
Lecture 25: Backprop and convnets

CS5670: Computer Vision
Noah Snavely

Slides from Andrej Karpathy and Fei-Fei Li

http://vision.stanford.edu/teaching/cs231n/

Image credit: Aphex34, [CC BY-SA 4.0 (http://creativecommons.org/licenses/by-sa/4.0)]

x h(1)

L

Function

Function h(2)

y

 (1)

s

Review: Setup
 (2)

- Goal: Find a value for parameters ((1,) (2), …), so that

the loss (L) is small

x h(1)

L

Function h(2)

y

s

Review: Setup
 (2)

Toy

Example:

W (1), b(1)

W (1)x b(1)

x h(1)

L

Function h(2)

y

s

Review: Setup
 (2)

L

12
A weight somewhere in the network

W (1)

Loss

Toy

Example:

W (1), b(1)

W (1)x b(1)

x h(1)

L

Function h(2)

y

s

Review: Setup
 (2)

L

12
A weight somewhere in the network

W (1)

Loss

Toy

Example:

W (1), b(1)

W (1)x b(1)

x h(1)

L

Function h(2)

y

s

Review: Setup
 (2)

L

12
A weight somewhere in the network

W (1)

Loss

Toy

Example:

W (1), b(1)

W (1)x b(1)

x h(1)

L

Function h(2)

y

s

Review: Setup
 (2)

L

12
A weight somewhere in the network

W (1)

Loss

Toy

Example:

W (1), b(1)

W (1)x b(1)

x h(1)

L

Function h(2)

y

s

Review: Setup
 (2)

 L

W (1)

12

1

L

12
A weight somewhere in the network

W (1)

Loss

Toy

Example:

W (1), b(1)

W (1)x b(1)

x h(1)

L

Function h(2)

y

s

Review: Setup
 (2)

 L

W (1)

12

1

(Gradient)
L

12
A weight somewhere in the network

W (1)

Loss

Toy

Example:

W (1), b(1)

W (1)x b(1)

x h(1)

L

Function h(2)

y

s

Review: Setup
 (2)

 L

W (1)

12

1

(Gradient)
L

W (1)

Loss

Toy

Example:

Take a step

12
A weight somewhere in the network

W (1), b(1)

W (1)x b(1)

x h(1)

L

Function h(2)

y

s

Review: Setup
 (2)

L L

W (1)
12

Loss 1 How do we get the gradient? Backpropagation

W (1)

12
A weight somewhere in the network

(Gradient)
Toy

Example:

W (1), b(1)

W (1)x b(1)

Backprop
It’s just the chain rule

Backpropagation
[Rumelhart, Hinton, Williams. Nature 1986]

L
L h

x h x

I hope everyone remembers the chain rule:

Chain rule recap

L
L h

x h x

I hope everyone remembers the chain rule:

Chain rule recap

x h

L

h

L

x

Forward

propagation:

Backward

propagation:

L
L h

x h x

I hope everyone remembers the chain rule:

(extends easily to multi-dimensional x and y)

Chain rule recap

x h

L

h

L

x

Forward

propagation:

Backward

propagation:

Slide from Karpathy 2016

Slide from Karpathy 2016

Slide from Karpathy 2016

Slide from Karpathy 2016

Slide from Karpathy 2016

Slide from Karpathy 2016

Gradients add at branches

Activation

Gradients add at branches

Activation Gradient

Gradients add at branches

Activation Gradient

+

Gradients copy through sums

Activation

+

Gradients copy through sums

Activation

+
Gradient

Gradients copy through sums

Activation

+
Gradient

Gradients copy through sums

Activation

+
Gradient

The gradient flows through both branches at “full strength”

Symmetry between forward and backward

+ +

Forward: copy

Backward: add

Forward: add

Backward: copy

x h(1) L Function Function s

 (n)

Forward Propagation:

 (1)

x h(1) L Function Function s

 (n)

Forward Propagation:

 (1)

Backward Propagation:

x h(1) L Function Function s

 (n)

Forward Propagation:

 (1)

L

Backward Propagation:

x h(1) L Function Function s

 (n)

Forward Propagation:

 (1)

L
L

s

Backward Propagation:

x h(1) L Function Function s

 (n)

Forward Propagation:

 (1)

L
L

s

Backward Propagation:

