CS5670: Computer Vision
Noah Snavely

Lecture 26: CNN Structure and Training

Feature maps

Convolutions Subsampling Convolutions Subsampling Fully connected
Image credit: Aphex34, [CC BY-SA 4.0 (http://creativecommons.org/licenses/by-sa/4.0)]

Slides from Andrej Karpathy and Fei-Fei Li
http://vision.stanford.edu/teaching/cs231n/

Announcements

* Final project (P5), due Wednesday, 5/10, by
11:59pm
* Final exam will be handed out at the end of

class today, due Friday, 5/12, by 5pm to
Christina Ko’s desk on 12t floor

Today

* Finishing up backpropagation
e ConvNet architectures

* How to train ConvNets

(Recap) Backprop

From Geoff Hinton seminar at Stanford

Stanford Seminar - Geoffrey Hinton of Google & University of Toronto

ow to learn many layers of features (~1985)

Compare outputs with
to get
error signal

QQ e OUIPULS
Q Q ®

v .
2V X1}

nidden

ofegejoRoha

.
I Rl

| OO O ~ mumi | M
4= |NPUL VECLO!

sity

(Recap) Backprop

Parameters: @ = 91 92

All of the weights and biases in the network,
stacked together

oL | aL oL
00 | 96, 96,

Gradient:

Intuition: “How fast would the error change if
| change myself by a little bit”

> activations

“local gradient”

Z

oL
0z

gradients

Slide from Karpathy 2016

Forward Propagation:

(1)
AN

Function

—bh(l)—pooo —_—

(n)
AN

Function

Forward Propagation:

(1)
AN

X —| Function

—bh(l)—pooo —_—

Backward Propagation:

(n)
AN

Function

Forward Propagation:

(1)
AN

X —| Function

—bh(l)—pooo —_—

Backward Propagation:

(n)
AN

Function

Forward Propagation:

(1)
AN

X —| Function

—bh(l)—pooo —_—

Backward Propagation:

(n)
AN

Function

Forward Propagation:

(1)
AN

X —| Function

—bh(l)—pooo —_—

Backward Propagation:

(n)
AN

Function | = § — [
oL
060" ™\
Function <—a—L — [
ds

Forward Propagation:

(1)
AN

X —| Function

- h(l) —_) oo e

Backward Propagation:

dL

oh"’

(n)
AN

— | Function | = § — [
oL
060" ™\
»+« «— | Function <—a—L — [
ds

Forward Propagation:

(1)
AN

X —| Function |— h(l) — .-

Backward Propagation:

oL

89(1)
o T o
ax «— | Function |+ ah(1)<

(n)
AN

— | Function | = § — [
oL
060" ™\
| oL
-« «— | Function | « — « [,
ds

What to do for
each layer

oL

oL

07\

oh!" ™

Layer n

oL

oh"

Layer n +1

This is what we JL
want for each layer

oL L oL [7
< ayer n |+ < ayer n +
oh"™ oh'"

ee

This is what we JL

want for each layer To compute it, we need to

09" \ propagate this gradient

dL oL
35, < Layer n |+ ah(”)<

L) e

Layer n +7| «— ---

This is what we JL

want for each layer To compute it, we need to

09" \ propagate this gradient

dL oL
35, < Layer n |+ ah(”)<

L) e

Layer n +7| «— ---

For each layer:

This is what we JL

want for each layer To compute it, we need to

09" \ propagate this gradient

dL oL
35, < Layer n |+ ah(”)<

L) e

Layer n +7| «— ---

For each layer:

oL| oL oh"™
207 9p™ ' 9™

What we want

This is what we JL

want for each layer To compute it, we need to

09" \ propagate this gradient
dL oL

YACED ° Layer n |+ — |Layern +1 |« ...

o™

L) e

oL | | oL | oh™
20| 19p™ ' 9™

What we want

This is what we JL

want for each layer To compute it, we need to

09" \ propagate this gradient

oL oL
o ah(”_l) > Layer n |+ ah(n)< Layern +7| «— --..
us
gen 10
For each Iayer 9“'9

oL | | oL ||oh"
9(1@) h(n) 9(1@)

What we want
This is just the local gradient of layer n

This is what we JL

want for each layer To compute it, we need to

09" \ propagate this gradient
dL oL

ce ¢ < Layern < < Layern+7 — see

oh"™ oh'™

us
n 10
For each Iayer “'e

oL | | oL ||oh"™ oL oL oh"™
Q(n) h(”) 9(n) YIS 8h(”) 'ah<"-1>

What we want
This is just the local gradlent of layer n

This is what we JL

want for each layer To compute it, we need to

09" \ propagate this gradient
dL aL

e < Layern |+ Layern +7| « --..

ah(n D (n)

1o U°
For each Iayer‘y \

oL | | oL ||oh"™ oL | oh'™
9(1@) h(n) 9(”) h(n 1) h(n) h(n 1)

What we want
This is just the local gradient of layer n

This is what we JL

want for each layer To compute it, we need to

09" \ propagate this gradient
dL oL

e < Layern |+ Layern +7| « --..

ah(n 1) h(ﬂ)

1o U°
For each Iayer‘y \

oL | | oL ||oh™ | oL || on™
Qm) hM) 9@) hm4)_'ahM)°ahm4)

What we want
This is just the local gradient of layer n

Summary

For each layer, we compute:

[Propagated gradient to the left] =
[Propagated gradient from ri ght] : [Local gradient]

summary

For each layer, we compute:

[Propagated gradient to the left] =
[Propagated gradient from ri ght] : [Local gradient]

\

(Can compute immediately)

summary

For each layer, we compute:

[Propagated gradient to the left] =
[Propagated gradient from ri ght] : [Local gradient]

b \

(Received during backprop) (Can compute immediately)

Backprop in N-dimensions

Jjust add more subscripts and more summations

Backprop in N-dimensions

Jjust add more subscripts and more summations

B_L — JdL dh x,h scalars
ox oh dx (L is always scalar)

Backprop in N-dimensions

Jjust add more subscripts and more summations

B_L — JdL dh x,h scalars
ox oh dx (L is always scalar)
oL dL oh

a_xj — L h ax, x,h 1D arrays (vectors)

Backprop in N-dimensions

Jjust add more subscripts and more summations

B_L — JdL dh x,h scalars
ox oh dx (L is always scalar)
oL z dL oh, LD (vectors)
I I
ax o, x. X, arrays (vectors
JL oh,
= 22 x,h 2D arrays

dh, dx,,

Backprop in N-dimensions

Jjust add more subscripts and more summations

B_L — JdL dh x,h scalars
ox oh dx (L is always scalar)
oL dL oh,
ax z oh ax x,h 1D arrays (vectors)
JL oh,
= 22 oh, dx,, x,h 2D arrays

dL oh,
Bx _;Zz‘ah ox, x,h 3D arrays

itk

Examples

Example: Mean Subtraction
(for a single input)

Example: Mean Subtraction
(for a single input)

« Example layer: mean subtraction:

Example: Mean Subtraction
(for a single input)

« Example layer: mean subtraction:

1
h =x, D;xk

Example: Mean Subtraction
(for a single input)

« Example layer: mean subtraction:

h =x, 1 zxk (here, “I” and “K”
D7

are channels)

Example: Mean Subtraction
(for a single input)

« Example layer: mean subtraction:

h =x, 1 zxk (here, “I” and “K”
D7

are channels)

e Always start with the chain rule (this one is for 1D):

OL ~JL oh

dx; T 0h, Jdx,

Example: Mean Subtraction
(for a single input)

« Example layer: mean subtraction:

h =x, 1 zxk (here, “I” and “K”
D7

are channels)

e Always start with the chain rule (this one is for 1D):

OL ~JL oh

dx; T 0h, Jdx,

* Note: Be very careful with your subscripts!
Introduce new variables and don't re-use letters.

