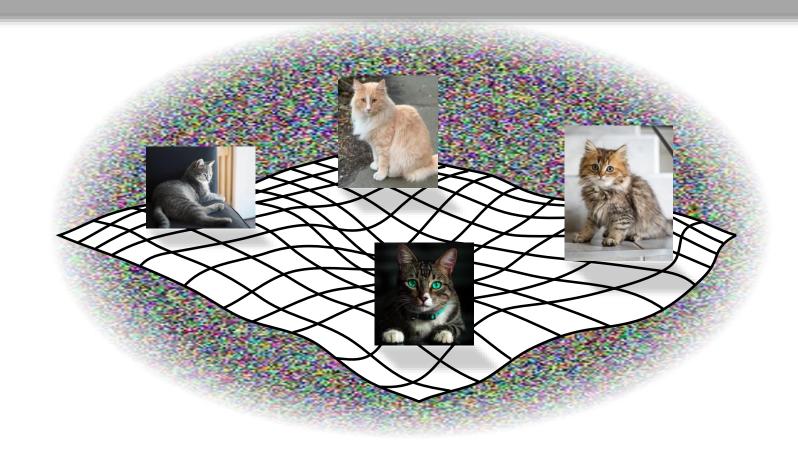
CS5670: Computer Vision

Image Manifolds & Image Synthesis (including GANS)



Most content from Abe Davis, with additional credit to Jin Sun and Phillip Isola

Announcements

- Take-home final May 12-17
- Project 5 (Convolutional Neural Networks) due Tuesday, May 11, 2021 (7:00 pm)
- Course evaluations are open this Friday, May 7 to May 17
 - We would love your feedback!
 - Small amount of extra credit for filling out
 - What you write is still anonymous, instructors only see whether students filled it out
 - Link coming soon

Agenda

- Last time:
 - How to train convolutional neural networks (CNNs)

- This time:
 - One more note on training CNNs for new tasks
 - Dimensionality reduction
 - Neural networks that produce images
 - Generative Adversarial Networks (GANs)

Transfer Learning

"You need a lot of a data if you want to train/use CNNs"

Transfer Learning

"You need a lot of a data if you want to train/ise CNNs"

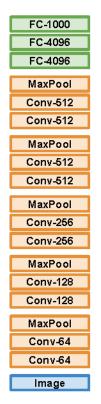
Transfer Learning with CNNs

1. Train on Imagenet

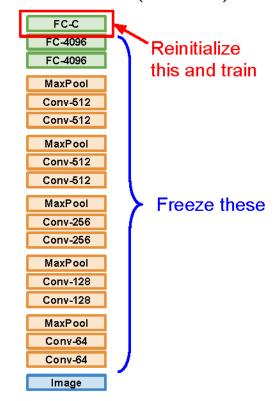
Donahue et al, "DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition", ICML 2014 Razavian et al, "CNN Features Off-the-Shelf: An Astounding Baseline for Recognition", CVPR Workshops 2014

Transfer Learning with CNNs

1. Train on Imagenet



2. Small Dataset (C classes)



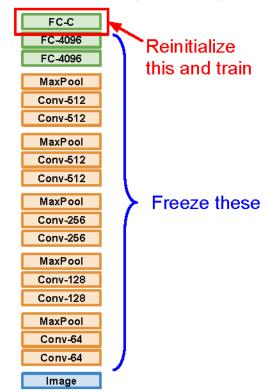
Donahue et al, "DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition", ICML 2014 Razavian et al, "CNN Features Off-the-Shelf: An Astounding Baseline for Recognition", CVPR Workshops 2014

Transfer Learning with CNNs

1. Train on Imagenet

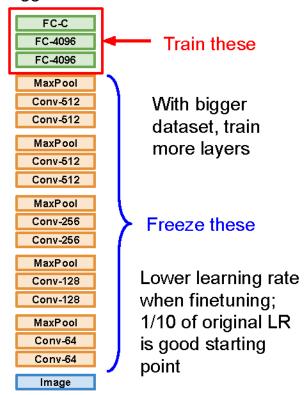
FC-1000 FC-4096 FC-4096 MaxPool Conv-512 Conv-512 MaxPool Conv-512 Conv-512 MaxPool Conv-256 Conv-256 MaxPool Conv-128 Conv-128 MaxPool Conv-64 Conv-64 Image

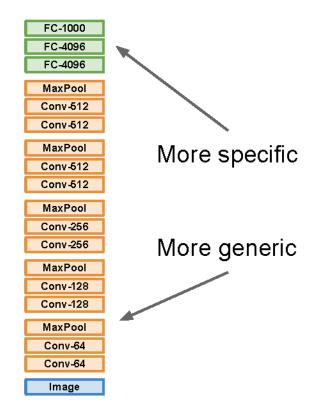
2. Small Dataset (C classes)



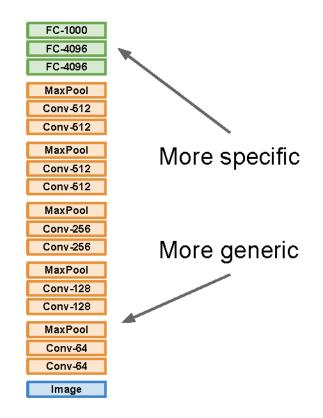
Donahue et al, "DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition", ICML 2014 Razavian et al, "CNN Features Off-the-Shelf: An Astounding Baseline for Recognition", CVPR Workshops 2014

3. Bigger dataset

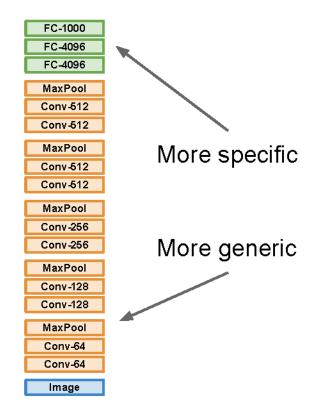




	very similar dataset	very different dataset
very little data	?	?
quite a lot of data	?	?



	very similar dataset	very different dataset
very little data	Use Linear Classifier on top layer	?
quite a lot of data	Finetune a few layers	?



	very similar dataset	very different dataset
very little data	Use Linear Classifier on top layer	You're in trouble Try linear classifier from different stages
quite a lot of data	Finetune a few layers	Finetune a larger number of layers

Transfer learning with CNNs is pervasive...

(it's the norm, not an exception)

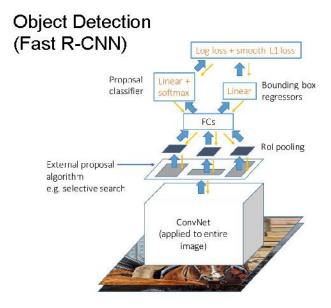
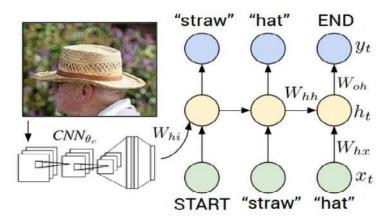


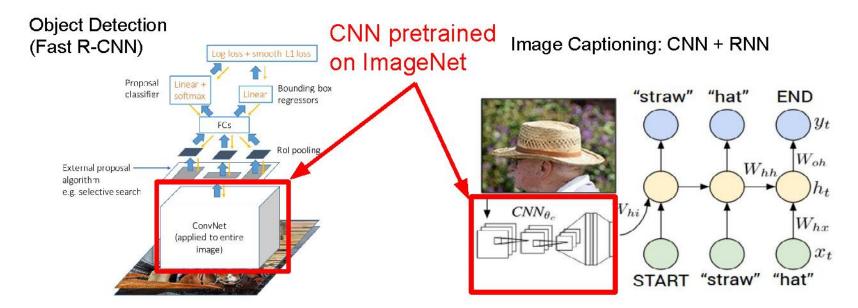
Image Captioning: CNN + RNN



Girshick, "Fast R-CNN", ICCV 2015 Figure copyright Ross Girshick, 2015. Reproduced with permission. Karpathy and Fei-Fei, "Deep Visual-Semantic Alignments for Generating Image Descriptions", CVPR 2015 Figure copyright IEEE, 2015. Reproduced for educational purposes.

Transfer learning with CNNs is pervasive...

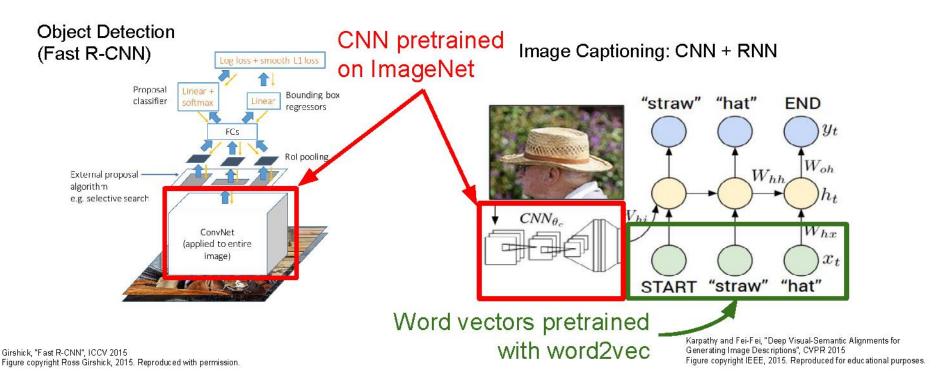
(it's the norm, not an exception)



Girshick, "Fast R-CNN", ICCV 2015 Figure copyright Ross Girshick, 2015. Reproduced with permission. Karpathy and Fei-Fei, "Deep Visual-Semantic Alignments for Generating Image Descriptions", CVPR 2015 Figure copyright IEEE, 2015. Reproduced for educational purposes.

Transfer learning with CNNs is pervasive...

(it's the norm, not an exception)



Takeaway for your projects and beyond:

Have some dataset of interest but it has < ~1M images?