Function

 L

 (n)

x h(1) L Function Function s

 (n)

Forward Propagation:

 (1)

L
L

s

Backward Propagation:

 L

h(1)
Function

 L

 (n)

x h(1) L Function Function s

 (n)

Forward Propagation:

 (1)

L
L

s

 L

h(1)
Function

 L

 (n)

Function

Backward Propagation:

 L

 (1)

L

x

What to do for

each layer

 L

h(n)

 L

h(n1)

 L

 (n)

Layer n

Layer n +1

 L

h(n)

 L

h(n1)

 L

 (n)

Layer n

This is what we

want for each layer

Layer n +1

 L

h(n)

 L

h(n1)

 L

 (n)

Layer n

This is what we

want for each layer
To compute it, we need to

propagate this gradient

Layer n +1

 L

h(n)

 L

h(n1)

 L

 (n)

Layer n

This is what we

want for each layer
To compute it, we need to

propagate this gradient

For each layer:

Layer n +1

 L

h(n)

 L

h(n1)

 L

 (n)

h(n)

L
L h(n)

 (n) (n)

Layer n

This is what we

want for each layer
To compute it, we need to

propagate this gradient

For each layer:

Layer n +1

What we want

 L

h(n)

 L

h(n1)

 L

 (n)

L

 (n)

 L

h(n)
 h(n)

 (n)

Layer n

This is what we

want for each layer
To compute it, we need to

propagate this gradient

For each layer:

Layer n +1

What we want

 L

h(n)

 L

h(n1)

 L

 (n)

L

 (n)

 L

h(n)

h(n)

 (n)

Layer n

This is what we

want for each layer
To compute it, we need to

propagate this gradient

For each layer:

Layer n +1

What we want

This is just the local gradient of layer n

h(n)

 L
L h(n)

h(n1) h(n1)

 L

h(n)

 L

h(n1)

 L

 (n)

L

 (n)

 L

h(n)

h(n)

 (n)

Layer n

This is what we

want for each layer
To compute it, we need to

propagate this gradient

For each layer:

Layer n +1

What we want

This is just the local gradient of layer n

h(n1)

 L
 L

h(n)
 h(n)

h(n1)

 L

h(n)

 L

h(n1)

 L

 (n)

L

 (n)

 L

h(n)

h(n)

 (n)

Layer n

This is what we

want for each layer
To compute it, we need to

propagate this gradient

For each layer:

Layer n +1

What we want

This is just the local gradient of layer n

h(n1)

 L
 L

h(n)

h(n)

h(n1)

 L

h(n)

 L

h(n1)

 L

 (n)

L

 (n)

 L

h(n)

h(n)

 (n)

Layer n

This is what we

want for each layer
To compute it, we need to

propagate this gradient

For each layer:

Layer n +1

What we want

This is just the local gradient of layer n

Summary

For each layer, we compute:

Propagated gradient to the left

Propagated gradient from rightLocal gradient

Summary

For each layer, we compute:

Propagated gradient to the left

Propagated gradient from rightLocal gradient

(Can compute immediately)

Summary

For each layer, we compute:

Propagated gradient to the left

Propagated gradient from rightLocal gradient

(Can compute immediately) (Received during backprop)

30s cat picture break

http://stylonica.com/cat-pictures/

http://stylonica.com/cat-pictures/
http://stylonica.com/cat-pictures/
http://stylonica.com/cat-pictures/

Backprop in N-dimensions
just add more subscripts and more summations

L
L h

x h x
x, h scalars

(L is always scalar)

Backprop in N-dimensions
just add more subscripts and more summations

x j hi x j i

 L
L hi

L
L h

x h x
x, h scalars

(L is always scalar)

x, h 1D arrays (vectors)

Backprop in N-dimensions
just add more subscripts and more summations

x j hi x j i

 L
L hi

xab hij xab i j

 L L hij

L
L h

x h x
x, h scalars

(L is always scalar)

x, h 1D arrays (vectors)

x, h 2D arrays

Backprop in N-dimensions
just add more subscripts and more summations

x j hi x j i

 L
L hi

xab hij xab i j

 L L hij

xabc hijk xabc i j k

 L
L hijk

L
L h

x h x
x, h scalars

(L is always scalar)

x, h 1D arrays (vectors)

x, h 2D arrays

x, h 3D arrays

Backprop in N-dimensions
just add more subscripts and more summations

Examples

Example: Mean Subtraction
(for a single input)

