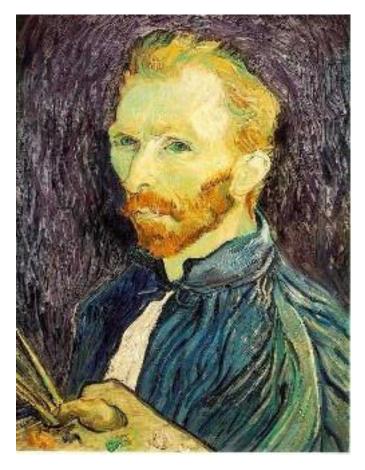


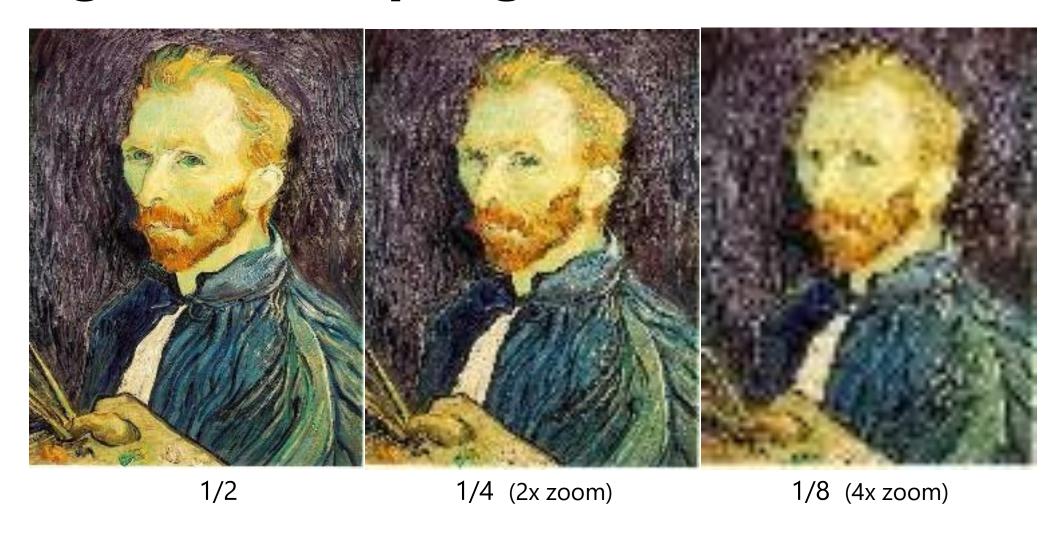
Image sub-sampling



Throw away every other row and column to create a 1/2 size image - called *image sub-sampling*

1/4

Image sub-sampling

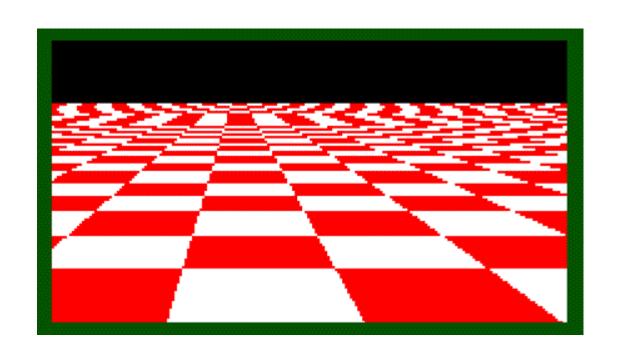


Why does this look so crufty?