- Find a very large dataset that has similar data, train a big ConvNet there
- 2. Transfer learn to your dataset

Deep learning frameworks provide a "Model Zoo" of pretrained models so you don't need to train your own

TensorFlow: https://github.com/tensorflow/models

PyTorch: https://github.com/pytorch/vision

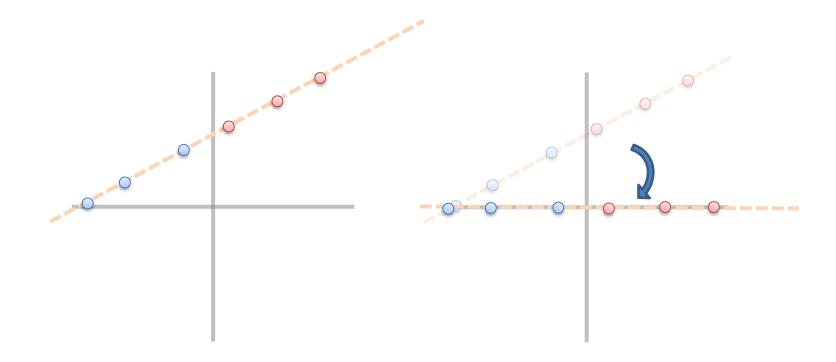
Common modern approach: start with a ResNet architecture pre-trained on ImageNet, and fine-tune on your (smaller) dataset

By Abe Davis

DIMENSIONALITY REDUCTION

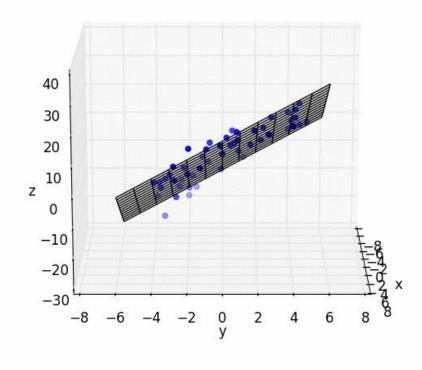
Linear Dimensionality Reduction: 2D->1D

- Consider a bunch of data points in 2D
- Let's say these points only differ along one line
- If so, we can translate and rotate our data so that it is 1D



Linear Dimensionality Reduction: 3D->2D

- Similar to 1D case, we can fit a plane to the data, and transform our coordinate system so that plane becomes the x-y plane
- "Plane fitting"
- More generally: look for the 2D subspace that best fits the data, and ignore the remaining dimensions

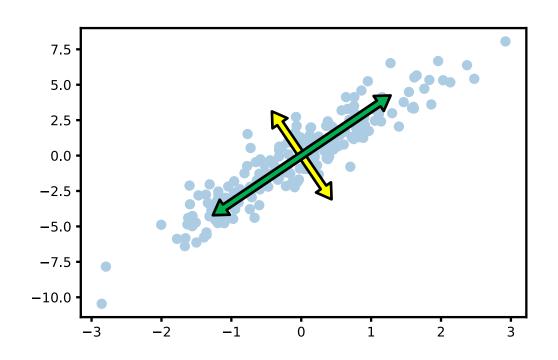




Think of this as data that sits on a flat sheet of paper, suspended in 3D space. We will come back to this analogy in a couple slides...

Generalizing Linear Dimensionality Reduction

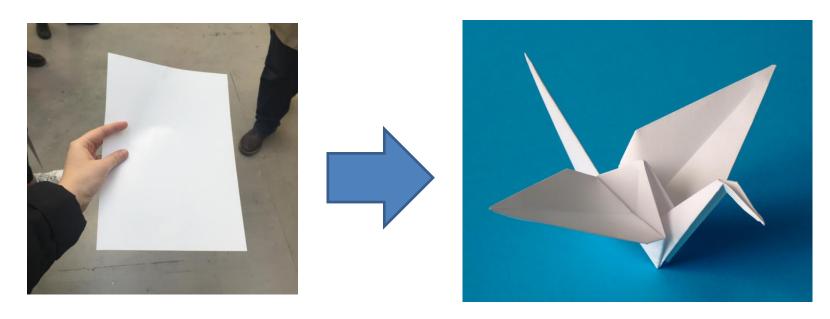
- **Principal Components Analysis** (**PCA**): find and order orthogonal axes by how much the data varies along each axis.
- The axes we find (ordered by variance of our data) are called principal components.
- Dimensionality reduction can be done by using only the first k principal components



Side Note: principal components are closely related to the eigenvectors of the covariance matrix for our data

Manifolds

- Think of a piece of paper as a 2D subspace
- If we bend & fold it, it's still locally a 2D subspace...
- A "manifold" is the generalization of this concept to higher dimensions...

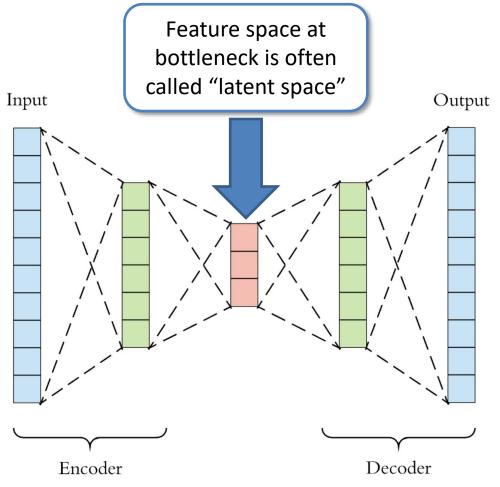


Autoencoders: Dimensionality Reduction for Manifolds

- Learn a non-linear transformation into some lower-dimensional space (encoder)
- Learn a transformation from lowerdimensional space back to original content (decoder)
- Loss function measures difference between input & output

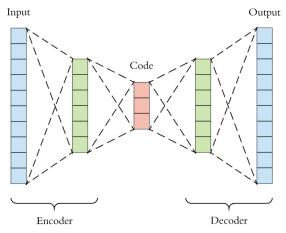
Unsupervised

– No labels required!

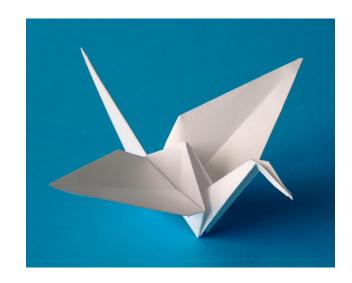


Autoencoders: Dimensionality Reduction for Manifolds

 Transformations that reduce dimensionality cannot be invertible in general



 An autoencoder tries to learn a transformation that is invertible for points on some manifold.



By Abe Davis

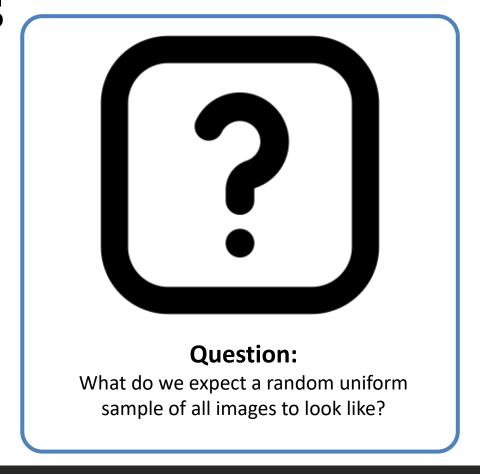
IMAGE MANIFOLDS

The Space of All Images

 Lets consider the space of all 100x100 images

 Now lets randomly sample that space...

 Conclusion: Most images are noise



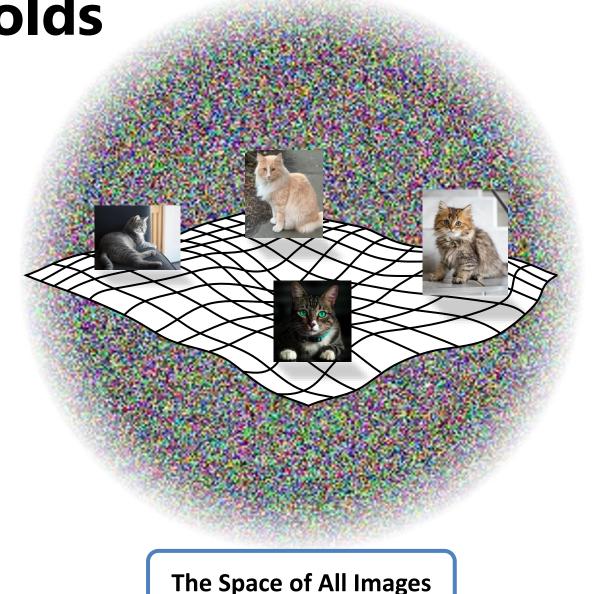
pixels = np.random.rand(100,100,3)

Natural Image Manifolds

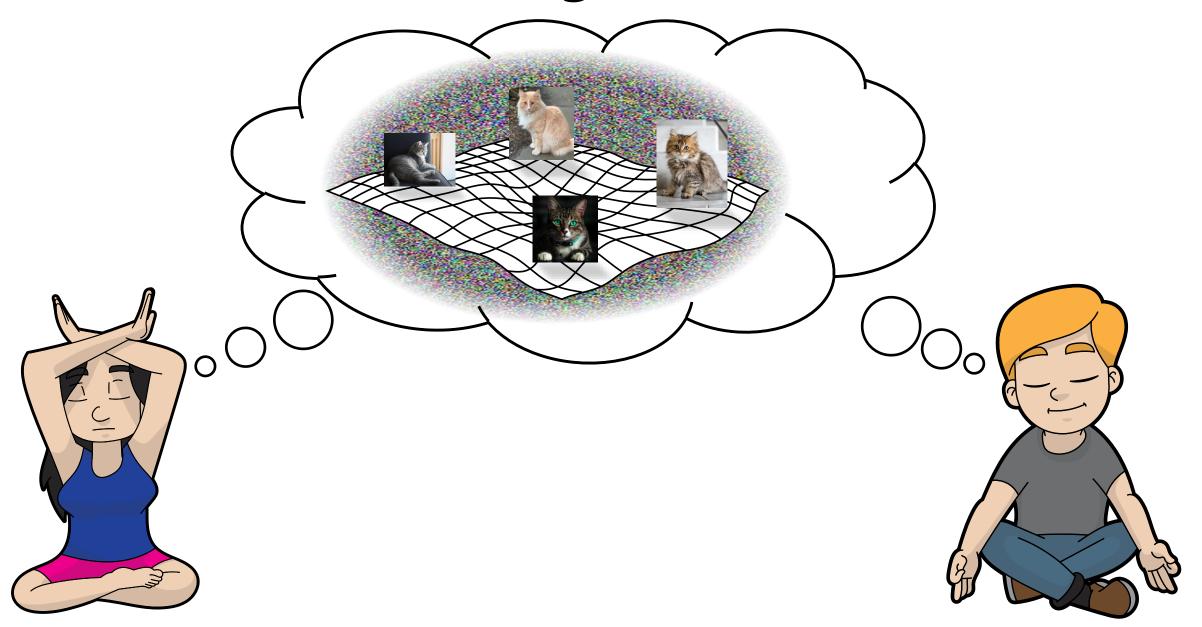
Most images are "noise"

 "Meaningful" images tend to form some manifold within the space of all images

 Images of a particular class fall on manifolds within that manifold...