Example: Mean Subtraction
(for a single input)

Example: Mean Subtraction
(for a single input)

1
. Forward: h=x,——> x,
D k

Example: Mean Subtraction
(for a single input)

|
e Forward: hi=xi——2xk
D k

* Taking the derivative of the layer:

Example: Mean Subtraction
(for a single input)

|
e Forward: hi=xi——2xk
D k

* Taking the derivative of the layer: o, =0, 1
dx, ' D

Example: Mean Subtraction
(for a single input)

|
e Forward: hi=xi——2xk
D k

* Taking the derivative of the layer: o, =0, 1
dox, [D

X kO else)

Example: Mean Subtraction
(for a single input)

|
e Forward: hi:xi_BZ'xk

* Taking the derivative of the layer: —

oL
ax

=2

dL oh,

oh ax

(backprop
aka chain rule)

oh.
ox;

-5 ——

lJ

& " s

1
D

1 i=j

0 else

Example: Mean Subtraction
(for a single input)

|
e Forward: hi:xi_BZ'xk

oL

* Taking the derivative of the layer: —
Z dL dh, (backprop
doh, dx; aka chain rule)

ax

1
-3 563,

oh.
ox;

-5

lJ

S s

1
D

| i=j

0 else

Example: Mean Subtraction
(for a single input)

|
e Forward: hi:xi_BZ'xk

* Taking the derivative of the layer: —

oL
ax

=2

dL oh,

oh ax

aka chain rule)

(backprop

1
-3 563,

~ o,

oL

ij

oL

D“dh,

oh.
ox;

-5 ——

lJ

& " s

1
D

1 i=j

0 else

Example: Mean Subtraction
(for a single input)

|
e Forward: hi:xi_BZ'xk

* Taking the derivative of the layer: —

oL
ax

=2

dL oh,

oh ax

aka chain rule)

(backprop

1
-3 563,

~ o,

oL

oL

ij

e

J

oL

D“dh,

oL

D“dh,

oh.
ox;

-5 ——

lJ

& " s

1
D

1 i=j

0 else

Example: Mean Subtraction
(for a single input)

|
e Forward: hi:xi_BZ'xk

* Taking the derivative of the layer: —

oL
ax

=2

dL oh,

oh ax

aka chain rule)

(backprop

1
-3 563,

~ o,

oL

oL

ij

e

J

oL

D“dh,

oL

D“dh,

Done!

oh.
ox;

-5 ——

lJ

& " s

1
D

1 i=j

0 else

Example: Mean Subtraction
(for a single input)

e Backward:

Example: Mean Subtraction
(for a single input)
e Forward: hi:xi_%z'xk

OL _ L 1oL
ox, oh, D' oh,

e Backward:

Example: Mean Subtraction
(for a single input)
e Forward: hi:xi_%z'xk

oL aL_l JL
dx, oh, DT dh,

* |n this case, they're identical operations!

Example: Mean Subtraction
(for a single input)

Forward: h,=x,——) X,

Backward: — _ N =

In this case, they're identical operations!

Usually the forwards pass and backwards pass are
similar but not the same.

Example: Mean Subtraction
(for a single input)

Forward: h,=x,——) X,

Backward: — _ N =

In this case, they're identical operations!

Usually the forwards pass and backwards pass are
similar but not the same.

Derive it by hand, and check it numerically

Example: Euclidean LoSS

Example: Euclidean LoSS

* Euclidean loss layer:

Example: Euclidean LoSS

* Euclidean loss layer:

-

Euclidean
y — LOSS L

Example: Euclidean LoSS

* Euclidean loss layer:

-

- |
Euclidean . 2
y — | 0SS - L Li o EZ(Zi,j _yi,j)
J

Example: Euclidean LoSS

* Euclidean loss layer:

Y

-

—

Euclidean
LOSS

1
~ L L =§Z(zi,j—yi,j)2
J

(“I" Is the batch index,
‘" 1s the channel)

Example: Euclidean LoSS

* Euclidean loss layer:

Z - I
Euclidean . 2
y —| Lloss |~ L L, _Ez(zi,j_yi,j)
J

(“I" Is the batch index,
‘" 1s the channel)

* The total loss is the average over N examples:

Example: Euclidean LoSS

* Euclidean loss layer:

-

Z - I
Euclidean . 2
y —| Lloss |~ L L, _Ez(zi,j_yi,j)
J

(“I" Is the batch index,
‘" 1s the channel)

* The total loss is the average over N examples:

I
L;NZQ

Example: Euclidean LoSS

Example: Euclidean LoSS

 Used for regression, e.g. predicting an adjustment to
box coordinates when detecting objects:

Example: Euclidean LoSS

 Used for regression, e.g. predicting an adjustment to
box coordinates when detecting objects:

Bounding box regression
from the R-CNN object
detector [Girshick 2014]

original

Example: Euclidean LoSS

 Used for regression, e.g. predicting an adjustment to
box coordinates when detecting objects:

Bounding box regression
from the R-CNN object
detector [Girshick 2014]

original

 Note: Can be unstable and other losses often work
better. Alternatives: L1 distance (instead of L2),
discretizing into category bins and using softmax

Example: Euclidean LoSS

Example: Euclidean LoSS

|
e Forward: Lz — EZ(ZU —y,-,j)z
J

Example: Euclidean LoSS

e Forward: Lz — %Z(ZU —y,-,j)z
J

e Backward:

e Backward:

Example: Euclidean LoSS
* Forward: L :%;(Zi,j_yi,j)z

oL
=< i~ Vi

8Zi, j

Example: Euclidean LoSS

e Forward: Lz — %Z(ZU —y,-,j)z
J

oL.

« Backward: - —=2Z,;, = Vi,
i\j
JL.

= Vi T <

dy,

i,]

Example: Euclidean LoSS

e Forward: Lz — %Z(ZU —y,-,j)z
J

oL,
* Backward: ? =Z; ;= Vi
i
JdL,
= Yij T <
ayi,j

* Q: If you scale the loss by C, what happens to
gradient computed in the backwards pass?

Example: Euclidean LoSS

e Forward: Lz — %Z(ZU —y,-,j)z
J

e Backward: QE =2~ Vi;

0z, . -
’ (note that this Is with
3 respect to Li, not L)
- = Yij T %
ayi,j

* Q: If you scale the loss by C, what happens to
gradient computed in the backwards pass?