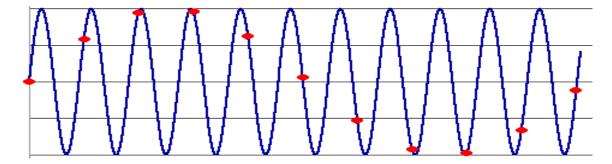
Source: S. Seitz

Image sub-sampling – another example

Even worse for synthetic images



Aliasing

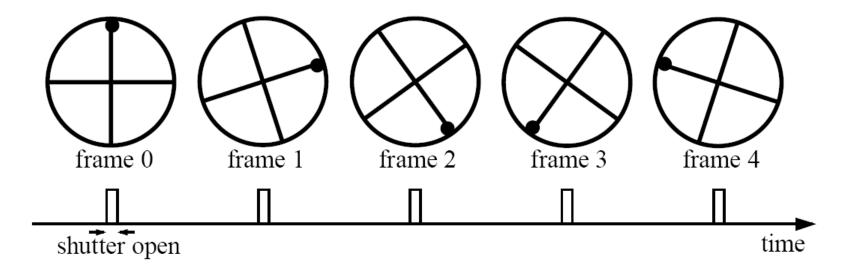


- Occurs when your sampling rate is not high enough to capture the amount of detail in your image
- Can give you the wrong signal/image—an alias
- To do sampling right, need to understand the structure of your signal/image
- Enter Monsieur Fourier...
 - "But what is the Fourier Transform? A visual introduction." https://www.youtube.com/watch?v=spUNpyF58BY
- To avoid aliasing:
 - sampling rate ≥ 2 * max frequency in the image
 - said another way: ≥ two samples per cycle
 - This minimum sampling rate is called the Nyquist rate

Wagon-wheel effect

Imagine a spoked wheel moving to the right (rotating clockwise). Mark wheel with dot so we can see what's happening.

If camera shutter is only open for a fraction of a frame time (frame time = 1/30 sec. for video, 1/24 sec. for film):

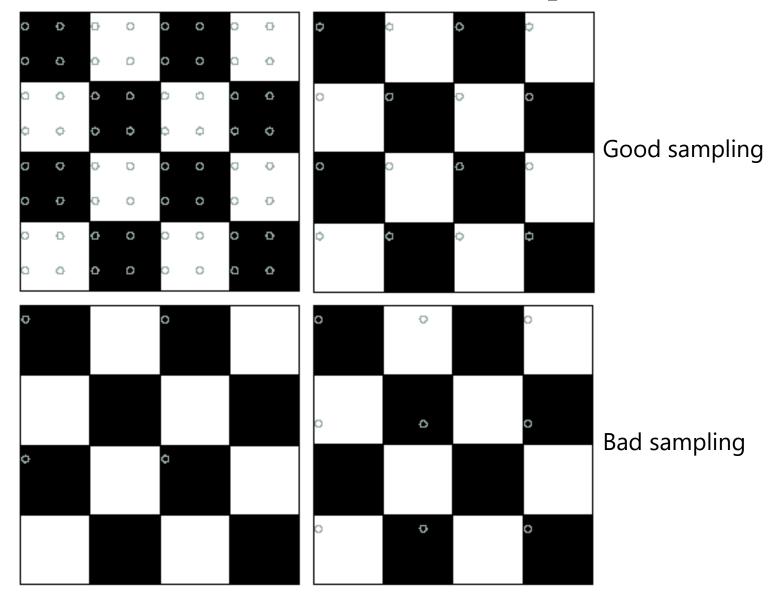


Without dot, wheel appears to be rotating slowly backwards! (counterclockwise)

Wagon-wheel effect

https://en.wikipedia.org/wiki/Wagon-wheel effect

Nyquist limit – 2D example

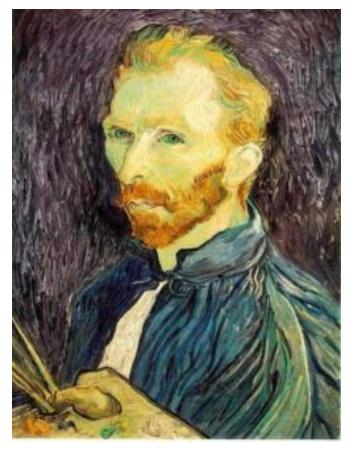


Aliasing

- When downsampling by a factor of two
 - Original image has frequencies that are too high

How can we fix this?