Natural Image Manifolds

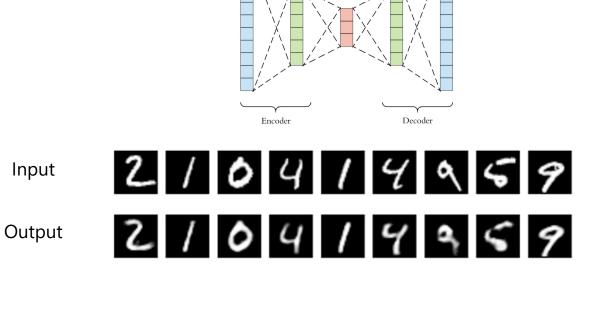


Denoising & the "Nullspace" of Autoencoders

Noisy Input

Output

- The autoencoder tries to learn a dimensionality reduction that is invertible for our data (data on some manifold)
- Most noise will be in the noninvertible part of image space (off the manifold)
- If we feed noisy data in, we will often get denoised data out

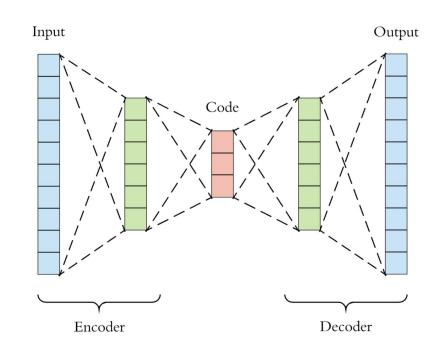


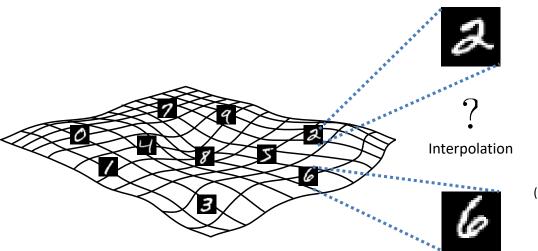
2 / 0 / / / 3 5 7

210414969

Problem

- Autoencoders can compress because data sits on a manifold
- This doesn't mean that every point in the latent space will be on the manifold...
- GANs (later this lecture) will learn a loss function that helps with this...





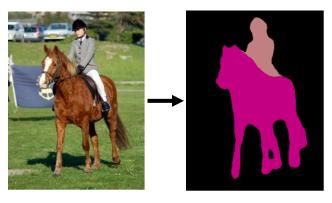
(simple Interpolation)

Abe Davis, with slides from Jin Sun, Phillip Isola, and Richard Zhang

IMAGE-TO-IMAGE APPLICATIONS

Image prediction ("structured prediction")

Object labeling



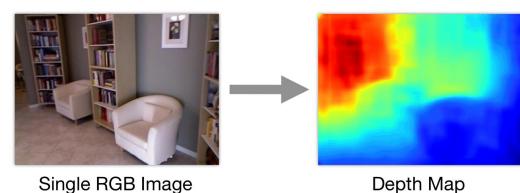
[Long et al. 2015, ...]

Text-to-photo

"this small bird has a pink breast → and crown..."

[Reed et al. 2016, ...]

Depth prediction



[Eigen et al. 2014, ...]

Style transfer

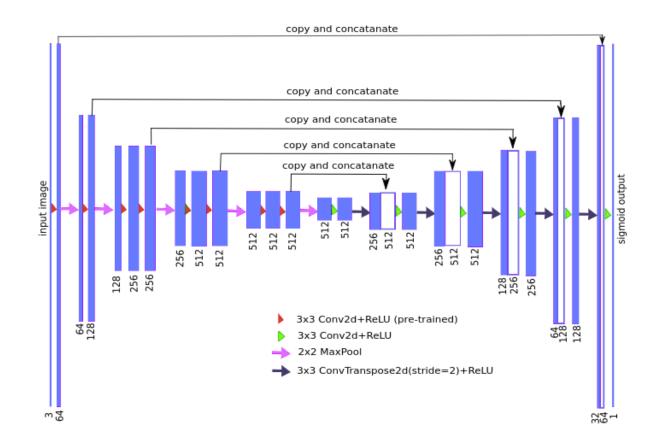
[Gatys et al. 2016, ...]

Image classification vs. image translation

- For image classification, we map an image to a label (e.g., "cat")
- For image prediction/translation tasks, we map an image to another image-shaped thing (e.g., a depth map)
- What kind of convolutional neural network architecture can do this?

U-Net

- A popular network structure to generate same-sized output
- Similar to a convolutional autoencoder, but with "skip connections" that concatenate the output of earlier layers onto later layers
- Great for learning transformations from one image to another



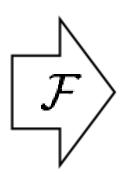
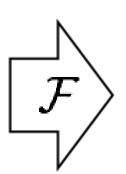
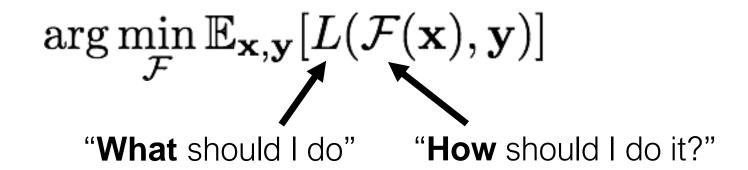
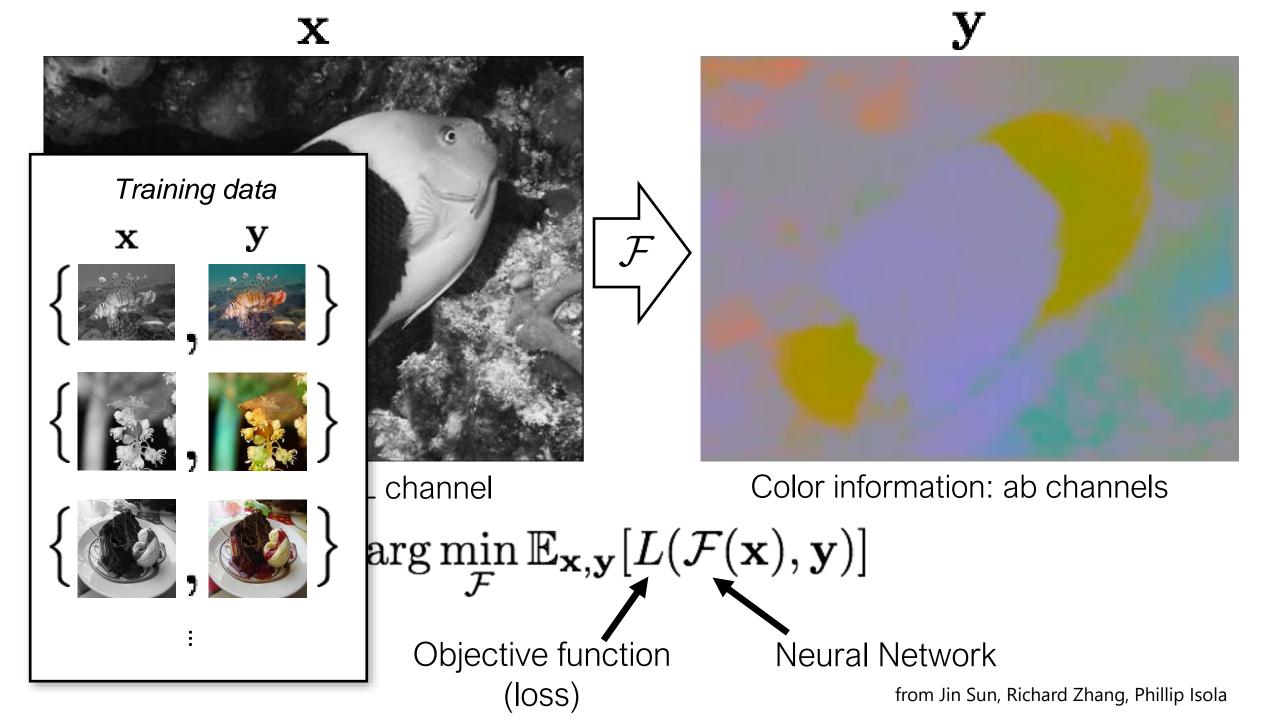
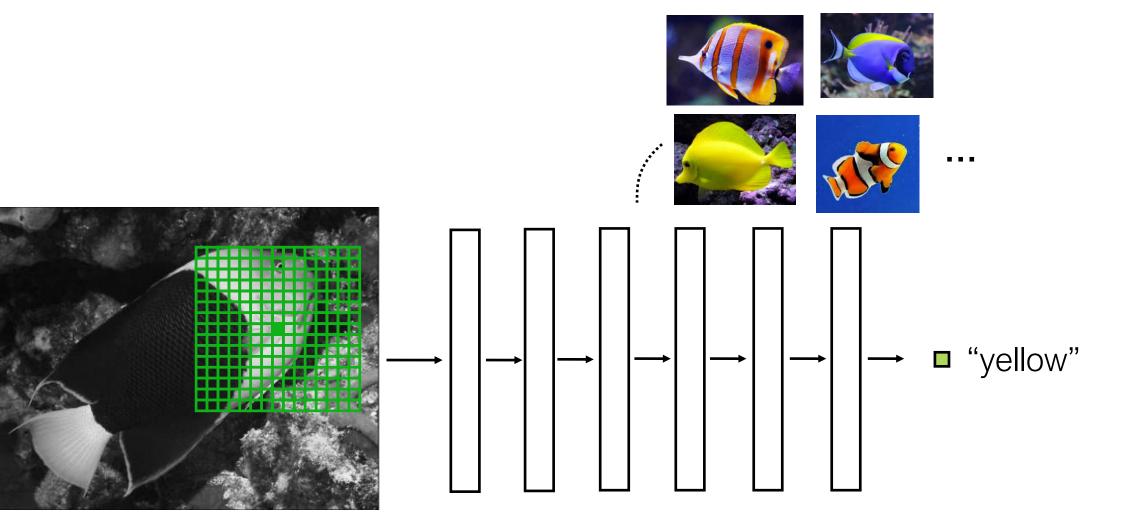