• Example layer: mean subtraction:

Example: Mean Subtraction
(for a single input)

• Example layer: mean subtraction:

hi xi
 1

D
x

k
k

Example: Mean Subtraction
(for a single input)

• Example layer: mean subtraction:

hi xi
 1

D
x

k
k

(here, “i” and “k”
are channels)

Example: Mean Subtraction
(for a single input)

• Example layer: mean subtraction:

• Always start with the chain rule (this one is for 1D):

hi xi
 1

D
x

k

k

 (here, “i” and “k”
are channels)

Example: Mean Subtraction
(for a single input)

x j hi x j i

 L
L hi

• Example layer: mean subtraction:

• Always start with the chain rule (this one is for 1D):

• Note: Be very careful with your subscripts!

Introduce new variables and don’t re-use letters.

hi xi
 1

D
x

k

k

 (here, “i” and “k”
are channels)

Example: Mean Subtraction
(for a single input)

x j hi x j i

 L
L hi

 L
 L hi (backprop

 x j i hi x j aka chain rule)

 L

1 ij
i hi

 D

 L

1 L
 ij

i hi D i hi

 L

1
 L

 hj D i hi

Example: Mean Subtraction
(for a single input)

• Forward: hi xi
 1

D
x

k
k

 L
 L hi (backprop

 x j i hi x j aka chain rule)

 L

1 ij
i hi

 D

 L

1 L
 ij

i hi D i hi

 L

1
 L

 hj D i hi

Example: Mean Subtraction
(for a single input)

• Forward:

• Taking the derivative of the layer:

hi xi
 1

D
x

k

k

 L
 L hi (backprop

 x j i hi x j aka chain rule)

 L

1 ij
i hi

 D

 L

1 L
 ij

i hi D i hi

 L

1
 L

 hj D i hi

Example: Mean Subtraction
(for a single input)

• Forward:

•

hi xi
 1

D
x

k

k

hi

j

1
Taking the derivative of the layer:

x
 ij

D
 L

 L hi (backprop

 x j i hi x j aka chain rule)

 L

1 ij
i hi

 D

 L

1 L
 ij

i hi D i hi

 L

1
 L

 hj D i hi

Example: Mean Subtraction
(for a single input)

• Forward:

•

hi xi
 1

D
x

k

k

hi

j

1
Taking the derivative of the layer:

x
 ij

D
 L

 L hi (backprop

 x j i hi x j aka chain rule)

 L

1 ij
i hi

 D

 L

1 L
 ij

i hi D i hi

 L

1
 L

 hj D i hi

ij

 0 else

1 i j

Example: Mean Subtraction
(for a single input)

• Forward:

•

(backprop

aka chain rule)

hi xi
 1

D
x

k

k

hi

j

1
Taking the derivative of the layer:

x
 ij

D
 L L hi

x j hi x j

i

 L

1 ij
i hi

 D

 L

1 L
 ij

i hi D i hi

 L

1
 L

 hj D i hi

ij

 1 i j

 0 else

Example: Mean Subtraction
(for a single input)

• Forward:

•

(backprop

aka chain rule)

hi xi
 1

D
x

k

k

hi

j

1
Taking the derivative of the layer:

x
 ij

D
 L L hi

x j hi x j

i

h

i

ij

D
L 1

i

 L

1 L
 ij

i hi D i hi

 L

1
 L

 hj D i hi

ij

i j

0 else

 1

Example: Mean Subtraction
(for a single input)

• Forward:

•

(backprop

aka chain rule)

hi xi
 1

D
x

k

k

hi

j

1
Taking the derivative of the layer:

x
 ij

D
 L L hi

x j hi x j

i

h

i

ij

D
L 1

i

h

i

ij
i

D

L 1 L

h
i

i

 L

1
 L

 hj D i hi

ij

i j

0 else

 1

Example: Mean Subtraction
(for a single input)

• Forward:

•

(backprop

aka chain rule)

hi xi
 1

D
x

k

k

hi

j

1
Taking the derivative of the layer:

x
 ij

D
 L L hi

x j hi x j

i

h

i

ij

D
L 1

i

h

i

ij

i

D

L 1 L

h
i i

L

1
L

ij

i j

0 else

 1

Example: Mean Subtraction

 h
j

 h
i

D i

(for a single input)

Done!