Gaussian pre-filtering

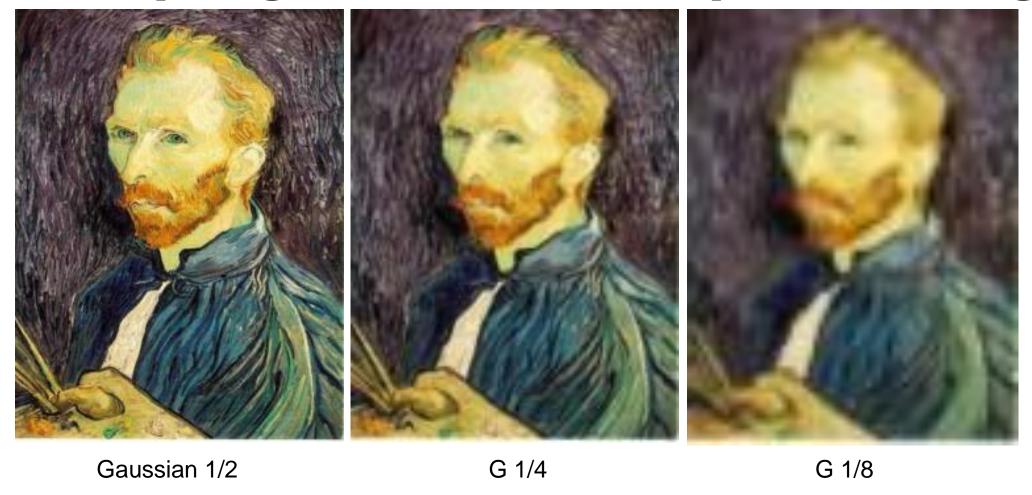


Gaussian 1/2

G 1/8

• Solution: filter the image, then subsample

Subsampling with Gaussian pre-filtering



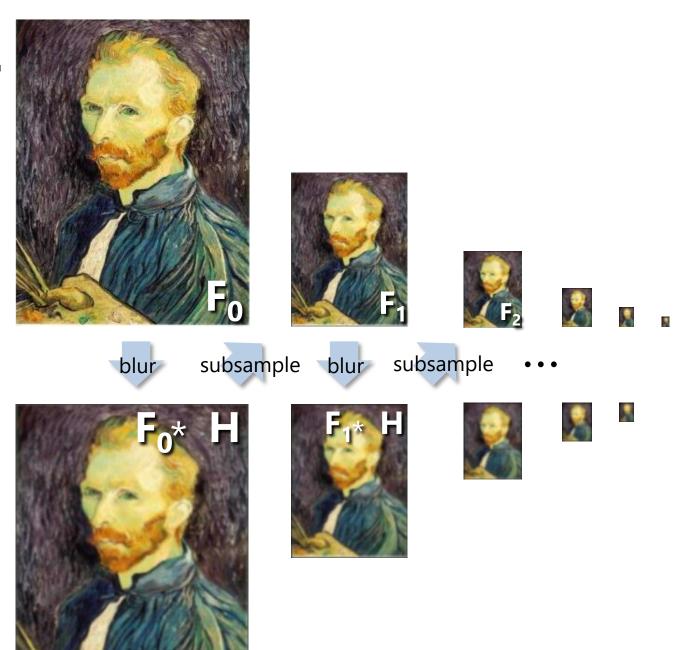
• Solution: filter the image, then subsample