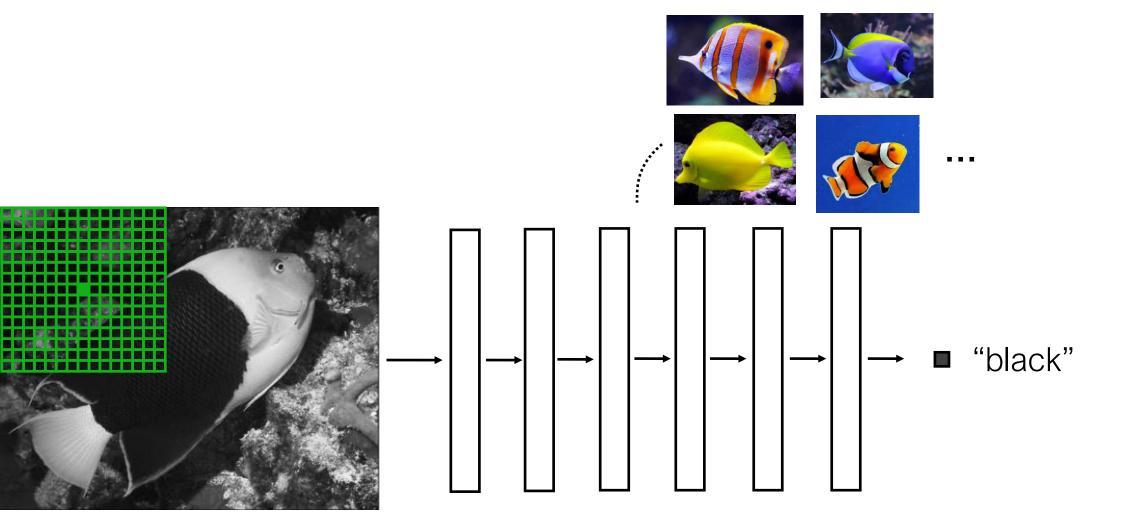
Image Colorization

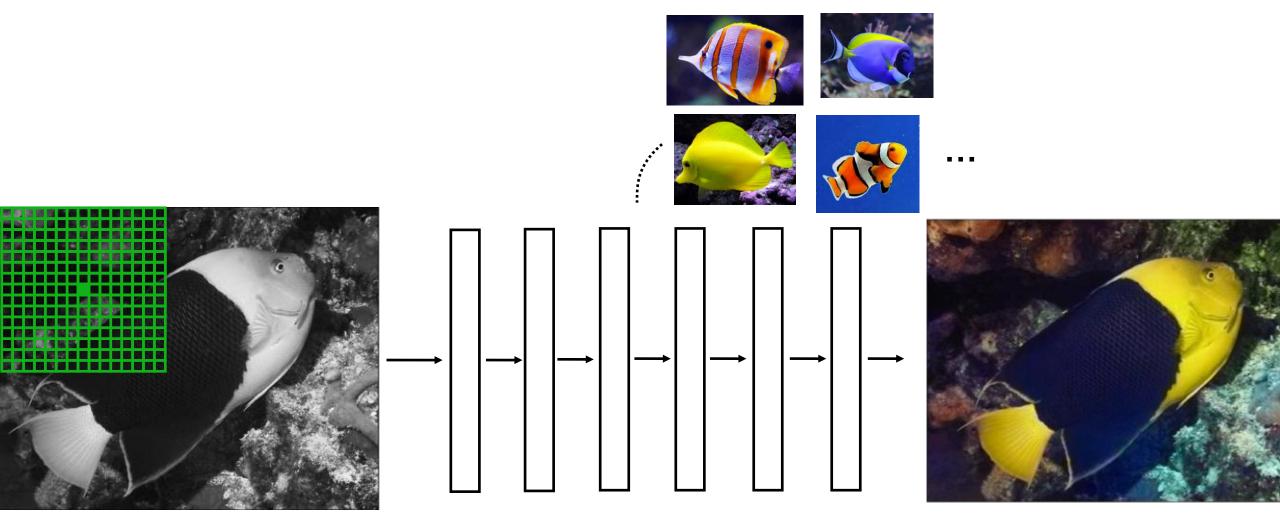












Basic loss functions

Prediction:
$$\hat{\mathbf{y}} = \mathcal{F}(\mathbf{x})$$
 Truth: \mathbf{y}

Classification (cross-entropy):

$$L(\hat{\mathbf{y}}, \mathbf{y}) = -\sum_{i} \hat{\mathbf{y}}_{i} \log \mathbf{y}_{i}$$

How many extra bits it takes to correct the predictions

Least-squares regression:

$$L(\hat{\mathbf{y}}, \mathbf{y}) = \|\hat{\mathbf{y}} - \mathbf{y}\|_2$$

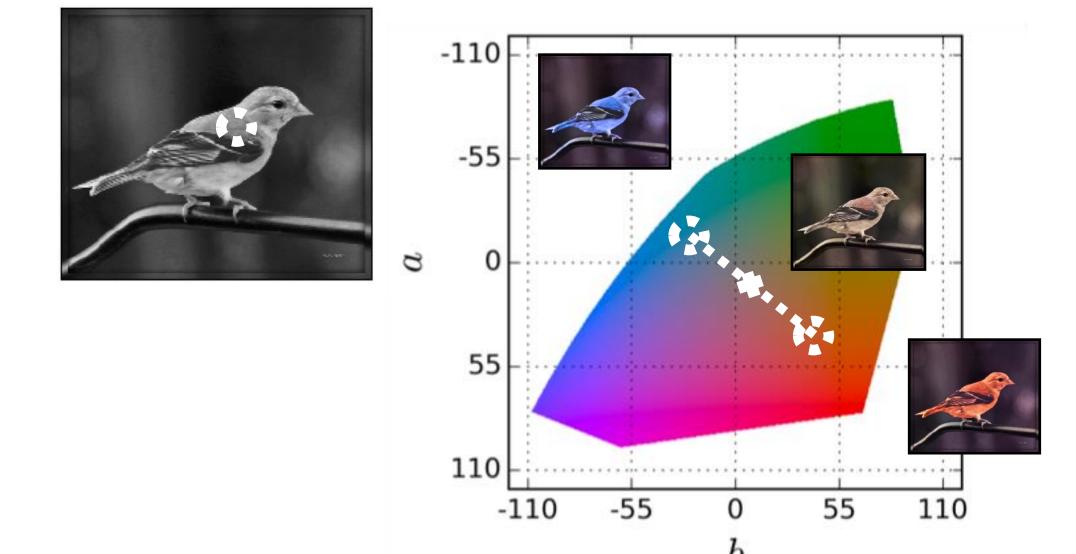
How far off we are in Euclidean distance

Input

Output

Ground truth

$$L_2(\widehat{\mathbf{Y}}, \mathbf{Y}) = \frac{1}{2} \sum_{h,w} ||\mathbf{Y}_{h,w} - \widehat{\mathbf{Y}}_{h,w}||_2^2$$



$$L_2(\widehat{\mathbf{Y}}, \mathbf{Y}) = \frac{1}{2} \sum_{h,w} ||\mathbf{Y}_{h,w} - \widehat{\mathbf{Y}}_{h,w}||_2^2$$

Input

Ground truth

Color distribution cross-entropy loss with colorfulness enhancing term.

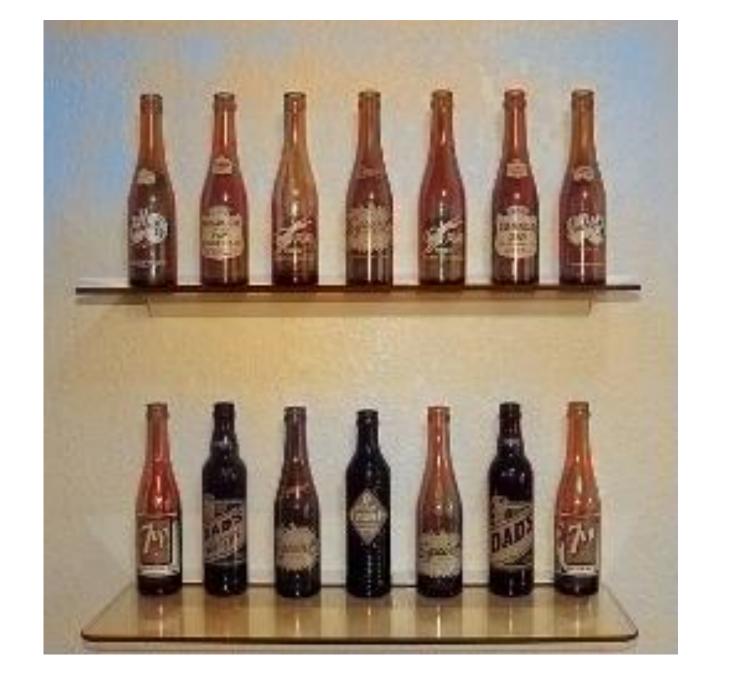
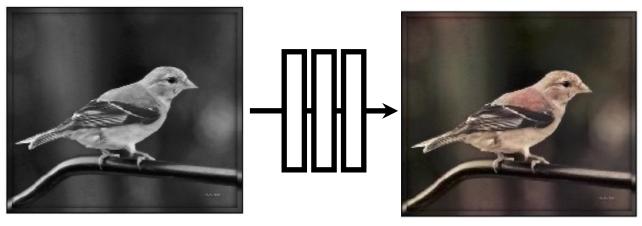
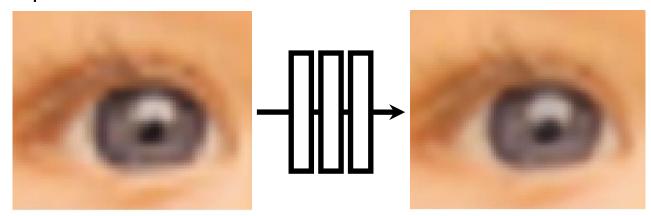


Image colorization



[Zhang, Isola, Efros, ECCV 2016]

Super-resolution

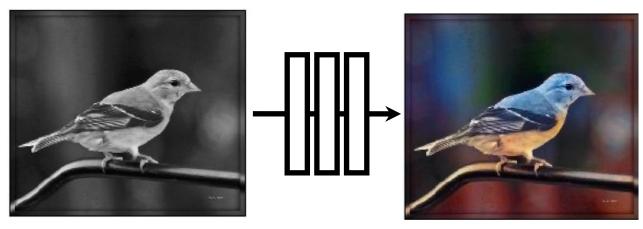


[Johnson, Alahi, Li, ECCV 2016]