• Forward:

•

(backprop

aka chain rule)

hi xi
 1

D
x

k

k

hi

j

1
Taking the derivative of the layer:

x
 ij

D
 L L hi

x j hi x j

i

h

i

ij

D
L 1

i

h

i

ij

i

D

L 1 L

h
i i

L

1
L

ij

i j

0 else

 1

Example: Mean Subtraction

 h
j

 h
i

D i

(for a single input)

hi xi
 1

D
x

k

k

xi hi D hk k

L
L

1
L

Example: Mean Subtraction
(for a single input)

• Forward:

• Backward:

hi xi
 1

D
x

k

k

xi hi D hk k

L
L

1
L

Example: Mean Subtraction
(for a single input)

• Forward:

• Backward:

• In this case, they’re identical operations!

hi xi
 1

D
x

k

k

xi hi D hk k

L
L

1
L

Example: Mean Subtraction
(for a single input)

• Forward:

• Backward:

• In this case, they’re identical operations!

• Usually the forwards pass and backwards pass are

similar but not the same.

hi xi
 1

D
x

k

k

xi hi D hk k

L
L

1
L

Example: Mean Subtraction
(for a single input)

• Forward:

• Backward:

• In this case, they’re identical operations!

• Usually the forwards pass and backwards pass are

similar but not the same.

• Derive it by hand, and check it numerically

hi xi
 1

D
x

k

k

xi hi D hk k

L
L

1
L

Example: Mean Subtraction
(for a single input)

hi xi
 1

D
x

k

k

Let’s code this up in NumPy:

• Forward:

Example: Mean Subtraction
(for a single input)

hi xi
 1

D
x

k

k

Let’s code this up in NumPy:

• Forward:

Example: Mean Subtraction
(for a single input)

hi xi
 1

D
x

k

k

Let’s code this up in NumPy:

Dimension mismatch

• Forward:

Example: Mean Subtraction
(for a single input)

hi xi
 1

D
x

k

k

Let’s code this up in NumPy:

Dimension mismatch

You need to broadcast properly:

• Forward:

Example: Mean Subtraction
(for a single input)

hi xi
 1

D
x

k

k

Let’s code this up in NumPy:

Dimension mismatch

You need to broadcast properly:

This also works:

• Forward:

Example: Mean Subtraction
(for a single input)

Example: Mean Subtraction
(for a single input)

The backward pass is easy:

(Remember they’re usually not the same)

Example: Euclidean Loss

• Euclidean loss layer:

Example: Euclidean Loss

• Euclidean loss layer:

Example: Euclidean Loss

L
z

y
Euclidean

Loss

• Euclidean loss layer:

Example: Euclidean Loss

L
z

y
Euclidean

Loss i
L

1

2
i, j

(z y
i, j

)2
j

• Euclidean loss layer:

Example: Euclidean Loss

L
z

y
Euclidean

Loss i
L

1

2
i, j

(z y
i, j

)2

j

(“i” is the batch index,

“j” is the channel)

• Euclidean loss layer:

• The total loss is the average over N examples:

Example: Euclidean Loss

L
z

y
Euclidean

Loss i
L

1

2
i, j

(z y
i, j

)2

j

(“i” is the batch index,

“j” is the channel)

• Euclidean loss layer:

• The total loss is the average over N examples:

Example: Euclidean Loss

L
 1

N
L

i
i

L
z

y
Euclidean

Loss i
L

1

2
i, j

(z y
i, j

)2

j

(“i” is the batch index,

“j” is the channel)

Example: Euclidean Loss

• Used for regression, e.g. predicting an adjustment to

box coordinates when detecting objects:

Example: Euclidean Loss

• Used for regression, e.g. predicting an adjustment to

box coordinates when detecting objects:

Example: Euclidean Loss

Bounding box regression

from the R-CNN object

detector [Girshick 2014]

• Used for regression, e.g. predicting an adjustment to

box coordinates when detecting objects:

• Note: Can be unstable and other losses often work

better. Alternatives: L1 distance (instead of L2),

discretizing into category bins and using softmax

Example: Euclidean Loss

Bounding box regression

from the R-CNN object

detector [Girshick 2014]