Example: Euclidean LoSS

Example: Euclidean LoSS

 Forward pass, for a batch of N inputs:

Example: Euclidean LoSS

 Forward pass, for a batch of N inputs:

_1 1 Y
L_NZ,Li Lz_zg(zz,j yi,j)

Example: Euclidean LoSS

 Forward pass, for a batch of N inputs:

_1 1 Y
L_NZ,Li Lz_zg(zz,j yi,j)

 Backward pass:

Example: Euclidean LoSS

 Forward pass, for a batch of N inputs:
L=-Y1 L= ’
i j

 Backward pass:

aL _Zi,j_yi,j aL yi,j_Zi,j
0x, . N dy; . N

l,]

Example: Euclidean LoSS

 Forward pass, for a batch of N inputs:
L=-Y1 L= ’
i j

 Backward pass:

aL _Zi,j_yi,j aL yi,j_Ziaj

8xi,j N ayl.,j N

(You should be able to derive this)

What about the weights”

To get the derivative of the weights, use the chain rule again!

What about the weights”

To get the derivative of the weights, use the chain rule again!

Example: 2D weights, 1D bias, 1D hidden activations:

What about the weights”

To get the derivative of the weights, use the chain rule again!

Example: 2D weights, 1D bias, 1D hidden activations:
W.b

x —| Layer |— h h=h(x;W)

What about the weights”

To get the derivative of the weights, use the chain rule again!

Example: 2D weights, 1D bias, 1D hidden activations:
W.b

x —| Layer |— h h=h(x;W)

JdL oh,
zah oW,

What about the weights”

To get the derivative of the weights, use the chain rule again!

Example: 2D weights, 1D bias, 1D hidden activations:
W.b

x —| Layer |— h h=h(x;W)

Z oL dh, oL) oL dh,
oh, W, ab oh, db,

What about the weights”

To get the derivative of the weights, use the chain rule again!

Example: 2D weights, 1D bias, 1D hidden activations:
W.b

x —| Layer |— h h=h(x;W)
-3 oL on, oL 53 oL oh,
oh, oW, ab oh, ob,

(the number of subscripts and summations changes
depending on your layer and parameter sizes)

ConvNets

They're just neural networks with
3D activations and weight sharing

What shape should the
activations have?

X — Layer — h(l)—> Layer —> h(z)—> coe —p f

\

- The input Is an image, which is 3D
(RGB channel, height, width)

What shape should the
activations have?

X — Layer — h(l)—> Layer —> h(z)—> coe —p f

\

- The input Is an image, which is 3D
(RGB channel, height, width)

- We could flatten it to a 1D vector, but then
we lose structure

What shape should the
activations have?

X — Layer — h(l)—> Layer —> h(z)—> coe —p f

\

- The input Is an image, which is 3D
(RGB channel, height, width)

- We could flatten it to a 1D vector, but then
we lose structure

- What about keeping everything in 3D?

3D Activations

before:

output layer
iInput
layer hidden layer (1D vectors)

Figure: Andrej Karpathy

3D Activations

before:
output layer
iInput
layer hidden layer (1D vectors)
NOW. X h] / h2 /

(3D arrays)

Figure: Andrej Karpathy

3D Activations

All Neural Net
activations

arranged in 3
dimensions:

Figure: Andrej Karpathy

HEIGHT

/ WIDTH
>

DEPTH

3D Activations

All Neural Net
activations

arranged in 3
dimensions:

HEIGHT

/ WIDTH

For example, a CIFAR-10 image is a 3x32x32 volume
(3 depth — RGB channels, 32 height, 32 width)

DEPTH

Figure: Andrej Karpathy

3D Activations

1D Activations:

Figure: Andrej Karpathy

3D Activations

1D Activations: 3D Activations:

a hidden neuron in
next layer

32

N \

Figure: Andrej Karpathy

3D Activations

32

32

w\‘” \al) \

Figure: Andrej Karpathy

a hidden neuron in
next layer

- The Input Is 3x32x32

- This neuron depends

on a 3x5x5 chunk of
the input

- The neuron also has a

3x5x5 set of weights
and a bias (scalar)

3D Activations

/32
r

X a hidden neuron in
next layer

hl"

32

w\"' Vo

Figure: Andrej Karpathy

Example: consider the
region of the input “x"”

With output neuron A’

3D Activations

Example: consider the
32 region of the input “x"”

a hidden neuron in
next layer

With output neuron A’

h Then the output is:

32

w\‘" Vo R\

h" = z xrijkVVijk +b

ijk

Figure: Andrej Karpathy

3D Activations

Example: consider the
| = region of the input “x"”

X a hidden neuron in
next layer

With output neuron A’

h Then the output is:

32

w\‘" Vo

h' = z xrijkVVijk +b
ik
\

Sum over 3 axes
Figure: Andrej Karpathy

3D Activations

32

a hidden neuron in
next layer

h',

32

w\‘” Vo R\

Figure: Andrej Karpathy

3D Activations

32

a hidden neuron in
next layer

O
h, n,

32

w\‘” Vo R\

Figure: Andrej Karpathy

3D Activations

2 With 2 output neurons

a hidden neuron in
next layer roo__ r
h 1 z'x ijkWIijk T bl
O Ijk

h' h'
L h', = ExrijkWszk + b,

32 ijk

w\‘” Vo y\

Figure: Andrej Karpathy

3D Activations

2 With 2 output neurons

a hidden neuron in

>ICSO W= 2% Mg+

Ijk
r r
hy h,
= Dy
= xijk“@zjk
32 ijk

w\‘” \\m/’?k\

Figure: Andrej Karpathy

3D Activations

/ 52 depth dimension
>

ji§>OOOOO

3

Figure: Andrej Karpathy

3D Activations

We can keep adding

more outputs
5 depth dimension
These form a column
>@ OO0 in the output volume:
[depth x 1 x 1]
ﬁ

3

Figure: Andrej Karpathy

3D Activations

We can keep adding

more outputs
5 depth dimension

- These form a column
>Q OO0 inthe output volume:
\I/ [depth x 1 x 1]

5 Each neuron has its
own 3D filter and
own (scalar) bias

N

Figure: Andrej Karpathy

3D Activations

./

~=050000]

S

~ \77\

>

D sets of weights
(also called filters

Figure: Andrej Karpathy

)

Now repeat t
across the in

NIS

out

3D Activations

./

~=050000]

~ W@\

S

>

D sets of weights
(also called filters

Figure: Andrej Karpathy

)

Now repeat t
across the in

NIS
Ut

Weight sharing:

Each filter sh

dares

the same weights
(but each depth

Index has Its

Own

set of weights)

3D Activations

A=/
ii%ooooﬂ
g

LV

D sets of weights
(also called filters)

Figure: Andrej Karpathy

3D Activations

./

~=050000]

S

~ \77\

>

D sets of weights
(also called filters

Figure: Andrej Karpathy

)

With weight

sharing,
this Is called
convolution

3D Activations

./

~=0000¢]

~ W@\

LV

>

D sets of weights
(also called filters)

Figure: Andrej Karpathy

With weight

sharing,

this 1s called
convolution

Without weight
sharing,

this is called a
locally
connected layer

3D Activations

f fil i |
Output of one filter One set of weights gives

/ /// one slice in the output

To get a 3D output of depth D,

D use D different filters

/ In practice, ConvNets use
L _ / - many filters (~64 to 1024)
(input (output

depth) depth)