L2 regression

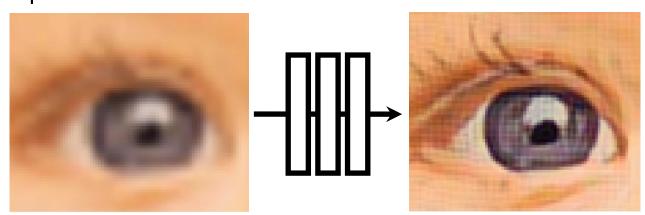
L2 regression

Image colorization



[Zhang, Isola, Efros, ECCV 2016]

Super-resolution



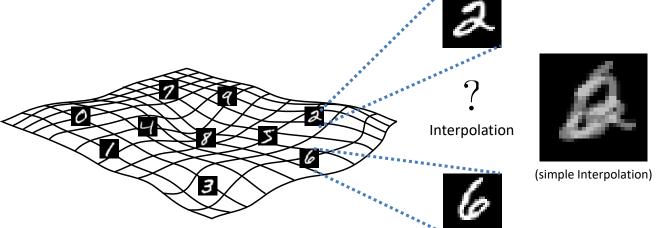
[Johnson, Alahi, Li, ECCV 2016]

Cross entropy objective, with colorfulness term

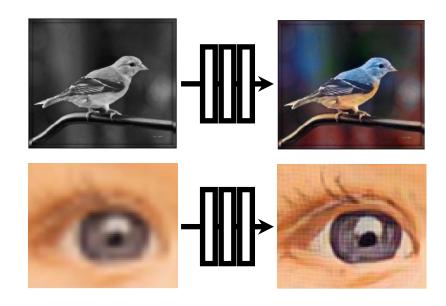
Deep feature covariance matching objective

Better Loss Function: Sticking to the Manifold

 How do we design a loss function that penalizes images that aren't on the image manifold?



 Key insight: we will *learn* our loss function by training a network to discriminate between images that are on the manifold and images that aren't



Abe Davis, with slides from Jin Sun and Phillip Isola

PART 3: GENERATIVE ADVERSARIAL NETWORKS (GANS)

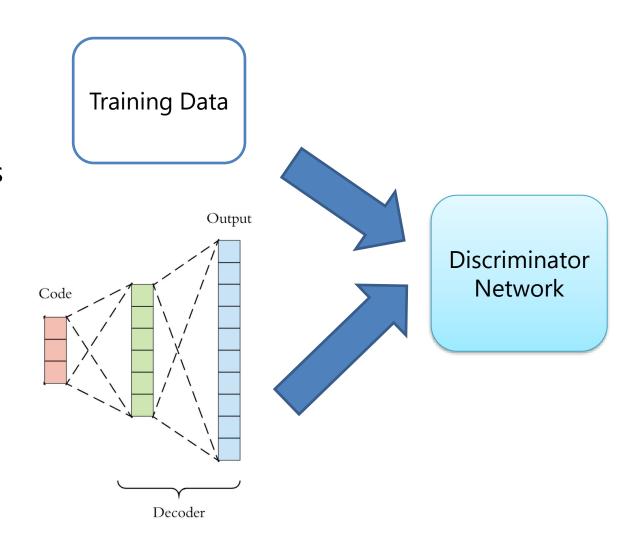
Generative Adversarial Networks (GANs)

 Basic idea: Learn a mapping from some latent space to images on a particular manifold

- Example of a *Generative Model:*
 - We can think of classification as a way to compute some P(x) that tells us the probability that image x is a member of a class.
 - Rather than simply evaluating this distribution, a generative model tries to learn a way to sample from it

Generative <u>Adversarial</u> Networks (GANs)

- Generator network has similar structure to the decoder of our autoencoder
 - Maps from some latent space to images
- We train it in an adversarial manner against a discriminator network
 - Generator tries to create output indistinguishable from training data
 - Discriminator tries to distinguish between generator output and training data



Example: Randomly Sampling the Space of Face Images

(Using Generative Adversarial Networks (GANs)

Which face is real?

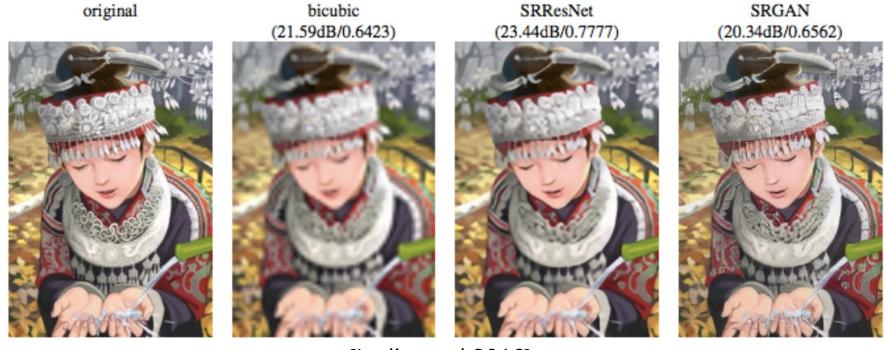
Example: Randomly Sampling the Space of Face Images

(Using Generative Adversarial Networks (GANs)

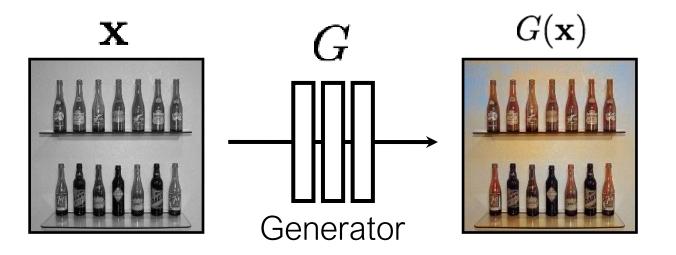
Which face is real?

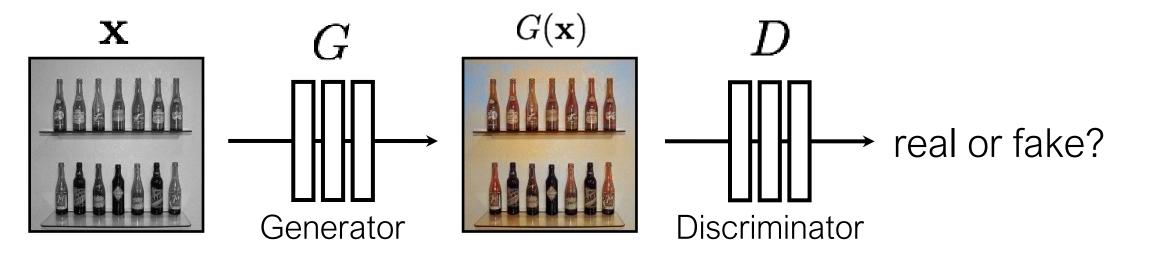
Conditional GANs

- Generate samples from a conditional distribution
- Example: generate high-resolution image conditioned on low resolution input



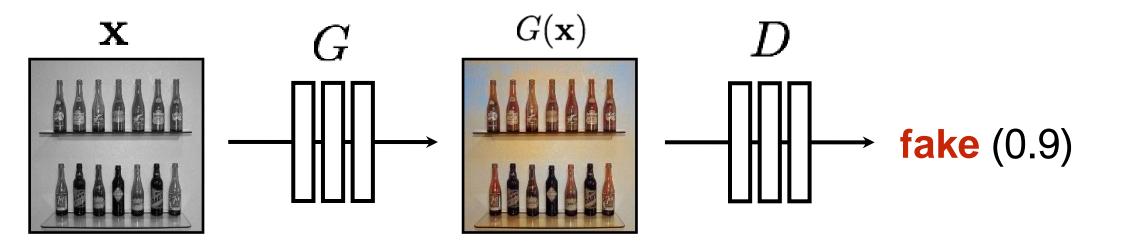
[Ledig et al 2016]

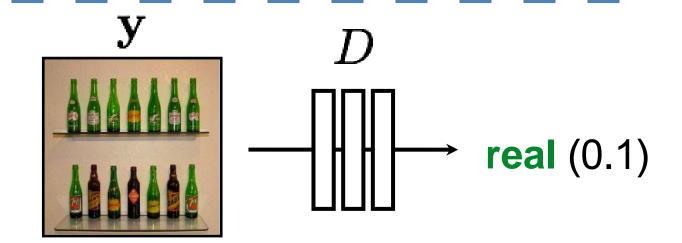




G tries to synthesize fake images that fool **D**

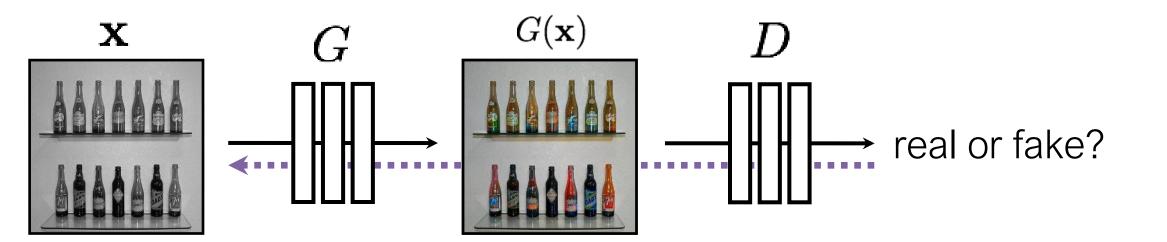
D tries to identify the fakes





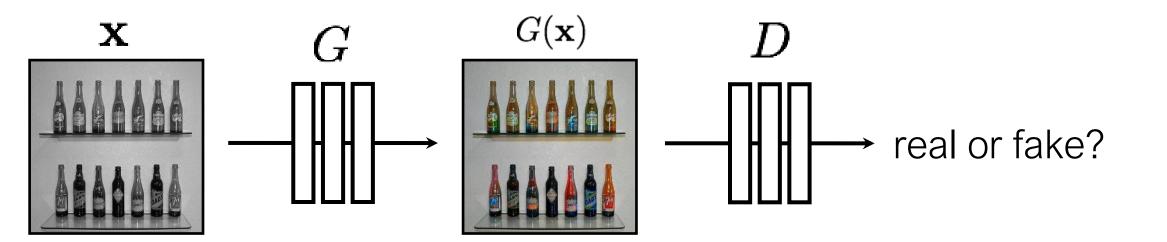
(Identify generated images as fake) (Identify training images as real)

$$\underset{D}{\operatorname{arg\,max}} \; \mathbb{E}_{\mathbf{x},\mathbf{y}}[\; \log D(G(\mathbf{x})) \; + \; \log(1 - D(\mathbf{y})) \;]$$