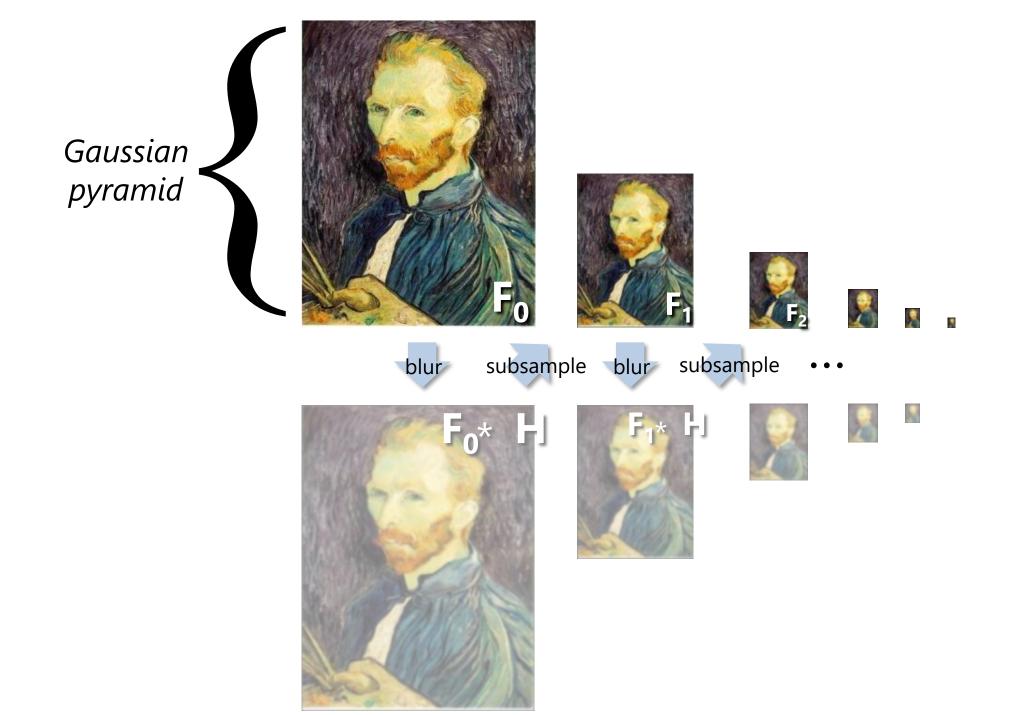
Source: S. Seitz

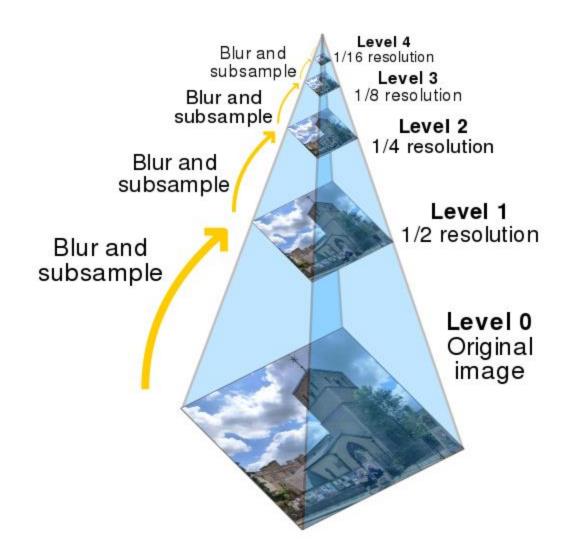
Compare with...

Gaussian prefiltering

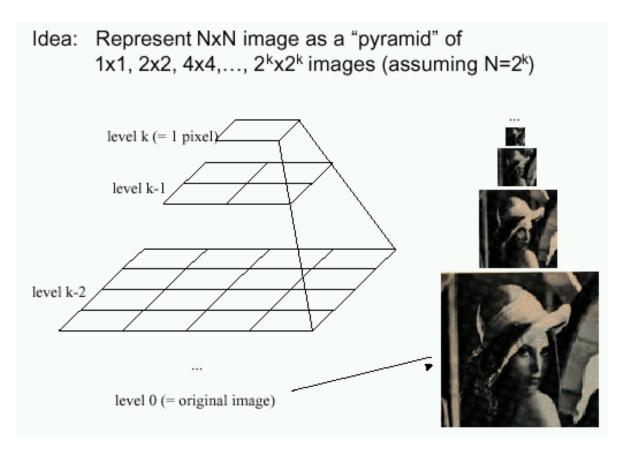
• Solution: filter the image, *then* subsample