Example: Euclidean Loss

• Forward:

Example: Euclidean Loss

Li
1

2

2 (zi, j yi, j)
j

• Forward:

• Backward:

Example: Euclidean Loss

Li
1

2

2 (zi, j yi, j)
j

• Forward:

• Backward:

Example: Euclidean Loss

Li
1

2

2 (zi, j yi, j)
j

Li

z
i, j

 zi, j yi, j

• Forward:

• Backward:

Example: Euclidean Loss

Li
1

2

2 (zi, j yi, j)
j

Li

z
i, j

 zi, j yi, j

Li

y
i, j

i, j
 y z

i, j

• Forward:

• Backward:

Example: Euclidean Loss

Li
1

2

2 (zi, j yi, j)
j

Li

z
i, j

 zi, j yi, j

Li

y
i, j

i, j

Q: If you scale the loss by C, what happens to

gradient computed in the backwards pass?

•

 y z
i, j

• Forward:

• Backward:

Example: Euclidean Loss

Li
1

2

2 (zi, j yi, j)
j

Li

z
i, j

 zi, j yi, j

 L
i

y
i, j

i, j
 y z

i, j

(note that this is with

respect to Li, not L)

Q: If you scale the loss by C, what happens to

gradient computed in the backwards pass?

•

Example: Euclidean Loss

• Forward pass, for a batch of N inputs:

Example: Euclidean Loss

• Forward pass, for a batch of N inputs:

Example: Euclidean Loss

i
L

1

2
i, j

(z y
i, j

)2
j

N
i

i

L
1 L

• Forward pass, for a batch of N inputs:

• Backward pass:

Example: Euclidean Loss

i
L

1

2
i, j

(z y
i, j

)2
j

N
i

i

L
1 L

• Forward pass, for a batch of N inputs:

• Backward pass:

Example: Euclidean Loss

i
L

1

2
i, j

(z y
i, j

)2
j

N
i

i

L
1 L

xi, j

 L
zi, j yi, j

N yi, j

 L
yi, j zi, j

N

• Forward pass, for a batch of N inputs:

• Backward pass:

Example: Euclidean Loss

i
L

1

2
i, j

(z y
i, j

)2
j

N
i

i

L
1 L

xi, j

 L
zi, j yi, j

N yi, j

 L
yi, j zi, j

N

(You should be able to derive this)

Example: Softmax (for N inputs)

Remember Softmax?

It’s a loss function for predicting categories?

Example: Softmax (for N inputs)

x
i

s
i

p
i

Softmax L
i

Remember Softmax?

It’s a loss function for predicting categories?

yi

Cross-

Entropy

Example: Softmax (for N inputs)

x
i

s
i

p
i

Softmax L
i

Cross-

Entropy

(scores) (probabilities) (loss) (input)

Remember Softmax?

It’s a loss function for predicting categories?

(ground truth labels)

yi

Example: Softmax (for N inputs)

Remember Softmax?

It’s a loss function for predicting categories?

x
i

s
i

p
i

Softmax L
i

y
i

Cross-

Entropy

(scores) (probabilities) (loss) (input)

(ground truth labels) (here, “i” are

different examples)

Example: Softmax (for N inputs)

Remember Softmax?

It’s a loss function for predicting categories?

pi, j
s i ,k e

k

(Softmax)

x
i

s
i

p
i

Softmax L
i

y
i

Cross-

Entropy

(scores)

esi , j

(probabilities) (loss) (input)

(ground truth labels) (here, “i” are

different examples)

Example: Softmax (for N inputs)

Remember Softmax?

It’s a loss function for predicting categories?

e
si ,k

pi, j
k

(Softmax)

i L log p
i,yi

(Cross-entropy)

x
i

s
i

p
i

Softmax L
i

y
i

Cross-

Entropy

(scores)

esi , j

(probabilities) (loss) (input)

(ground truth labels) (here, “i” are

different examples)

Example: Softmax (for N inputs)

Remember Softmax?