3D Activations

f fil i |
Output of one filter One set of weights gives

/ /// one slice in the output

To get a 3D output of depth D,

D use D different filters

/ In practice, ConvNets use
L _ / - many filters (~64 to 1024)

(input (output

depth) depth)

All together, the weights are 4 dimensional:
(output depth, input depth, kernel height, kernel width)

3D Activations

We can unravel the 3D cube and show each layer separately:

GINEEENNZIITAYEENESESREIEEERASR S
one filter = one depth slice (or activation map) (32 1 |terS, each 3)(5)(5)

. » 1
. N
)
I ~

Figure: Andrej Karpathy

3D Activations

We can unravel the 3D cube and show each layer separately:

(Input)

Acﬁ:

l

¢ Lo ’, =
- !
-

PEGINEEEDNEIIA AN ENE S EO AR NSRS R G
one filter = one depth slice (or activation map) (32 filters, each 3X5X5)

4

Figure: Andrej Karpathy

3D Activations

We can unravel the 3D cube and show each layer separately:

(Input)

'“

. : '
f
" 1 -
.
-

J

FLL O H-AERIEY ELTASCERET BT LR
one filter =\Qne depth slice (or activation map) (32 filters, each 3X5X5)

7 /]

Figure: Andrej Karpathy

3D Activations

We can unravel the 3D cube and show each layer separately:

| t
() o dilllnnnu::tmnll-uauaalunlnlla’

one filter =\gne depth slice (or activation map) (3 2 fi lters, each 3X5X5)

'“

T

f

igure. Andrej Karpathy

Questions?

(Recap)

A ConvNet is a sequence of convolutional layers, interspersed with
activation functions (and possibly other layer types)

/ 32 28 / 24

CONV, CONV, CONV,
RelLU RelLU RelLU

e.g.6 e.g. 10
5x5x3 5x5x6
32 filters 28 filters 24

3 6 10

(Recap)

Convolution Layer

32x32x3 image

32 height

3 depth

(Recap)

Convolution Layer

32x32x3 Image

4
|

32

5x5x3 filter

Z?

LV

Convolve the filter with the image
I.e. “slide over the image spatially,
computing dot products”

(Recap)

COnVOI UtiOn Layer Filters always extend the full

e AR depth of the input volume
32x32x3 image /

/ 5x5x3 filter

32]

Convolve the filter with the image
I.e. “slide over the image spatially,

computing dot products”
|

LV

(Recap)

Convolution Layer

_— 32x32x3 image

5x5x3 filter w
L
the result of taking a dot product between the

filter and a small 5x5x3 chunk of the image

3 (i.e. 5*5*3 = 75-dimensional dot product + bias)

wliz +0b

~~ 1 number:

N

(Recap)

Convolution Layer

activation map

__— 32x32x3 image

/ 5x5x3 filter
-

-

t>0 convolve (slide) over all
spatial locations
IZ

Convolution

A=

&

|

=

(Recap)

Layer

__— 32x32x3 image

__ Ox5x3 filter
32

convolve (slide) over all
spatial locations

consider a second, green filter

activation maps

y

28

LI

1

(Recap)

For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:

/ -
| Convolution Layer
ﬁ MAA

3 6

activation maps

28

We stack these up to get a “new image” of size 28x28x6!

Demos

* http://cs231n.stanford.edu/
* http://cs.stanford.edu/people/karpathy/convn

etijs/demo/mnist.html

http://cs231n.stanford.edu/
http://cs.stanford.edu/people/karpathy/convnetjs/demo/mnist.html

Convolution: Stride

During convolution, the weights “slide™ along the input to
generate each output

Weights

T

e

Output

Input

Convolution: Stride

During convolution, the weights “slide™ along the input to
generate each output

Output

Input

Convolution: Stride

During convolution, the weights “slide™ along the input to
generate each output

Output

Input

Convolution: Stride

During convolution, the weights “slide™ along the input to
generate each output

Output

Input

Convolution: Stride

During convolution, the weights “slide™ along the input to
generate each output

Output

Input

Convolution: Stride

During convolution, the weights “slide™ along the input to
generate each output

Output

Input

Convolution: Stride

During convolution, the weights “slide™ along the input to

generate each output

Input

Recall that at each position,
we are doing a 3D sum:

h' = zx"l.jkW.. +b

Ijk
Ijk

(channel, row, column)

Convolution: Stride

But we can also convolve with a stride, e.g. stride = 2

Output

Input

Convolution: Stride

But we can also convolve with a stride, e.g. stride = 2

Output

Input

Convolution: Stride

But we can also convolve with a stride, e.g. stride = 2

Output

Input

Convolution: Stride

But we can also convolve with a stride, e.g. stride = 2

Output

- Notice that with certain
strides, we may not be able to
cover all of the input

- The output is also half the
Input size of the input

Convolution: Padding

We can also pad the input with zeros.
Here, pad = 1, stride = 2

O1010[O0]10]O0

-
-

Output

O]l O] O |]O|]O | O |0 | O
O |1 OO | O]| O]| OO | O]0O

Input

Convolution: Padding

We can also pad the input with zeros.
Here, pad = 1, stride = 2

O PO 1T O30 | O0|O0]O0

Output

O |1 OO | O]| O]| OO | O]0O
O |1 OO | O]| O]| OO | O]0O

Input

Convolution: Padding

We can also pad the input with zeros.
Here, pad = 1, stride = 2

01010 OO O] O

Output

O |1 OO | O]| O]| OO | O]0O
O |1 OO | O]| O]| OO | O]0O

Input

Convolution: Padding

We can also pad the input with zeros.
Here, pad = 1, stride = 2

01010100 OO

Output

O |1 OO | O]| O]| OO | O]0O
O |1 OO | O |00]| 0O |0 | O | O

Input

Convolution:

How big is the output?

stride s

« >
OO0 10101010 0
0| L 0
0 kernel k 0
0 0
0 0
0 0
0 0
0 0
OO0 10101010 0

128 width w_ P

In general, the output has size:

W

out

w.+2p—k

S

1

Convolution:
How big is the output?

stride s
010(0]0J0]0]0J0|0]| Example: k=3, s=1, p=1
0 . X 0
0 kernel| 0 W= Wi t2p—k -1
0 0 _ S _
0 0 w. +2—3
- . — 1
S
0 0
5 0 o Win
ofofoflo]jo]Jo]oOo]O]oO
VGGNet [Simonyan 2014]

p width w,_ p uses filters of this shape

Pooling

For most ConvNets, convolution is often followed by pooling:

- Creates a smaller representation while retaining the
most important information

- The "max” operation is the most common

- Why might “avg” be a poor choice?

downsampling
32

=.

16

32

Figure: Andrej Karpathy

molelllale

- makes the representations smaller and more manageable
- operates over each activation map independently:

224x224x64

112x112x64

pool]j j
» o 112
224 downsampling
112

224

Max Pooling

Single depth slice

1111 2] 4
max pool with 2x2 filters
5|16 |7 |8 and stride 2
3(2|1]0
11213 | 4
y

What's the backprop rule for max pooling?

