CS5670: Computer Vision

Panoramas

What's inside your fridge?

Announcements

- Project 3: Autostitch (Panorama Stitching)
 - Released today, March 22
 - Due on Friday, April 2, by 7pm
 - To be done in groups of 2
 - If you need help finding a team member, let me know

 Quiz this Wednesday, March 24 (ends 7 minutes after start of class)

From Last Time: Perspective distortion: People

Distortion-Free Wide-Angle Portraits on Camera Phones

(a) A wide-angle photo with distortions on subjects' faces.

(b) Distortion-free photo by our method.

YiChang Shih, Wei-Sheng Lai, and Chia-Kai Liang, Distortion-Free Wide-Angle Portraits on Camera Phones, SIGGRAPH 2019 https://people.csail.mit.edu/yichangshih/wide-angle-portrait/

Back to panoramas

Can we use homographies to create a 360 degree panorama?

Idea: project images onto a common plane

each image is warped with a homography ${f H}$

We'll see what this homography means next Can't create a 360 panorama this way... we'll fix this shortly

mosaic projection plane

Creating a panorama

- Basic Procedure
 - Take a sequence of images from the same position
 - Rotate the camera about its optical center
 - Compute transformation between second image and first
 - Transform the second image to overlap with the first
 - Blend the two together to create a mosaic
 - If there are more images, repeat

Geometric interpretation of mosaics

- If we capture all 360° of rays, we can create a 360° panorama
- The basic operation is *projecting* an image from one plane to another
- The projective transformation is scene-INDEPENDENT
 - This depends on all the images having the same optical center

Image reprojection

Basic question

- How to relate two images from the same camera center?
 - how to map a pixel from PP1 to PP2

Answer

- Cast a ray through each pixel in PP1
- Draw the pixel where that ray intersects PP2

What is the transformation?

How do we map points in image 2 into image 1?

image 1 image 2 intrinsics
$$\mathbf{K}_1$$
 \mathbf{K}_2 extrinsics $\mathbf{R}_1 = \mathbf{I}_{3 \times 3}$ \mathbf{R}_2

Step 1: Convert pixels in image 2 to rays in camera 2's coordinate system.

$$\begin{bmatrix} X_2 \\ Y_2 \\ Z_2 \end{bmatrix} = \mathbf{K}_2^{-1} \begin{bmatrix} x_2 \\ y_2 \\ 1 \end{bmatrix}$$

Step 2: Convert rays in camera 2's coordinates to rays in camera 1's coordinates.

$$\begin{bmatrix} X_1 \\ Y_1 \\ Z_1 \end{bmatrix} = \mathbf{R}_2^T \mathbf{K}_2^{-1} \begin{bmatrix} x_2 \\ y_2 \\ 1 \end{bmatrix}$$

Step 3: Convert rays in camera 1's coordinates to pixels in image 1's coordinates.

$$\begin{bmatrix} x_1 \\ y_1 \\ 1 \end{bmatrix} \sim \mathbf{K}_1 \mathbf{R}_2^T \mathbf{K}_2^{-1} \begin{bmatrix} x_2 \\ y_2 \\ 1 \end{bmatrix}$$
 3x3 homography

Can we use homography to create a 360 panorama?

Answer: No

Panoramas

• What if you want a 360° field of view?

Spherical projection

Map 3D point (X,Y,Z) onto sphere

$$(\hat{x}, \hat{y}, \hat{z}) = \frac{1}{\sqrt{X^2 + Y^2 + Z^2}} (X, Y, Z)$$

- Convert to spherical coordinates $(sin\theta cos\phi, sin\phi, cos\theta cos\phi) = (\hat{x}, \hat{y}, \hat{z})$
- Convert to spherical image coordinates

$$(\tilde{x}, \tilde{y}) = (s\theta, s\phi) + (\tilde{x}_c, \tilde{y}_c)$$

- s defines size of the final image
 - » often convenient to set s = camera focal length

Spherical image

Unwrapping a sphere

Credit: JHT's Planetary Pixel Emporium

Spherical reprojection

- Map image to spherical coordinates
 - need to know the focal length

Aligning spherical images

- Suppose we rotate the camera by θ about the vertical axis
 - How does this change the spherical image?