Gaussian pyramids [Burt and Adelson, 1983]

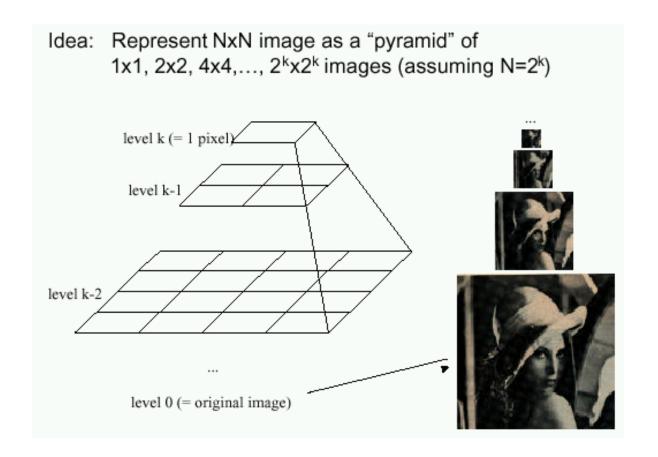


- In computer graphics, a mip map [Williams, 1983]
- A precursor to wavelet transform

Gaussian Pyramids have all sorts of applications in computer vision

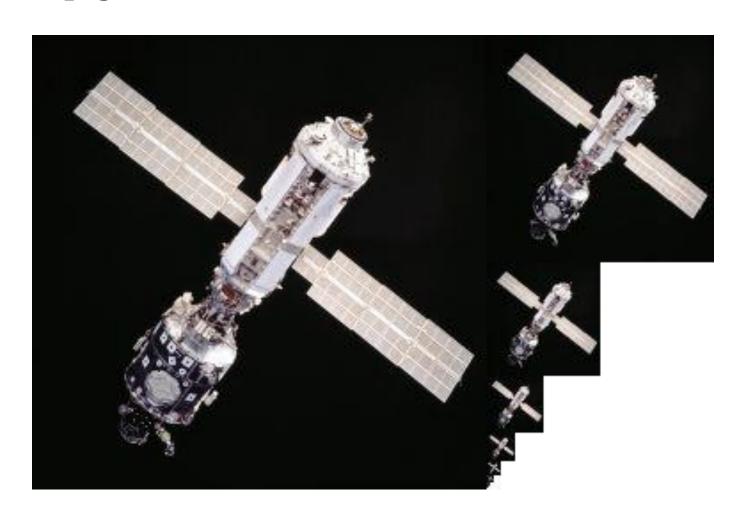
Source: S. Seitz

Gaussian pyramids [Burt and Adelson, 1983]



• How much space does a Gaussian pyramid take compared to the original image?