- In the forward pass, store the index that took the max
- The backprop gradient is the input gradient at that index

Figure: Andrej Karpathy

Example ConvNet

BREFIDEIEND
HEAFEAACINE
EEAFEAAVINE
o By BT EY Y 00 W i A
HENENEEEIEN
w4 A= iR IS Il I |
dFIENFIFINNEE
A 1 I] D
— |30 L
ol F | | [[17] FI
o Ok FATFFAYITR

POOL
RelU l
;

CONV

RelLU

CONV

Figure: Andrej Karpathy

Example ConvNet

CONV CONV POOLCONV CONV POOL CONV CONV POOL

l RiLU l RiLUl l RiLU l RiLUl l RiLU l RiLUl

truck
car
@irplane
Ship

horse

e
i
I
.
o
|
=
7|m
|
=

HEREOAENERE
HEERENAEEEE
EEANECGEAREE
ENAREREEEERN
ENRAEEREERDR

dnEakEiEiagedE

G130 1O N8 1191 I RS R

Figure: Andrej Karpathy

Example ConvNet

CONV CONV POOLCONV CONV POOL CONV CONV POOL FC
l RelU l ReLUl 1 RelLU RelLU RelLU l ReLUl (Fu"y_connected)

v v ‘ " ; .

-

truck
car
girplane
Ship

horse

-
=
—
-
=
el

-4,
-
=
=7
S—

&PLSUEEH:;E
EENAEERER
SRS PRl RS

BEERENEEEE

EREANRENEEEE
HNAEEREERN
ENAEERRERN

Figure: Andrej Karpathy

Example ConvNet

CONV CONV POOLCONV C

O

NV POOLCONV ~ CONV POOL gc

l RiLU l RELUl l RiLU l RiLul l RiLU l RiLUl (Fully-connected)
B TEEEE mE T

e] e =) =
- -
=i iE = - .
o I - -
~is i (S Lo
=i . ==
=l T
OO ®E e R

10x3x3 conv filters, stride 1, pad 1
2x2 pool tilters, stride 2 Y T

Example: AlexNet [Krizhevsky 2012]

convi conv2 conv3 conv4 convs fc6 fc7

class
scores

3 96 256 384 384 256
227x227 55x55 27x27 13x13 13x13 13x13 | 4096 | 4096 1000

conv conv conv conv conv max full
max max full
norm norm I I I
I I
Extract high level features Classify

each sample

max’: max pooling
norm™: local response normalization
ull”: fuIIy connected Figure: [Karnowski 2015] (with corrections)

Example: AlexNet [Krizhevsky 2012

Zoom In

alexnet &>
>

e
']
:
,
|
rob2 (RELU)

Questions?

HOwW do you actually
train these things”

Roughly speaking:

Gather
labeled data

ﬁﬁillau.ller-::m:..uuua-ﬁlqnniilug - o
s wEE v
e Nk
“< = fo

ﬁlnm

SN . ’.g-“
N NNOTE.
~mileramEigR
DEEsc s .
e o~ K™ R oeeeu B
N R - YL N L

meENHl= T8

chuorm

-:z:l

Passerine
B e 1 e DY |

malsms BaZEe
4] R yameE , §

[asraE « 5. 9.

o Lo

Dickeybird
'y

- . il

R

Hen
— T——

Cuculifor

L

Cock
N Ea

Ratite
BE &

FInd a ConvNet
architecture

Minimize
the loss

=
&a
-8
= EAEA A
B3 EAER
)
ﬂﬁﬂ =
ER B
e

E&ﬂﬁ&
e e R
B

R
=

i ==
EEAEARA
SmEAE
P b
Ef EAEAEA EA
\ | e
=3 A EA ER
B 53 R

B3

i
EIEA EAEA
\ =

=]
A A
[y

gefeafe

Training a convolutional
neural network

Split and preprocess your data

Choose your network architecture

Initialize the weights

Find a learning rate and regularization strength
Minimize the loss and monitor progress

Fiddle with knobs

Mini-batch Gradient Descent

Loop:

1. Sample a batch of training data (~100 images)
2. Forwards pass: compute loss (avg. over batch)
3. Backwards pass: compute gradient

4. Update all parameters

Note: usually called “stochastic gradient descent” even
though SGD has a batch size of 1

Regularization

Regularization reduces overfitting:
Liooae
L L T L Lreg — A'_IIWHZ

data

A =0.001 A =0.01

[Andrej Karpathy http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html]

Overfitting

Overfitting: modeling noise in the training set instead
of the “true” underlying relationship

Underfitting: insufficiently modeling the relationship in
the training set

15

General rule: models that are
“bigger” or have more capacity
are more likely to overfit

(0) Dataset split

Split your data into “train”, “validation”, and “test”:

Dataset

Validation

v l

(0) Dataset split

Validlation

Train: gradient descent and fine-tuning of parameters

Validation: determining hyper-parameters (learning rate,
regularization strength, etc) and picking an architecture

Test: estimate real-world performance
(e.g. accuracy = fraction correctly classified)

(0) Dataset split

Validlation

Be careful with false discovery:

To avoid false discovery, once we have used a test set
once, we should not use it again (but nobody follows this
rule, since it's expensive to collect datasets)

Instead, try and avoid looking at the test score until the end

(1) Data preprocessing

Preprocess the data so that learning is better conditioned:

original data zero-centered data normalized data

10 10 10

-10 ~10
1§ -10 -5 0 S 19 -10 -5 0 5 10

X -= np.mean(axis=0, keepdims=True)

X /= np.std(axis=0, keepdims=True)

Figure: Andrej Karpathy

(1) Data preprocessing

In practice, you may also see PCA and Whitening of the data:

10

original data

ig

decorrelated data whitened data

10 10

710 -5 0 5 T -10 -5 0 3 10

(data has diagonal (covariance matrix is the
covariance matrix) identity matrix)

Slide: Andrej Karpathy

(1) Data preprocessing

For ConvNets, typically only the mean is subtracted.

J

-

g
»
Xy
‘?.

4
2t

vt

ik,

An input image (256x256) Minus sign The mean input image

"

A per-channel mean also works (one value per R,G,B).

Figure: Alex Krizhevsky

(1) Data preprocessing

Augment the data — extract random crops from the
input, with slightly jittered oftsets. Without this, typical
ConvNets (e.qg. [Krizhevsky 2012]) overtit the data.