Aligning spherical images

- Suppose we rotate the camera by θ about the vertical axis
 - How does this change the spherical image?
 - Translation by θ
 - This means that we can align spherical images by translation

Assembling the panorama

• Stitch pairs together, blend, then crop

Problem: Drift

- Error accumulation
 - small errors accumulate over time

Problem: Drift

Solution

- add another copy of first image at the end
- this gives a constraint: $y_n = y_1$
- there are a bunch of ways to solve this problem
 - add displacement of $(y_1 y_n)/(n 1)$ to each image after the first
 - apply an affine warp: y' = y + ax [you will implement this for P3]
 - run a big optimization problem, incorporating this constraint
 - best solution, but more complicated
 - known as "bundle adjustment"

Project 3

- 1. Take pictures on a tripod (or handheld)
- 2. Warp to spherical coordinates (not needed if using homographies to align images)
- Extract features
- 4. Align neighboring pairs using feature matching + RANSAC
- 5. Write out list of neighboring translations
- 6. Correct for drift
- 7. Read in warped images and blend them
- 8. Crop the result and import into a viewer
- Roughly based on Autostitch
 - By Matthew Brown and David Lowe
 - http://www.cs.ubc.ca/~mbrown/autostitch/autostitch.html

Spherical panoramas

Microsoft Lobby: http://www.acm.org/pubs/citations/proceedings/graph/258734/p251-szeliski

Different projections are possible

Blending

• We've aligned the images – now what?

Blending

Want to seamlessly blend them together

Image Blending

Feathering

Effect of window size

Effect of window size

Good window size

"Optimal" window: smooth but not ghosted

• Doesn't always work...

Pyramid blending

Create a Laplacian pyramid, blend each level

• Burt, P. J. and Adelson, E. H., <u>A multiresolution spline with applications to image mosaics</u>, ACM Transactions on Graphics, 42(4), October 1983, 217-236.

The Laplacian Pyramid

$$f_j = (f_{j-1} \star h) \downarrow_2$$
$$d_j = f_j - (f_{j-1} \uparrow_2) \star g$$

Backward transform: $f_j = \mathbf{d}_j + (f_{j-1} \uparrow_2) \star g$

Credit: Gabriel Peyré

see Blinn (CGA, 1994) for details:

Compositing, Part 1: Theory

Encoding blend weights: $I(x,y) = (\alpha R, \alpha G, \alpha B, \alpha)$

color at p =
$$\frac{(\alpha_1 R_1, \ \alpha_1 G_1, \ \alpha_1 B_1) + (\alpha_2 R_2, \ \alpha_2 G_2, \ \alpha_2 B_2) + (\alpha_3 R_3, \ \alpha_3 G_3, \ \alpha_3 B_3)}{\alpha_1 + \alpha_2 + \alpha_3}$$

Implement this in two steps:

- 1. accumulate: add up the (α premultiplied) RGB α values at each pixel
- 2. normalize: divide each pixel's accumulated RGB by its α value

Q: what if $\alpha = 0$?

Poisson Image Editing

For more info: Perez et al, SIGGRAPH 2003

Some panorama examples

"Before SIGGRAPH Deadline" Photo credit: Doug Zongker

Some panorama examples

Every image on Google Streetview

Magic: ghost removal

M. Uyttendaele, A. Eden, and R. Szeliski. *Eliminating ghosting and exposure artifacts in image mosaics*. ICCV 2001

Magic: ghost removal

M. Uyttendaele, A. Eden, and R. Szeliski. *Eliminating ghosting and exposure artifacts in image mosaics*. ICCV 2001

Other types of mosaics

- Can mosaic onto *any* surface if you know the geometry
 - See NASA's <u>Visible Earth project</u> for some stunning earth mosaics

An EPIC Eclipse

https://earthobservatory.nasa.gov/images/87675/an-epic-eclipse

Questions?

Alternative to feathering

Cut and fuse

Interactive Digital Photomontage

Aseem Agarwala, Mira Dontcheva Maneesh Agrawala, Steven Drucker, Alex Colburn Brian Curless, David Salesin, Michael Cohen