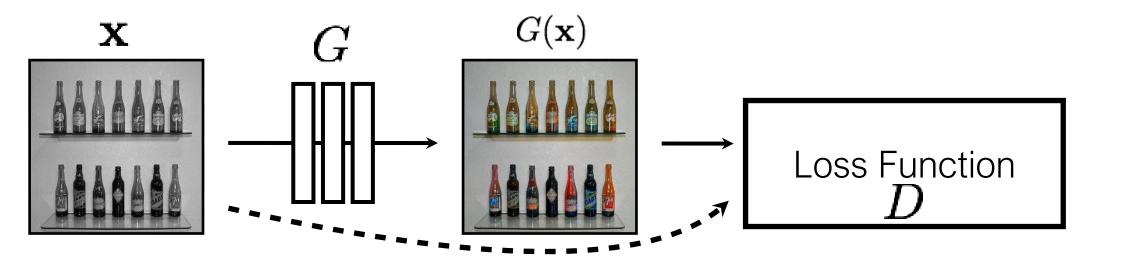
G tries to synthesize fake images that **fool D**:

$$\arg\min_{G} \mathbb{E}_{\mathbf{x},\mathbf{y}} [\log D(G(\mathbf{x})) + \log(1 - D(\mathbf{y}))]$$



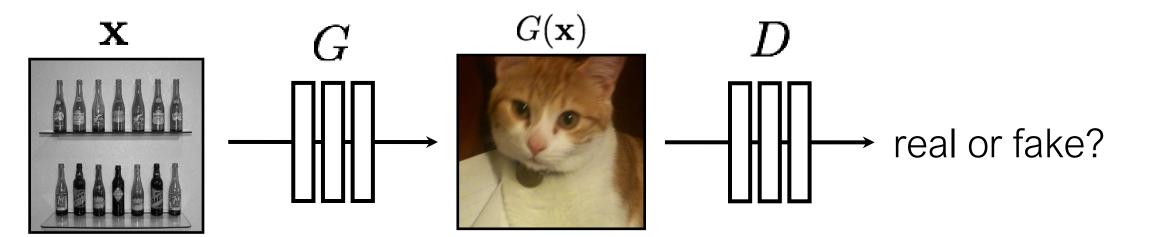
G tries to synthesize fake images that **fool** the **best D**:

$$\arg\min_{G} \max_{D} \mathbb{E}_{\mathbf{x},\mathbf{y}} [\log D(G(\mathbf{x})) + \log(1 - D(\mathbf{y}))]$$

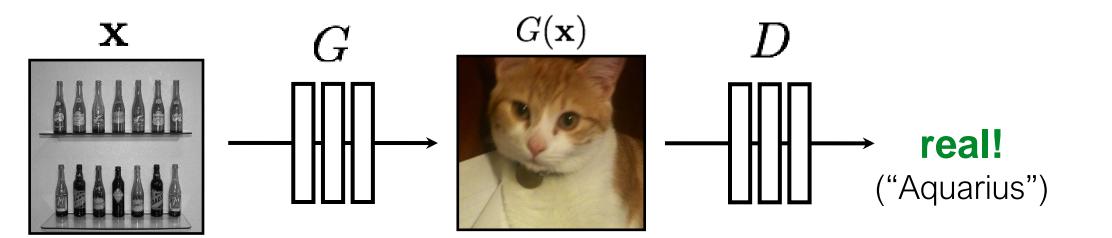


G's perspective: **D** is a loss function.

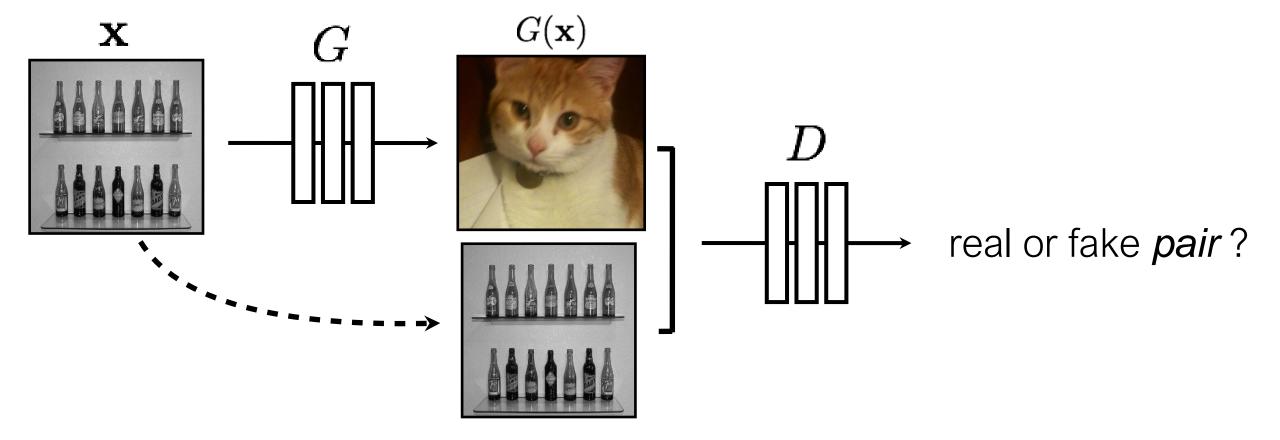
Rather than being hand-designed, it is *learned*.



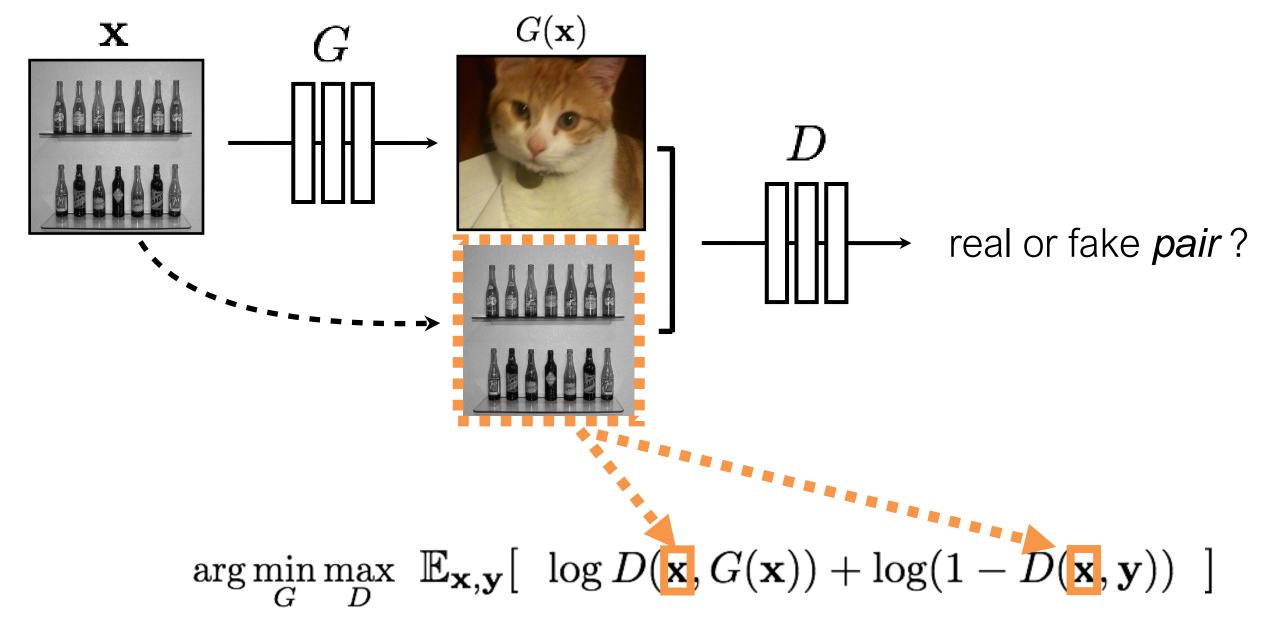
$$\operatorname{arg\,min}_{G} \max_{D} \mathbb{E}_{\mathbf{x},\mathbf{y}} \left[\log D(G(\mathbf{x})) + \log(1 - D(\mathbf{y})) \right]$$