E.g. 224x224 patches
extracted from 256x256 images

Randomly reflect horizontally

Pertorm the augmentation live
during training

Figure: Alex Krizhevsky

(2) Choose your architecture

Toy example: one hidden layer of size 50

50 hidden _
neurons —>
10 output
output layer
CIFAR-10 iInput neurons, one
images, 3072 layer hidden layer per class
numbers

Slide: Andrej Karpathy

(3) Initialize your weights

Set the weights to small random numbers:

W = np.random.randn(D, H) * 0.001

(matrix of small random numbers drawn from a Gaussian distribution)

(the magnitude is important and this is not optimal — more on this later)

Set the bias to zero (or small honzero):

b = np.zeros(H)

Slide: Andrej Karpathy

(3) Check that the loss Is
reasonaple

def init two layer model(input size, hidden size, output size):

mode L {}
model['W1'] = 0.0001 * np.random.randn(input size, hidden size)
model [] np.zeros(hidden size)
model['W2'] 0.0001 * np.random.randn(hidden size, output size)
model | | np.zeros(output size)

e

mbd L

model = init two layer model(32*32%3, 50, 10) # input size, hidden
loss, grad = two layer net X train, model, y train}| 0.0

i lit loss o~ disable regularization

ey

returns the loss and the
gradient for all parameters

Slide: Andrej Karpathy

(3) Check that the loss Is
reasonaple

def init two layer model(input size, hidden size, output size):

model

model|['\
model |

model|[')
model |

model = init two layer model (32*32*3, 50, 10) # ingut

{}
| 0.0001 * np.random.randn(input size, hidden size)
np.zeros(hlidden size)

np.zeros(output size)

]
]
| 0.0001 * np.random.randn(hidden size, output size)
]
e

mbd L

loss, grad = two layer net(X train, model, y train/} le3 Crankup régU|ariZation

print loss

-

-~ loss went up, good. (sanity check)

Slide: Andrej Karpathy

(4) Overtit a small portion of the data

model = init two layer model(32*32*%3, 50, 10) # input size, hidden size, number of classe
trainer = ClassifierTrainer()
X_tiny - X_train[3201 # take 20 examples h

y tiny = y train[:20]

best model, stats = trainer.train(X tiny, y tiny, X tiny, y tiny,
model, two layer net,
num epochs=200, reg=0.0,
update='sgd', learning rate decay=1,
sample batches = False,
learning rate=le-3, verbose=True)

Details:

'sgd’: vanilla gradient descent (no momentum etc)
learning_rate_decay = 1. constant learning rate

sample_batches = False (full gradient descent, no batches)

epochs = 200: number ot passes through the data
Slide: Andrej Karpathy

(4) Overtit a small portion of the data

100% accuracy on the training set (good)

Finished epoch 1 / 200: cost 2.302603, train: 0.400000, val ©0.400000, lr 1.000000e-03

Finished epoch 2 / 200: cost 2.302258, train: 0.450000, val 0.450000, lr 1.000000e-03 j

Finished epoch 3 / 200: cost 2.301849, train: 0.600000, val 0.600000, lr 1.000000e-03

Finished epoch 4 / 200: cost 2.301196, train: 0.650000, val ©0.650000, lr 1.000000e-03

Finished epoch 5 / 200: cost 2.300044, train: 0.650000, val ©.650000, lr 1.000000e-03

Finished epoch 6 / 200: cost 2.297864, train: 0.550000, val ©0.550000, lr 1.000000e-03

Finished epoch 7 / 200: cost 2.293595, train: 0.600000, val 0.600000, lr 1.000000e-03

Finished epoch 8 / 200: cost 2.285096, train: 0.550000, val 0.550000, lr 1.000000e-03

Finished epoch 9 / 200: cost 2.268094, train: 0.550000, val 0.550000, lr 1.000000e-03

Finished epoch 10 / 200: cost 2.234787, train: 0.500000, val 0.500000, lr 1.000000e-03

Finished epoch 11 / 200: cost 2.173187, train: 0.500000, val 0.500000, lr 1.000000e-03

Finished epoch 12 / 200: cost 2.076862, train: 0.500000, val 0.500000, lr 1.000000e-03

Finished epoch 13 / 200: cost 1.974090, train: 0.400000, val 0.400000, lr 1.000000e-03

Finished epoch 14 / 200: cost 1.895885, train: 0.400000, val 0.400000, lr 1.000000e-03

Finished epoch 15 / 200: cost 1.820876, train: 0.450000, val 0.450000, lr 1.000000e-03

Finished epoch 16 / 200: cost 1.737430, train: 0.450000, val 0.450000, 1lr 1.000000e-03

Finished epoch 17 / 200: cost 1.642356, train: 0.500000, val 0.500000, lr 1.000000e-03

Finished epoch 18 / 200: cost 1.535239, train: 0.600000, val 0.600000, lr 1.000000e-03

Finished epoch 19 / 200: cost 1.421527, train: 0.600000, val 0.600000, lr 1.000000e-03 .
Finished epoch 195 / 200: cost 0.002694, train:j1.000000 .eeeeee lr 1.000000e-03
Finished epoch 196 / 200: cost 0.002674, train:J1.000000 .000000, 1lr 1.000000e-03
Finished epoch 197 / 200: cost 0.002655, train:j1.000000 .000000, lr 1.000000e-03
Finished epoch 198 / 200: cost 0.002635, train:]1.000000 .000000, lr 1.000000e-03
Finished epoch 199 / 200: cost 0.002617, train:j1.000000 .000000, lr 1.000000e-03
Finished epoch 200 / 200: cost 0.002597, train:]1.000000 .000000, lr 1.000000e-03
finished optimization. best validation accuracy. T1.0U00UUC

Slide: Andrej Karpathy

(4) Find a learning rate

Let’s start with small regularization and find the learning rate
that makes the loss decrease:

model = init two layer model (32*32*3, 50, 10) # input size, hidden size, number of classes
trainer = ClassifierTrainer()
best model, stats = trainer.train(X train, y train, X val, y val,
model, two layer net,
num epochs=10, reg=0.000001, <«—————
update='sgd’', learning rate decay=1,
sample batches = True,
learning rate=le-6, verbose=True)

4) FInd a learning rate

model = init two layer model(32*32*3, 50, 10) # input size, hidden size, number of classes
trainer = ClassifierTrainer()

best model, stats = trainer.train(X train, y train, X val, y val,
model, two layer net,
num epochs=10, reg=0.000001,
update='sgd’', learning rate decay=1,
sample batches = True,
learning rate=le-6, verbose=True)

model =
trainer

best model, stats =

Finished
Finished
Finished
Finished
Finished
Finished
Finished
Finished
Finished
Finished
finished

4) FInd a learning rate

ClassifierTrainer()

epoch 1 / 10:
epoch 2 / 10:
epoch 3 / 10:
epoch 4 / 10:
epoch 5 / 10:
epoch 6 / 10:
epoch 7 / 10:
epoch 8 / 10:
epoch 9 / 10:

epoch 10 / 10
optimization.

cost
cost
cost
cost
cost
cost
cost
cost
cost

l cost 2. 392420I

NNNNNNNNN

.302576,
.302582,
.302558,
.302519,
.302517,
.302518,
.302466,
.302452,

.302459,

Loss barely changes

(learning rate is too low or regularization too high)
Slide: Andrej Karpathy

init two layer model(32*32*3, 50,

train: 0.080000,
train: 0.121000,
train: 0.119000,
train: 0.127000,
train: 0.158000,
train: 0.179000,
train: 0.180000,
train: 0.175000,
train: 0.206000,

tra'n 0. 190690
accuracy: 3¢

reg=0.000001,

—
CDCD@QQCDQCDG)

trainer.train(X train, y train, X val, y val,
model, two layg
num epochs=10,
update='sqgd’,

.103000,
. 124000,
. 138000,
.151000,
.171000,
.172000,
.176000,
. 185000,

. 192000,

10) # 1nput size, hidden size,

lr
lr
lr
lr
lr
lr
lr
lr
lr

pud fub fub hub Pub Pub Put Pub Put

number of classes

.000000e-06
.000000e-06
.000000e-06
.000000e-06
.000000e-06
.000000e-06
.000000e-06
.000000e-06

.000000e-06

al 0.192000, lr 1.000000e-06

Why is the accuracy 20%?

