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Announcements

• Monday is a Wellness Day

• Project 5: *New* To be assigned Wednesday, April 28, due 

Tuesday, May 11

• By a large majority, respondents preferred original final 

exam time: assigned Wednesday, May 12, 2021; due  

Monday, May 17, 2021

• Sample final exam to be released soon



Readings

• Neural networks

– http://cs231n.github.io/neural-networks-1/

– http://cs231n.github.io/neural-networks-2/

– http://cs231n.github.io/neural-networks-3/

– http://cs231n.github.io/neural-networks-case-study/

• Convolutional neural networks

– http://cs231n.github.io/convolutional-networks/

http://cs231n.github.io/neural-networks-1/
http://cs231n.github.io/neural-networks-2/
http://cs231n.github.io/neural-networks-3/
http://cs231n.github.io/neural-networks-case-study/
http://cs231n.github.io/convolutional-networks/


Image Classification: 

a core task in computer vision

• Assume given set of discrete labels, e.g. 

{cat, dog, cow, apple, tomato, truck, … }



Recap: linear classification

• Have score function and loss function

– Score function maps an input data instance (e.g., an image) to 

a vector of scores, one for each category

– Last time, our score function is based on linear classifier

• Find W and b to minimize a loss, e.g. cross-entropy loss

f:  score function

x: input instance

W, b: parameters of a linear (actually affine) function



Linear classifiers separate features space into 

half-spaces



Neural networks



Neural networks



Neural networks

(100 x 3072 matrix)
(10 x 100 matrix)

100D intermediate 

vector



Neural networks

• Total number of weights to learn: 

3,072 x 100 + 100 x 10 = 308,200



Recap: linear classification

• Have score function and loss function

– Score function maps an input data instance (e.g., an image) to 

a vector of scores, one for each category

– Last time, our score function is based on linear classifier

• Find W and b to minimize a loss, e.g. cross-entropy loss

f:  score function

x: input instance

W, b: parameters of a linear (actually affine) function



Neural networks

also called “Multi-Layer 

Perceptrons” (MLPs)



Neural networks

• Very coarse generalization of neural networks:

– Linear functions chained together and separated by non-

linearities (activation functions), e.g. “max”

– Why separate linear functions with non-linear functions?

– Very roughly inspired by real neurons





Neural network architecture

• Computation graph for a 2-layer neural 

network 

Neuron or unit



• Deep networks typically have many layers and potentially 

millions of parameters



Deep neural network

• Inception network (Szegedy et al, 2015)

• 22 layers



• Just like a linear classifer – but in this case, just one 

layer of a larger network







Optimizing parameters with gradient descent

• How do we find the best W and b parameters?

• In general: gradient descent

1. Start with a guess of a good W and b (or randomly initialize them)

2. Compute the loss function for this initial guess and the gradient of 

the loss function

3. Step some distance in the negative gradient direction (direction of 

steepest descent)

4. Repeat steps 2 & 3

• Note: efficiently performing step 2 for deep networks is 

called backpropagation



Gradient descent: walk in the direction opposite gradient

• Q: How far?

• A: Step size: learning rate

• Too big: will miss the minimum

• Too small: slow convergence



2D example of gradient descent

• In reality, in deep learning 

we are optimizing a highly 

complex loss function 

with millions of variables 

(or more)

• More on this later…

https://laptrinhx.com/gradient-descent-animation-2-multiple-linear-regression-3070246823/

https://laptrinhx.com/gradient-descent-animation-2-multiple-linear-regression-3070246823/


2D example: TensorFlow Playground

https://playground.tensorflow.org

https://playground.tensorflow.org/


Questions?



Convolutional neural networks





Hinton and Salakhutdinov. Reducing the Dimensionality of Data with Neural Networks. Science, 2016.





















Caption-to-text

DALL·E: Creating Images from Text, OpenAI

https://openai.com/blog/dall-e/

https://openai.com/blog/dall-e/




Convolutional neural networks

• Version of deep neural networks designed for signals

– 1D signals (e.g., speech waveforms)

– 2D signals (e.g., images)



Motivation – Feature Learning



Life Before Deep Learning

Input  

Pixels

Extract  

Hand-Crafted 

Features

Figure: Karpathy 2016

Concatenate into  

a vector x

Linear  

Classifier

AnsSVM



Slide from Karpathy 2016

Q: What would be a

very hard set of classes  

for a linear classifier to  

distinguish?

(assuming x = pixels)

Why use features? Why not pixels?



Linearly separable classes

















Last layer of most CNNs is a linear classifier

Input  

Pixels

Ans

Perform everything with a big neural  

network, trained end-to-end

This piece is just a linear classifier

Key: perform enough processing so that by the time you get  

to the end of the network, the classes are linearly separable

(GoogLeNet)



Visualizing AlexNet in 2D with t-SNE

[Donahue, “DeCAF: DeCAF: A Deep Convolutional …”, arXiv 2013](2D visualization using t-SNE)

Linear  

Classifier



Convolutional neural networks

• Layer types:

– Fully-connected layer

– Convolutional layer

– Pooling layer





Same as a linear classifer!









Number of weights: 5 x 5 x 3 + 1 = 76

(vs. 3072 for a fully-connected layer)

(+1 for bias)









(total number of parameters: 6 x (75 + 1) = 456)





















































Convolutional layer—properties

• Small number of parameters to learn compared to a fully 

connected layer

• Preserves spatial structure—output of a convolutional 

layer is shaped like an image

• Translation equivariant: passing a translated image 

through a convolutional layer is (almost) equivalent to 

translating the convolution output (but be careful of 

image boundaries)









https://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html

https://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html


AlexNet





Big picture

• A convolutional neural network can be thought of as a 

function from images to class scores

– With millions of adjustable weights… 

– … leading to a very non-linear mapping from images to features 

/ class scores.

– We will set these weights based on classification accuracy on 

training data…

– … and hopefully our network will generalize to new images at 

test time



Data is key—enter ImageNet

• ImageNet (and the ImageNet Large-Scale Visual Recognition 

Challege, aka ILSVRC) has been key to training deep learning 

methods
– J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li and L. Fei-Fei, ImageNet: A Large-Scale 

Hierarchical Image Database. CVPR, 2009.

• ILSVRC: 1,000 object categories, each with ~700-1300 training 

images. Test set has 100 images per categories (100,000 total).

• Standard ILSVRC error metric: top-5 error

– if the correct answer for a given test image is in the top 5 categories, 

your answer is judged to be correct



Performance improvements on ILSVRC

• ImageNet Large-Scale Visual 

Recognition Challenge

• Held from 2011-2017

• 1000 categories, 1000 training 

images per category

• Test performance on held-out 

test set of images

AlexNet

Pre-deep 

learning era {Deep learning era



Image credit: Zaid Alyafeai, Lahouari Ghouti



Questions?