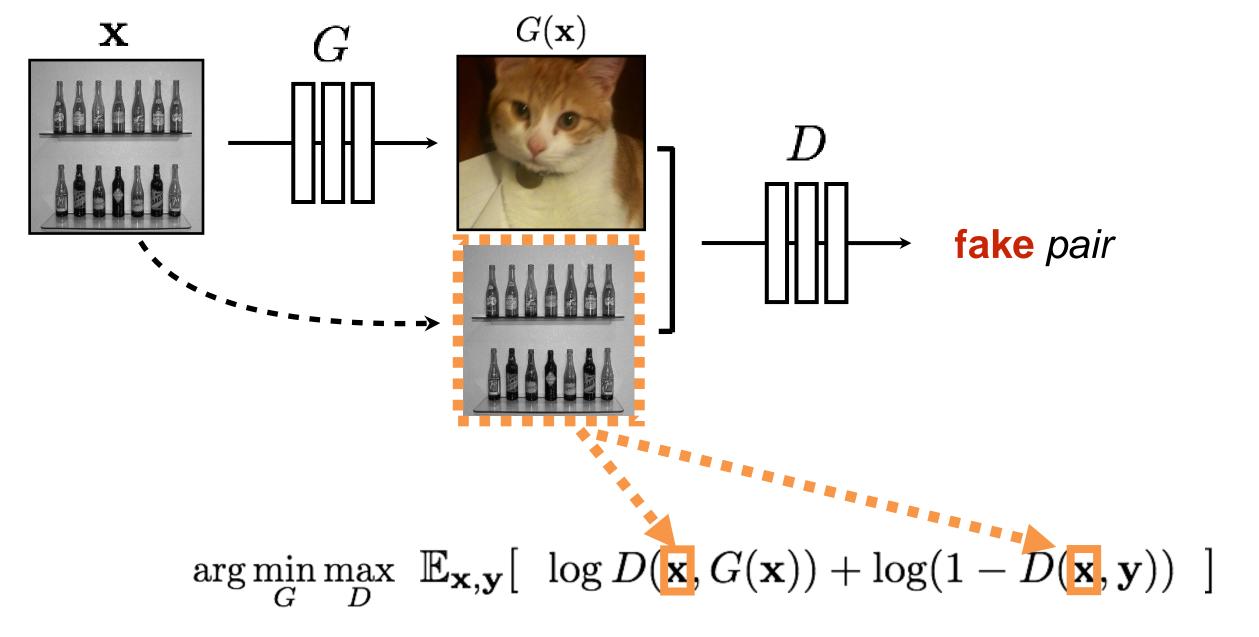


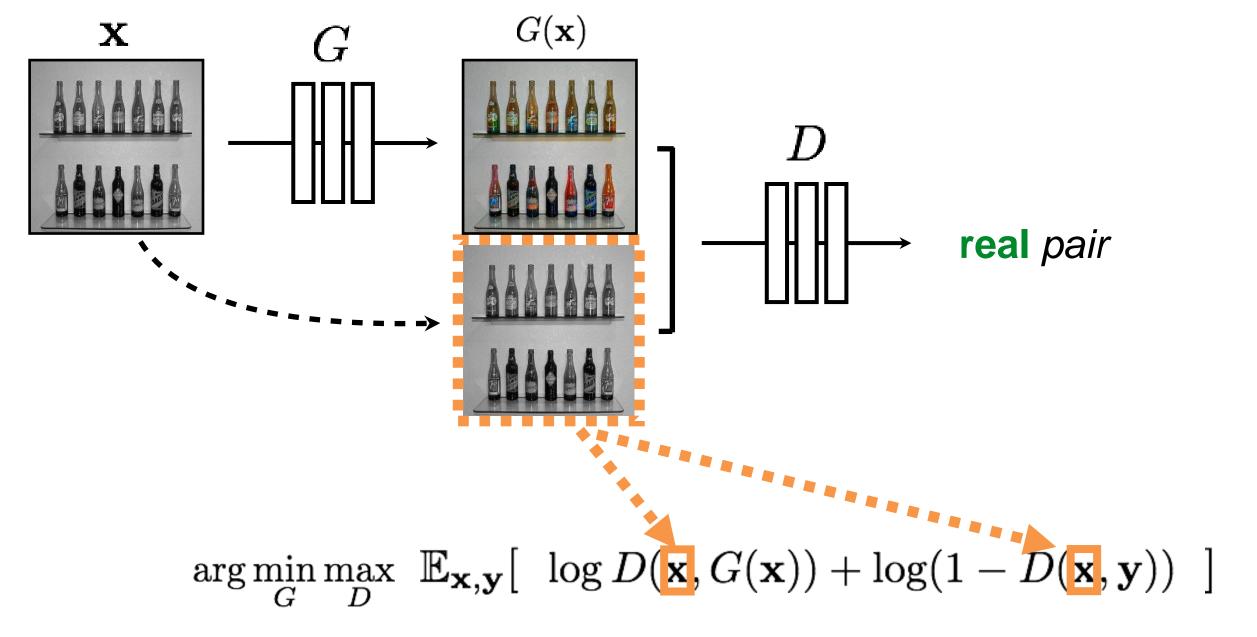
$$\operatorname{arg\,min}_{G} \max_{D} \mathbb{E}_{\mathbf{x},\mathbf{y}} \left[\log D(G(\mathbf{x})) + \log(1 - D(\mathbf{y})) \right]$$

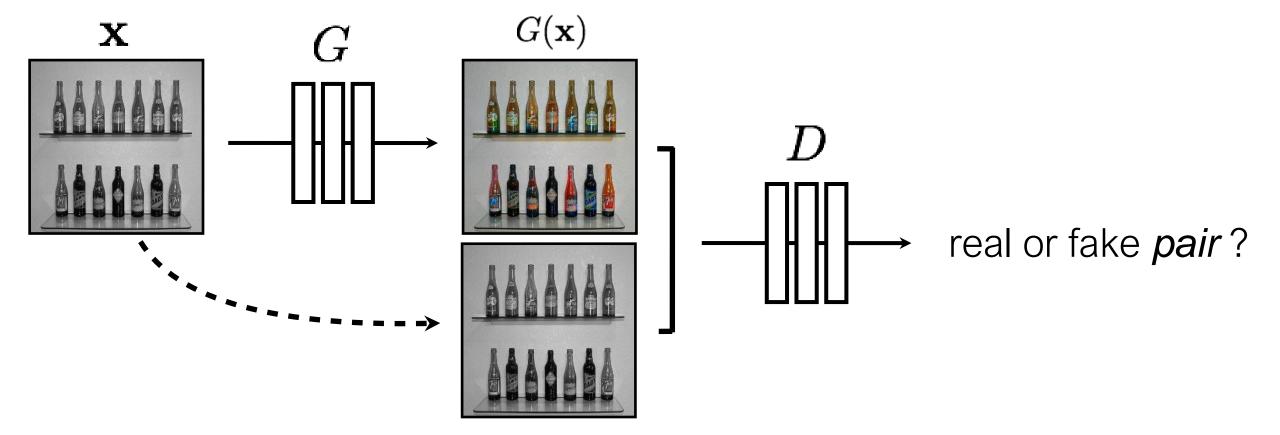


$$\arg\min_{G}\max_{D} \mathbb{E}_{\mathbf{x},\mathbf{y}}[\log D(G(\mathbf{x})) + \log(1 - D(\mathbf{y}))]$$







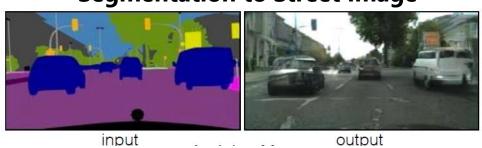


$$\arg\min_{G}\max_{D} \ \mathbb{E}_{\mathbf{x},\mathbf{y}}[\ \log D(\mathbf{x},G(\mathbf{x})) + \log(1-D(\mathbf{x},\mathbf{y}))\]$$

More Examples of Image-to-Image Translation with GANs

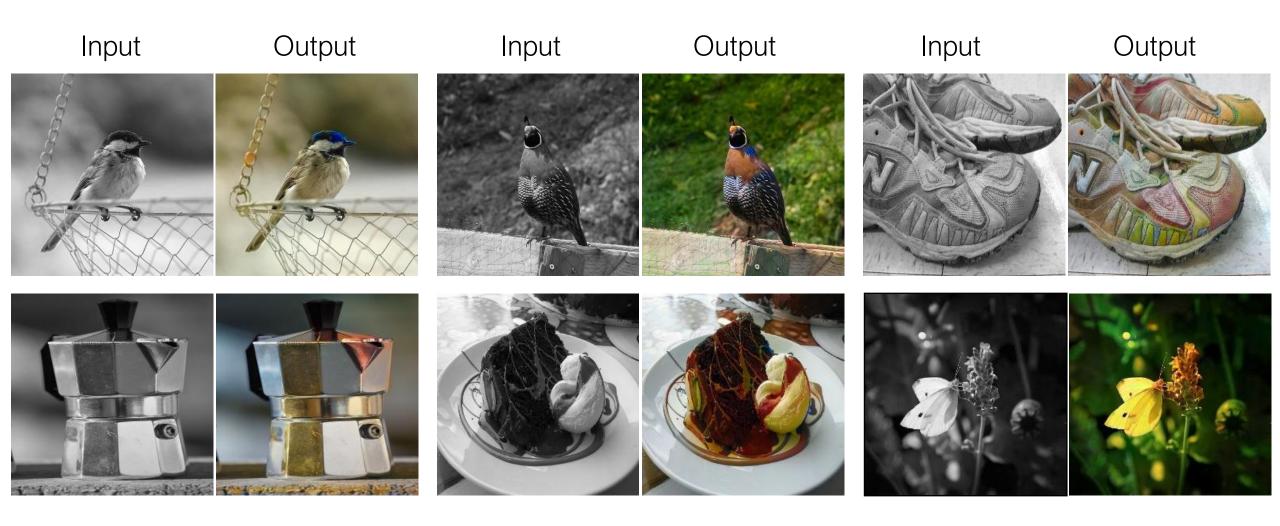
- We have pairs of corresponding training images
- Conditioned on one of the images, sample from the distribution of likely corresponding images

Segmentation to Street Image



Aerial Photo To Map

BW → Color

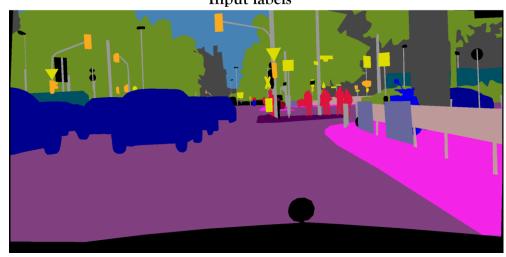


Data from [Russakovsky et al. 2015]

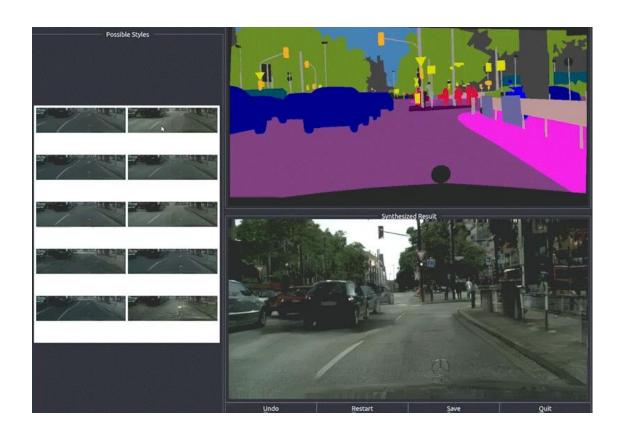
Data from [maps.google.com]