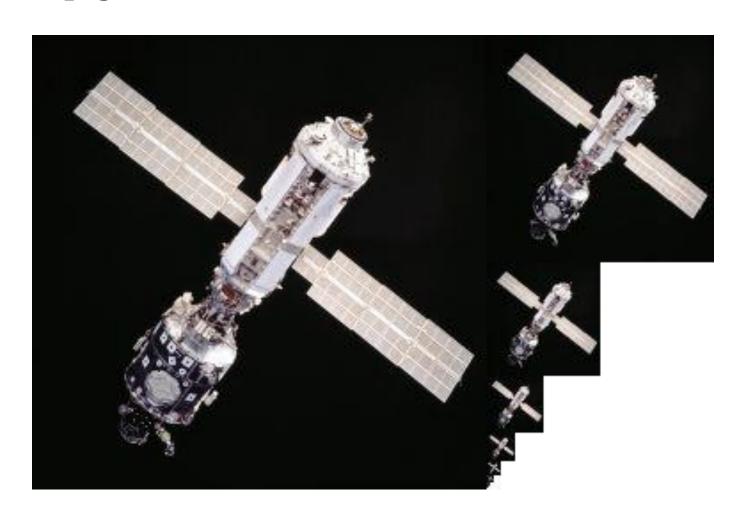
Gaussian pyramid



slido

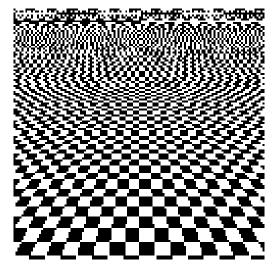
How much space (number of pixels) does a Gaussian pyramid of an image take compared to the original image?

Gaussian pyramid

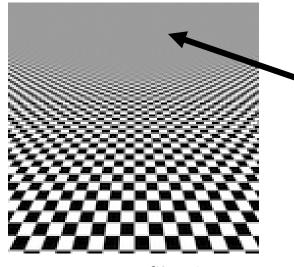


Back to the checkerboard

 What should happen when you make the checkerboard smaller and smaller?



Naïve subsampling



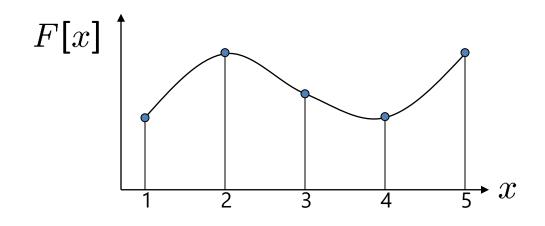
Proper prefiltering ("antialiasing")

Image turns grey! (Average of black and white squares, because each pixel contains both.)

Questions?

Upsampling

- This image is too small for this screen:
- How can we make it 10 times as big?
- Simplest approach:
 repeat each row
 and column 10 times
- ("Nearest neighbor interpolation")



d = 1 in this example

Recall that a digital images is formed as follows:

$$F[x, y] = quantize\{f(xd, yd)\}$$

- It is a discrete point-sampling of a continuous function
- If we could somehow reconstruct the original function, any new image could be generated, at any resolution and scale

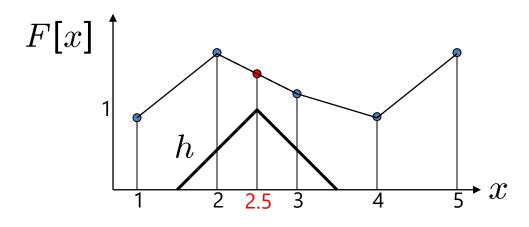


d = 1 in this example

Recall that a digital images is formed as follows:

$$F[x, y] = quantize\{f(xd, yd)\}$$

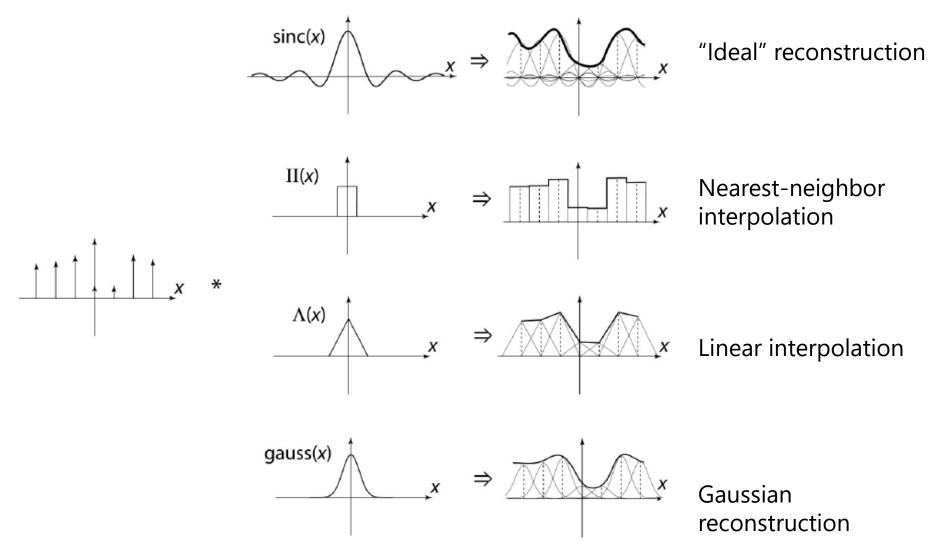
- It is a discrete point-sampling of a continuous function
- If we could somehow reconstruct the original function, any new image could be generated, at any resolution and scale