4) FInd a learning rate

Learning rate: 1e6 — what could go wrong?

model = init two layer model(32*32*3, 50, 10) # input size, hidden size, number of classes
trainer = ClassifierTrainer()
best model, stats = trainer.train(X train, y train, X val, y val,

model, two layer net,

num epochs=10, reg=0.000001,

update='sgd’', learning rate decay=1,

sample batches = True,

learning rate=le6, verbose=True)

/home/karpathy/cs231n/code/cs231n/classifiers/neural net.py:50: RuntimeWarning: divide by zero en
countered in log

Loss is NaN —> learning rate is too high

Slide: Andrej Karpathy

(4) Find a learning rate

Learning rate: 1e6 — what could go wrong?

o

‘_

| 0SS /

Y

]

>

A weight somewhere In the network

4) FInd a learning rate

Learning rate: 3e-3

model = init two layer model(32*32*3, 50, 10) # input size, hidden size, number of classes
trainer = ClassifierTrainer()
best model, stats = trainer.train(X train, y train, X val, y val,

model, two layer net,

num epochs=10, reg=0.000001,

update='sgd', learning rate decay=1,

sample batches = True,

learning rate=3e-3, verbose=True)

Finished epoch 1 / 10: cost 2.186654, train: ©0.308000, val 0.306000, lr 3.000000e-03
Finished epoch 2 / 10: cost 2.176230, train: ©0.330000, val 0.350000, lr 3.000000e-03
Finished epoch 3 / 10: cost 1.942257, train: ©0.376000, val 0.352000, lr 3.000000e-03
Finished epoch 4 / 10: cost 1.827868, train: ©.329000, val 0.310000, lr 3.000000e-03
Finished epoch 5 / 10: cost inf, train: 0.128000, val 0.128000, lr 3.000000e-03
Finished epoch 6 / 10: cost inf, train: 0.144000, val 0.147000, lr 3.000000e-03

Loss is inf —> still too high

But now we know we should be searching the range
[1e-5 ... 1e-3]

Slide: Andrej Karpathy

(4) Find a learning rate

Coarse to fine search

First stage: only a few epochs (passes through the
data) to get a rough idea

Second stage: longer running time, finer search

Tip: if loss > 3 * original loss, quit early
(learning rate too high)

Slide: Andrej Karpathy

4) FInd a learning rate

Coarse to fine search

max _count = 100

for count in xrange(max count): . o .
reg = 10**uniform(-5, 5) <& note it's best to optimize in log space
lr = 10**uniform(-3, -6)

trainer = ClassifierTrainer()
model = init two layer model(32*32*3, 50, 10) # input size, hidden size, number of classes
trainer = ClassifierTrainer()
best model local, stats = trainer.train(X train, y train, X val, y val,
model, two layer net,
num epochs=5, reg=reg,
update='momentum’', learning rate decay=0.9,
sample batches = True, batch size = 100,
learning rate=lr, verbose=False)

val acc: 0.412000, Llr: 1.405206e-04, reg: 4.793564e-01, (1 / 100)
val acc: 0.214000, lr: 7.231888e-06, reg: 2.321281e-04, (2 / 100)
val acc: 0.208000, lr: 2.119571e-06, reg: 8.011857e+01, (3 / 100)
val acc: 0.196000, Llr: 1.551131e-05, reg: 4.374936e-05, (4 / 100)
val acc: 0.079000, 1lr: 1.753300e-05, reg: 1.200424e+03, (5 / 100)
val acc: 0.223000, lr: 4.215128e-05, reg: 4.196174e+01, (6 / 100)
val acc: 0.441000, lr: 1.750259e-04, reg: 2.110807e-04, (7 / 100)
val acc: 0.241000, Ur: 6.749231e-05, reg: 4.226413e+01, (8 / 100)
—)p | val acc: 0.482000, lr: 4.296863e-04, reg: 6.642555e-01, (9 / 100)
val acc: 0.079000, lr: 5.401602e-06, reg: 1.599828e+04, (10 / 100)
val acc: 0.154000, Llr: 1.618508e-06, reg: 4.925252e-01, (11 / 100)

Slide: Andrej Karpathy

4) FInd a learning rate

Coarse to fine search

max count = 100

for count in xrange(max count):
reg = 10**uniform(-5, 5)
lr = 10**uniform(-3, -6)

val acc: 0.527000, lr: 5.340517e-04, reg: 4.097824e-01, (0 / 100)

val acc: 0.512000, lr: 8.680827e-04, reg: 1.349727e-02, (2 / 100)

val acc: 0.461000, lr: 1.028377e-04, reg: 1.220193e-02, (3 / 100) Remember this is

val acc: 0.460000, lr: 1.113730e-04, reg: 5.244309e-02, (4 / 100)

val acc: ©.498000, lr: 9.477776e-04, reg: 2.001293e-03, (5 / 100) just q 2 |ayer neural

val acc: 0.469000, lr: 1.484369e-04, req: 4.328313e-01, (6 / 100) -
val_acc: 0.522000, lr: 5.586261e-04, reg: 2.312685e-04, (7 / 100) net with 50 neurons

val acc: 0.530000, lr: 5.808183e-04, req: 8.259964e-02, (8 / 100)
val acc: 0.489000, lr: 1.979168e-04, reg: 1.010889%e-04, (9 / 100)

o BNN WNIEWNN SO NIEN WD

val acc: 0.490000, lr: 2.036031e-04, reg: 2.406271e-03, (10 / 100)
val acc: 0.475000, lr: 2.021162e-04, reg: 2.287807e-01, (11 / 100)
val acc: 0.460000, lr: 1.135527e-04, reg: 3.905040e-02, (12 / 100)
val acc: 0.515000, lr: 6.947668e-04, reg: 1.562808e-02, (13 / 100)
val acc: 0.531000, Lr: 9.471549e-04, reg: 1.433895e-63, (14 / 100) <+—— 53%%
val acc: 0.509000, Llr: 3.140888e-04, reg: 2.857518e-01, (15 / 1600)
val acc: 0.514000, lr: 6.438349e-04, reg: 3.03378le-01, (16 / 100)
val acc: 0.502000, lr: 3.921784e-04, reg: 2.707126e-04, (17 / 100)
val acc: 0.509000, lr: 9.752279%e-04, reg: 2.850865e-03, (18 / 100)
val acc: 0.500000, lr: 2.412048e-04, reg: 4.997821e-04, (19 / 100)
val acc: 0.466000, lr: 1.319314e-04, reg: 1.189915e-02, (20 / 100)
val acc: 0.516000, lr: 8.039527e-04, reg: 1.528291e-02, (21 / 100)

Slide: Andrej Karpathy

(4) Find a learning rate

Normally, you don’t have the budget for lots of cross-
validation —> visualize as you go

Plot the loss

~or very small learning
rates, the loss decreases
inearly and slowly

(Why linearly?)

