
Convolutional neural networks

CS5670: Computer Vision

Slides from Fei-Fei Li, Justin Johnson, Serena Yeung

http://vision.stanford.edu/teaching/cs231n/

http://vision.stanford.edu/teaching/cs231n/

Announcements

• Monday is a Wellness Day

• Project 5: *New* To be assigned Wednesday, April 28, due

Tuesday, May 11

• By a large majority, respondents preferred original final

exam time: assigned Wednesday, May 12, 2021; due

Monday, May 17, 2021

• Sample final exam to be released soon

Readings

• Neural networks

– http://cs231n.github.io/neural-networks-1/

– http://cs231n.github.io/neural-networks-2/

– http://cs231n.github.io/neural-networks-3/

– http://cs231n.github.io/neural-networks-case-study/

• Convolutional neural networks

– http://cs231n.github.io/convolutional-networks/

http://cs231n.github.io/neural-networks-1/
http://cs231n.github.io/neural-networks-2/
http://cs231n.github.io/neural-networks-3/
http://cs231n.github.io/neural-networks-case-study/
http://cs231n.github.io/convolutional-networks/

Image Classification:

a core task in computer vision

• Assume given set of discrete labels, e.g.

{cat, dog, cow, apple, tomato, truck, … }

Recap: linear classification

• Have score function and loss function

– Score function maps an input data instance (e.g., an image) to

a vector of scores, one for each category

– Last time, our score function is based on linear classifier

• Find W and b to minimize a loss, e.g. cross-entropy loss

f: score function

x: input instance

W, b: parameters of a linear (actually affine) function

Linear classifiers separate features space into

half-spaces

Neural networks

Neural networks

Neural networks

(100 x 3072 matrix)
(10 x 100 matrix)

100D intermediate

vector

Neural networks

• Total number of weights to learn:

3,072 x 100 + 100 x 10 = 308,200

Recap: linear classification

• Have score function and loss function

– Score function maps an input data instance (e.g., an image) to

a vector of scores, one for each category

– Last time, our score function is based on linear classifier

• Find W and b to minimize a loss, e.g. cross-entropy loss

f: score function

x: input instance

W, b: parameters of a linear (actually affine) function

Neural networks

also called “Multi-Layer

Perceptrons” (MLPs)

Neural networks

• Very coarse generalization of neural networks:

– Linear functions chained together and separated by non-

linearities (activation functions), e.g. “max”

– Why separate linear functions with non-linear functions?

– Very roughly inspired by real neurons

Neural network architecture

• Computation graph for a 2-layer neural

network

Neuron or unit

• Deep networks typically have many layers and potentially

millions of parameters

Deep neural network

• Inception network (Szegedy et al, 2015)

• 22 layers

• Just like a linear classifer – but in this case, just one

layer of a larger network

Optimizing parameters with gradient descent

• How do we find the best W and b parameters?

• In general: gradient descent

1. Start with a guess of a good W and b (or randomly initialize them)

2. Compute the loss function for this initial guess and the gradient of

the loss function

3. Step some distance in the negative gradient direction (direction of

steepest descent)

4. Repeat steps 2 & 3

• Note: efficiently performing step 2 for deep networks is

called backpropagation

Gradient descent: walk in the direction opposite gradient

• Q: How far?

• A: Step size: learning rate

• Too big: will miss the minimum

• Too small: slow convergence

2D example of gradient descent

• In reality, in deep learning

we are optimizing a highly

complex loss function

with millions of variables

(or more)

• More on this later…

https://laptrinhx.com/gradient-descent-animation-2-multiple-linear-regression-3070246823/

https://laptrinhx.com/gradient-descent-animation-2-multiple-linear-regression-3070246823/

2D example: TensorFlow Playground

https://playground.tensorflow.org

https://playground.tensorflow.org/

Questions?

Convolutional neural networks

Hinton and Salakhutdinov. Reducing the Dimensionality of Data with Neural Networks. Science, 2016.

Caption-to-text

DALL·E: Creating Images from Text, OpenAI

https://openai.com/blog/dall-e/

https://openai.com/blog/dall-e/

Convolutional neural networks

• Version of deep neural networks designed for signals

– 1D signals (e.g., speech waveforms)

– 2D signals (e.g., images)

Motivation – Feature Learning

Life Before Deep Learning

Input

Pixels

Extract

Hand-Crafted

Features

Figure: Karpathy 2016

Concatenate into

a vector x

Linear

Classifier

AnsSVM

Slide from Karpathy 2016

Q: What would be a

very hard set of classes

for a linear classifier to

distinguish?

(assuming x = pixels)

Why use features? Why not pixels?

Linearly separable classes

Last layer of most CNNs is a linear classifier

Input

Pixels

Ans

Perform everything with a big neural

network, trained end-to-end

This piece is just a linear classifier

Key: perform enough processing so that by the time you get

to the end of the network, the classes are linearly separable

(GoogLeNet)

Visualizing AlexNet in 2D with t-SNE

[Donahue, “DeCAF: DeCAF: A Deep Convolutional …”, arXiv 2013](2D visualization using t-SNE)

Linear

Classifier

Convolutional neural networks

• Layer types:

– Fully-connected layer

– Convolutional layer

– Pooling layer

Same as a linear classifer!

Number of weights: 5 x 5 x 3 + 1 = 76

(vs. 3072 for a fully-connected layer)

(+1 for bias)

(total number of parameters: 6 x (75 + 1) = 456)

Convolutional layer—properties

• Small number of parameters to learn compared to a fully

connected layer

• Preserves spatial structure—output of a convolutional

layer is shaped like an image

• Translation equivariant: passing a translated image

through a convolutional layer is (almost) equivalent to

translating the convolution output (but be careful of

image boundaries)

https://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html

https://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html

AlexNet

Big picture

• A convolutional neural network can be thought of as a

function from images to class scores

– With millions of adjustable weights…

– … leading to a very non-linear mapping from images to features

/ class scores.

– We will set these weights based on classification accuracy on

training data…

– … and hopefully our network will generalize to new images at

test time

Data is key—enter ImageNet

• ImageNet (and the ImageNet Large-Scale Visual Recognition

Challege, aka ILSVRC) has been key to training deep learning

methods
– J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li and L. Fei-Fei, ImageNet: A Large-Scale

Hierarchical Image Database. CVPR, 2009.

• ILSVRC: 1,000 object categories, each with ~700-1300 training

images. Test set has 100 images per categories (100,000 total).

• Standard ILSVRC error metric: top-5 error

– if the correct answer for a given test image is in the top 5 categories,

your answer is judged to be correct

Performance improvements on ILSVRC

• ImageNet Large-Scale Visual

Recognition Challenge

• Held from 2011-2017

• 1000 categories, 1000 training

images per category

• Test performance on held-out

test set of images

AlexNet

Pre-deep

learning era {Deep learning era

Image credit: Zaid Alyafeai, Lahouari Ghouti

Questions?