d = 1 in this example

- What if we don't know f?
 - Guess an approximation: \tilde{f}
 - Can be done in a principled way: filtering
 - Convert F to a continuous function: $f_F(x) = F(\frac{x}{d}) \text{ when } \frac{x}{d} \text{ is an integer, 0 otherwise}$
 - Reconstruct by convolution with a reconstruction filter, h

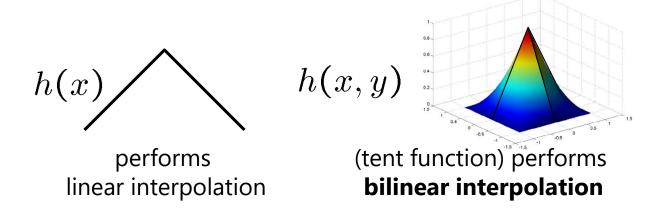
$$\tilde{f} = h * f_F$$



Source: B. Curless

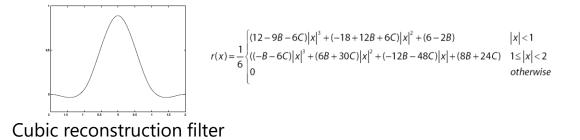
Reconstruction filters

What does the 2D version of this hat function look like?



Often implemented without cross-correlation

- E.g., http://en.wikipedia.org/wiki/Bilinear_interpolation
 Better filters give better resampled images
 - Bicubic is common choice