Labels → Street Views

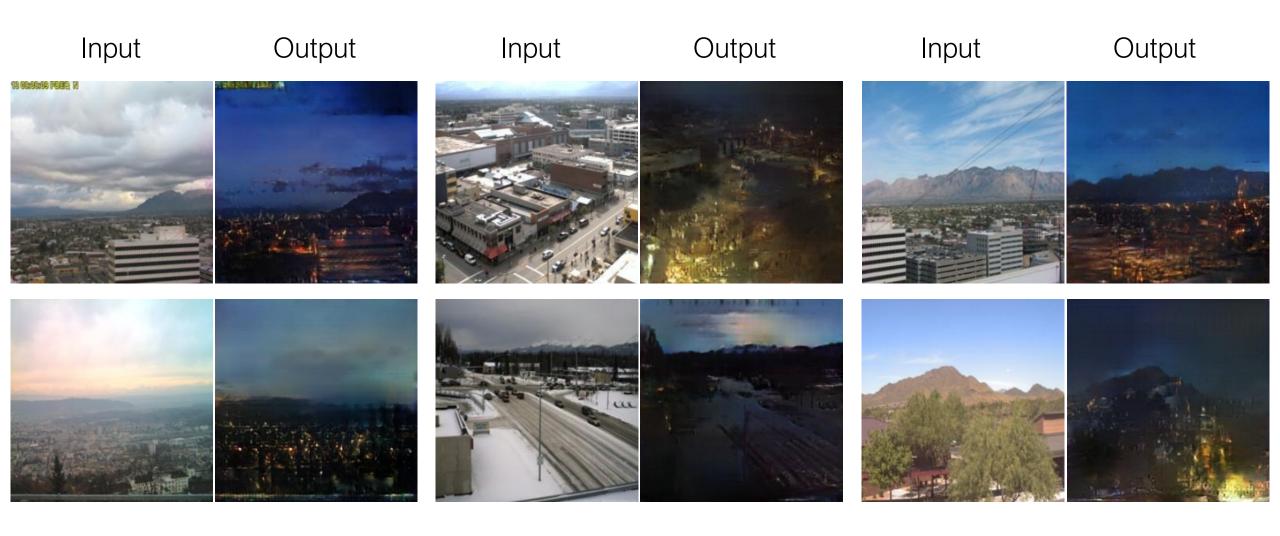
Input labels



Synthesized image



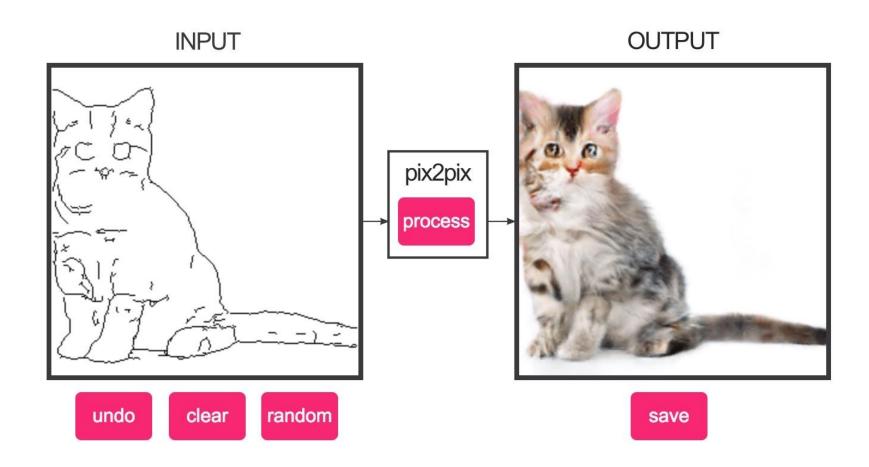
Day → Night



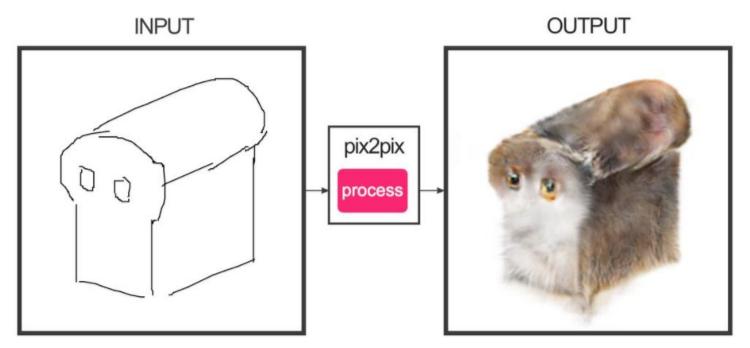
Data from [Laffont et al., 2014]

Edges → Images

Demo



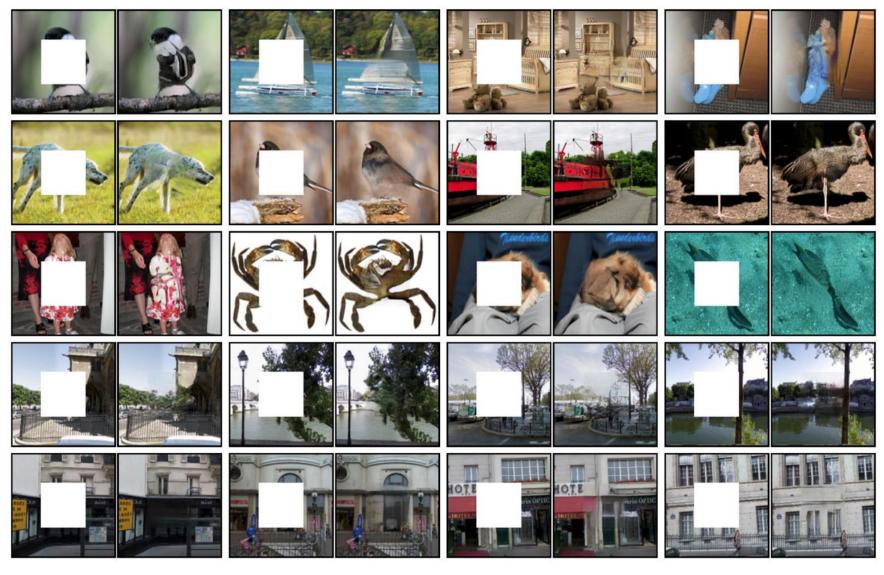
https://affinelayer.com/pixsrv/



Ivy Tasi @ivymyt

Vitaly Vidmirov @vvid

Image Inpainting

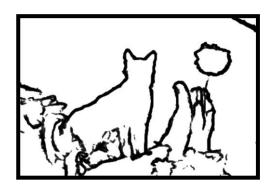


Pose-guided Generation

(c) Generating from a sequence of poses

Challenges —> **Solutions**

- Output is high-dimensional, structured object
 - Approach: Use a deep net, D, to analyze output!
- Uncertainty in mapping; many plausible outputs
 - Approach: D only cares about "plausibility", doesn't hedge
- Lack of supervised training data
 - Approach: ?



"this small bird has a pink breast and crown..."

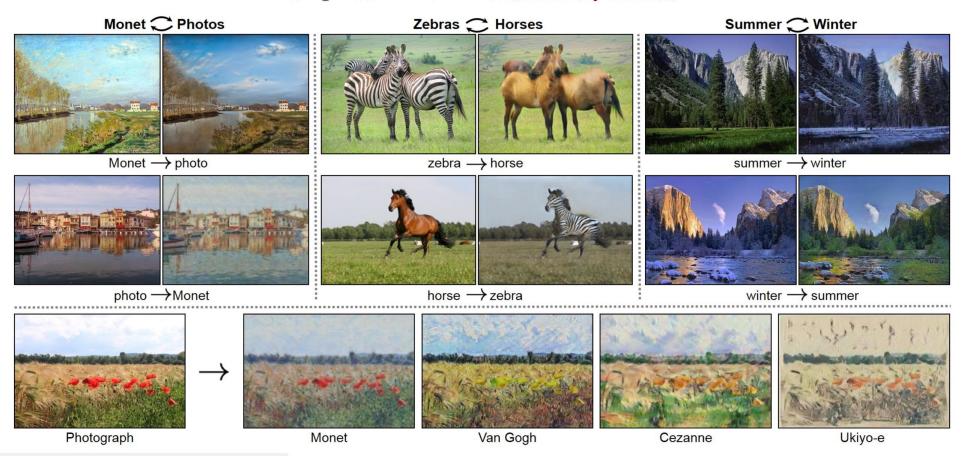
Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks

Jun-Yan Zhu* Taesung Park* Phillip Isola Alexei A. Efros

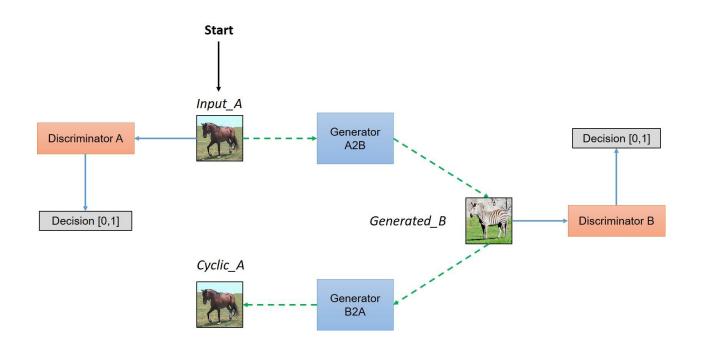
UC Berkeley

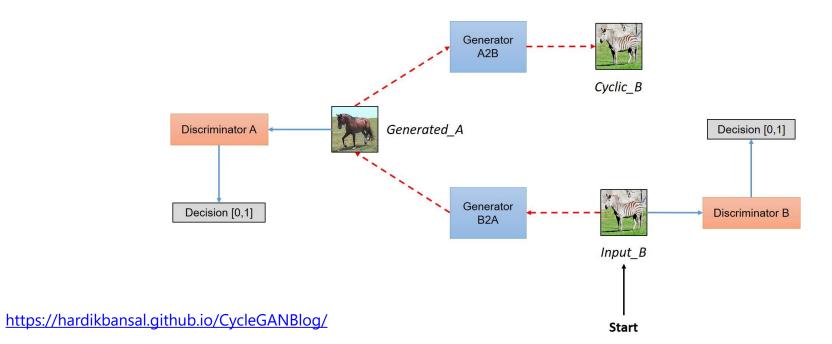
In ICCV 2017

[Paper] [Code (Torch)] [Code (PyTorch)]



https://junyanz.github.io/CycleGAN/





StyleGAN

A Style-Based Generator Architecture for Generative Adversarial Networks

Tero Karras, Samuli Laine, Timo Aila

https://github.com/NVlabs/stylegan

StyleGAN2

Analyzing and Improving the Image Quality of StyleGAN

Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, Timo Aila

Questions?