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[Rumelhart, Hinton, Williams. Nature 1986] 
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Remember Softmax? 

It’s a loss function for predicting categories? 
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What about the weights? 

x h Layer 

To get the derivative of the weights, use the chain rule again! 

 

Example: 2D weights, 1D bias, 1D hidden activations: 

W ,b 

h  h(x;W ) 

 L     L hk 

(the number of subscripts and summations changes  

depending on your layer and parameter sizes) 

Wij hk Wij bi hk bi k k 

L    L hk 



ConvNets 
They’re just neural networks with  

3D activations and weight sharing 
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What shape should the  

activations have? 

x h(1) f Layer Layer h(2 ) 

-The input is an image, which is 3D  

(RGB channel, height, width) 
 

-We could flatten it to a 1D vector, but then  

we lose structure 

- What about keeping everything in 3D? 
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Figure: Andrej Karpathy 
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Figure: Andrej Karpathy 



3D Activations 

For example, a CIFAR-10 image is a 3x32x32 volume  

(3 depth — RGB channels, 32 height, 32 width) 

Figure: Andrej Karpathy 
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1D Activations: 3D Activations: 

Figure: Andrej Karpathy 



3D Activations 

5 

Figure: Andrej Karpathy 

5 

- The input is 3x32x32 

- This neuron depends  

on a 3x5x5 chunk of  

the input 

- The neuron also has a  

3x5x5 set of weights  

and a bias (scalar) 
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xr 

hr 

Example: consider the  
region of the input “ xr” 

With output neuron hr 

ijk ijk 

ijk 

hr   xr W  b 

Then the output is: 

Sum over 3 axes 
Figure: Andrej Karpathy 
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3D Activations 

We can keep adding  

more outputs 

 
These form a column  

in the output volume:  

[depth x 1 x 1] 

 
Each neuron has its  

own 3D filter and  

own (scalar) bias 

Figure: Andrej Karpathy 
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3D Activations 

Now repeat this  

across the input 

Weight sharing: 

Each filter shares  

the same weights  

(but each depth  

index has its own  

set of weights) D sets of weights  

(also called filters) 

Figure: Andrej Karpathy 
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convolution 
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3D Activations 
With weight  

sharing, 
this is called 

convolution 

Without weight  

sharing, 

this is called a  

locally  

connected layer D sets of weights  

(also called filters) 

Figure: Andrej Karpathy 
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3D Activations 

One set of weights gives  

one slice in the output 

All together, the weights are 4 dimensional: 

(output depth, input depth, kernel height, kernel width) 

To get a 3D output of depth D,  

use D different filters 
 

In practice, ConvNets use  

many filters (~64 to 1024) 

(input  

depth) 

(output  

depth) 

Output of one filter 
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3D Activations 

Let’s code this up in NumPy xr 

input region output position 

first filter 

all positions 

all channels all input channels 

nth example nth example first filter 



bias 

3D Activations 

Let’s code this up in NumPy xr 

input region output position 

first filter 

all positions 

all channels all input channels 

nth example nth example first filter 
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3D Activations 
We can unravel the 3D cube and show each layer separately: 

(Input) 

 

(32 filters, each 3x5x5) 

Figure: Andrej Karpathy 



Questions? 