Original image: X 10

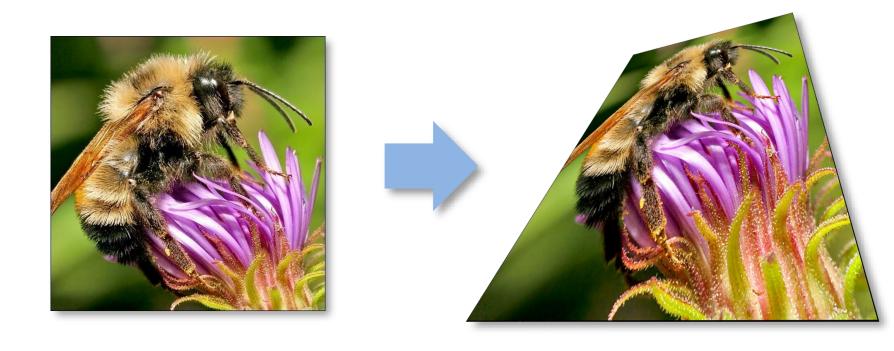
Nearest-neighbor interpolation

Bilinear interpolation

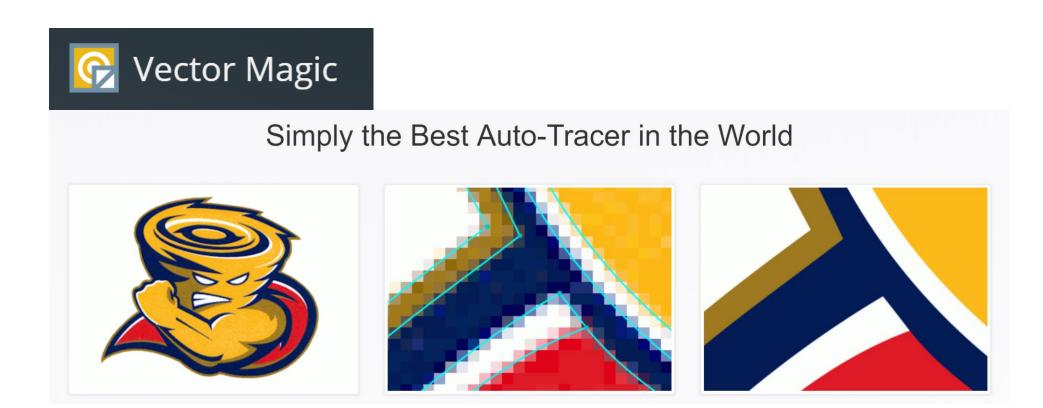


Bicubic interpolation

Also used for *resampling*

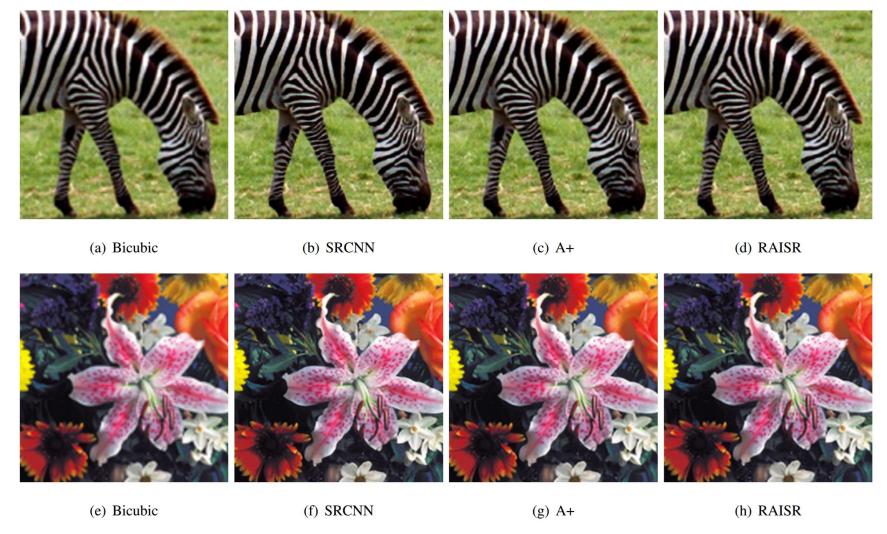


Raster-to-vector graphics



Depixelating Pixel Art

Modern methods



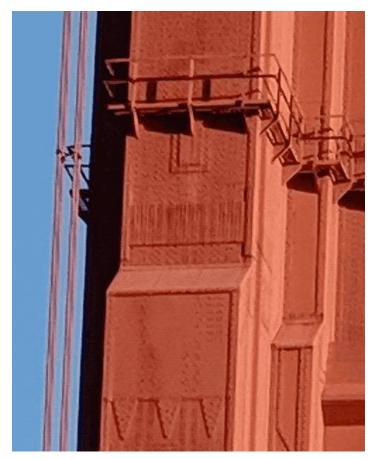
From Romano, et al: RAISR: Rapid and Accurate Image Super Resolution, https://arxiv.org/abs/1606.01299

Super-resolution with multiple images

- Can do better upsampling if you have multiple images of the scene taken with small (subpixel) shifts
- Some cellphone cameras (like the Google Pixel line) capture a **burst** of photos
- Can we use that burst for upsampling?

Google Pixel 3 Super Res Zoom

Effect of hand tremor as seen in a cropped burst of photos, after global alignment



Example photo with and without super res zoom (smart burst align and merge)

https://ai.googleblog.com/2018/10/see-better-and-further-with-super-res.html

Questions?