Larger learning rates tend
to look more exponential

A

loss

low learning rate

high learning rate

good learning rate
=

epoch

Figure: Andrej Karpathy

(4) Find a learning rate

Normally, you don’t have the budget for lots of cross-
validation —> visualize as you go

Typical training loss:

Why is it varying so rapidly? =

The width of the curve is related
to the batchsize — if too noisy,
INcrease the batch size

Possibly too linear i °
(learning rate too small) |
Figure: Andrej Karpathy

(4) Find a learning rate

Visualize the accuracy

Big gap: overtfitting
(increase regularization)

No gap: undertitting
(increase model capacity,
make layers bigger

or decrease regularization)

Figure: Andrej Karpathy

(4) Find a learning rate

Visualize the weights

Noisy weights: possibly
regularization not strong
enough

Figure: Andrej Karpathy

(4) Find a learning rate

Visualize the weights

Nice clean weights:
training is proceeding well

Figure: Alex Krizhevsky , Andrej Karpathy

| earning rate schedule

How do we change the learning rate over time?
Various choices:

e Step down by a tactor of 0.1 every 50,000
mini-batches (used by SuperVision [Krizhevsky 2012])

* Decrease by a factor of 0.97 every epoch
(used by GooglLeNet [Szegedy 2014])

e Scale by sart(1-t/max_t)
(used by BVLC to re-implement GooglLeNet)

* Scale by 1/t
e Scale by exp(-t)

Summary of things to fiddle

 Network architecture

* |earning rate, decay schedule, update type

* Regularization (L2, L1, maxnorm, dropout, ...)
e [oss function (softmax, SVM, ...)

* Weight initialization

Neural network
parameters

(Recall) Regularization
reduces overfitting

|
L=L T L Lreg = A’_IIW‘ E

data

A =0.001 A =0.01

[Andrej Karpathy http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html]

Example Reqgularizers

L2 regularization L., = /1%‘ 14 E

(L2 regularization encourages small weights)

L1 regularization L., =AW| = /12|WU|
ij

(L1 regularization encourages sparse weights:
weights are encouraged to reduce to exactly zero)

“Elastic net” Lreg — /11 ‘ ‘W‘ ‘1 T /12 ‘ ‘W‘ E

(combine L1 and L2 regularization)

Max norm
Clamp weights to some max norm

Wl <c

“Welght decay”

Regularization is also called “weight decay” because
the weights “decay” each iteration:

| 2 oL
L — —_ > —
reg A 2 ‘ ‘W‘ ‘2 aW AW
Gradient descent step: 7

W« W-—-ailW data

= oW

Weight decay: g4 {weights always decay by this amount)

Note: biases are sometimes excluded from regularization

[Andrej Karpathy http.//cs.stanford.edu/people/karpathy/convnetis/demo/classify2d.html]

Dropout

Simple but powerful technique to reduce overfitting:

W PW
Present with Always
probability p present

(a) At training time (b) At test time

[Srivasta et al, “Dropout: A Simple Way to Prevent Neural Networks from
Overtitting”, JMLR 2014]

Dropout

Simple but powerful technique to reduce overfitting:

2.5*\
f
2ol Without dropout |
E \' " M(’) "\'V" "\A*J'w“dﬂ REXYRR
8 Q"‘ ‘With dropout
w\h‘\,&m W .
A\¢ :\w.\v//,\(A AR
A’) 0 :.‘ \'g ?‘g‘d":‘ ’*‘,‘\'\. ;_"‘"“"9{\‘“
1.0} M RPN AL AL
0 206000 40(;000 606000 806000 1000000

Number of weight updates

|Srivasta et al, "Dropout: A Simple Way to Prevent Neural Networks from
Overfitting”, JMLR 2014]

Dropout

Simple but powerful technique to reduce overfitting:

®

7

»

//

'I
%
ALY

W ow
49
2

N
X
(
X0
0
2
/

L
/
(]
'

{)
/A
8
®:
Y \'/’ A A
[]
\Y/
- 9

“\
.
/?’
2

l4/
"vf-'s.
§'§':/
::ézc
> 4:9\
2

\
“f\. /A
Y,
03
.

W

/]
4

(a) Standard Neural Net (b) After applying dropout.

Note: Dropout can be interpreted as an approximation to taking the
geometric mean of an ensemble of exponentially many models

[Srivasta et al, “Dropout: A Simple Way to Prevent Neural Networks from
Overtitting”, JMLR 2014]

$
2

e

Classification Error %
-
(44 |

&
o

&
=

Dropout

How much dropout? Aroundp =0.5

o
Al

9
=)

—
=

Al 0.2

—— Test Error
+—4 Training Error

.

0.4

0.6 0.8

Probability of retaining a unit (p)

(a) Keeping n fixed.

[Srivasta et al, “Dropout: A Simple Way to Prevent Neural Networks from
Overtitting”, JMLR 2014]

1.0

Classification Error %

3.0

- - ™ N
=) = =) n

S
@

&
==

— Test Error

+—4 Training Error

. .

0.2

0.4

0.6 0.8

Probability of retaining a unit (p)

(b) Keeping pn fixed.

Dropout

Case study: [Krizhevsky 2012]

“Without dropout, our network exhibits Dropout here
substantial overtfitting.” l l
s | L | 192 192 128 <048 2048 \dense
. 27 128 S
|) 1305, 13 AN 13
a || (31 S n 5 ||\ 10 SR SR I S [y B
N "--..,_“"27_ — ——5._' A\ 13 3} 13-) 13 dense dense
N\ I 3 | | 1000
\ 192 192 128 Max
Wl \ o S . pooling 2098 2048
Uof 4 pooling pooling T
3 48

But not here — why?

[Krizhevsky et al, “ImageNet Classification with Deep Convolutional
Neural Networks”, NIPS 2012]

Dropout

p = 6.5 # probability of keeping a unit active. higher = less dropout Eyample forward
pass with a 3-

e layer network
using dropout

def train step(X):
"v® X contains the data

H1 = np.maximum(©, np.dot(Wl, X) + bl)

Ul = np.random.rand(*Hl.shape) < p # 7irst dropout
Hl1 *= Ul # droj

H2 = np.maximum(©, np.dot(W2, H1l) + b2)

U2 = np.random.rand(*H2.shape) < p # second

H2 *= U2 # droj

out = np.dot(W3, H2) + b3

(note, here X is a single input)

Figure: Andrej Karpathy

Dropout

Test time: scale the activations

Expected value of a neuron h with dropout:

Elh|=ph+({(—-p)0= ph

def predict(X):
H1 = np.maximum(©®, np.dot(Wl, X) + bl) * p

H2 = np.maximum(©, np.dot(W2, H1l) + b2) * p
out = np.dot(wW3, H2) + b3

We want to keep the same expected value

Figure: Andrej Karpathy

summary

Preprocess the data (subtract mean, sub-crops)
Initialize weights carefully

Use Dropout

Use SGD + Momentum

Fine-tune from ImageNet

Babysit the network as it trains

Questions?