It’s a loss function for predicting categories?

pi, j
s i ,k e

k

(Softmax)

i L log p
i,yi

(Cross-entropy)

x
i

s
i

p
i

Softmax L
i

y
i

Cross-

Entropy

(scores)

esi , j

(probabilities) (loss) (input)

(ground truth labels) (here, “i” are

different examples)

L
 1

N
L

i

i

(Avg. over examples)

x
i

s
i

p
i

Softmax L
i

yi

Cross-

Entropy

Example: Softmax (for N inputs)

x
i

s
i

p
i

Softmax L
i

yi

Cross-

Entropy

 L

s
i, j

pi, j ti, j

N
Derivative:

Example: Softmax (for N inputs)

x
i

s
i

p
i

Softmax L
i

yi

Cross-

Entropy

si, j

 L
pi, j ti, j

N
Derivative: where ti [0 ... 1 ... 0]

set to 1) (Entry yi

Example: Softmax (for N inputs)

x
i

si p
i

Softmax L
i

yi

Cross-

Entropy

 L

si, j

pi, j ti, j

N
Derivative: where ti [0 ... 1 ... 0]

set to 1) (Entry yi

Example: Softmax (for N inputs)

x
i

si p
i

Softmax L
i

yi

Cross-

Entropy

 L

si, j

pi, j ti, j

N
Derivative: where ti [0 ... 1 ... 0]

set to 1) (Entry yi

(You will derive this in PA5)

Example: Softmax (for N inputs)

x
i

si p
i

Softmax L
i

yi

Cross-

Entropy

 L

si, j

pi, j ti, j

N
Derivative: where ti [0 ... 1 ... 0]

set to 1) (Entry yi

(You will derive this in PA5)

Now we can continue backpropagating to the layer before “f”

Example: Softmax (for N inputs)

What about the weights?
To get the derivative of the weights, use the chain rule again!

What about the weights?
To get the derivative of the weights, use the chain rule again!

Example: 2D weights, 1D bias, 1D hidden activations:

What about the weights?

x h Layer

To get the derivative of the weights, use the chain rule again!

Example: 2D weights, 1D bias, 1D hidden activations:

W ,b

h h(x;W)

What about the weights?

x h Layer

To get the derivative of the weights, use the chain rule again!

Example: 2D weights, 1D bias, 1D hidden activations:

W ,b

h h(x;W)

Wij hk Wij k

 L L hk

What about the weights?

x h Layer

To get the derivative of the weights, use the chain rule again!

Example: 2D weights, 1D bias, 1D hidden activations:

W ,b

h h(x;W)

Wij hk Wij k

 L L hk

bi hk bi k

L L hk

What about the weights?

x h Layer

To get the derivative of the weights, use the chain rule again!

Example: 2D weights, 1D bias, 1D hidden activations:

W ,b

h h(x;W)

 L L hk

(the number of subscripts and summations changes

depending on your layer and parameter sizes)

Wij hk Wij bi hk bi k k

L L hk

ConvNets
They’re just neural networks with

3D activations and weight sharing

What shape should the

activations have?

x h(1) f Layer Layer h(2)

- The input is an image, which is 3D

(RGB channel, height, width)

What shape should the

activations have?

x h(1) f Layer Layer h(2)

-The input is an image, which is 3D

(RGB channel, height, width)

-We could flatten it to a 1D vector, but then

we lose structure

What shape should the

activations have?

x h(1) f Layer Layer h(2)

-The input is an image, which is 3D

(RGB channel, height, width)

-We could flatten it to a 1D vector, but then

we lose structure

- What about keeping everything in 3D?

3D Activations

(1D vectors)

x h1 h2

(3D arrays) Figure: Andrej Karpathy

3D Activations

(1D vectors)

Figure: Andrej Karpathy
(3D arrays)

x h1 h2

3D Activations

Figure: Andrej Karpathy

3D Activations

For example, a CIFAR-10 image is a 3x32x32 volume

(3 depth — RGB channels, 32 height, 32 width)

Figure: Andrej Karpathy

3D Activations

1D Activations:

Figure: Andrej Karpathy

3D Activations

1D Activations: 3D Activations:

Figure: Andrej Karpathy

3D Activations

5

Figure: Andrej Karpathy

5

- The input is 3x32x32

- This neuron depends

on a 3x5x5 chunk of

the input

- The neuron also has a

3x5x5 set of weights

and a bias (scalar)

3D Activations

5

Figure: Andrej Karpathy

5

xr

hr

Example: consider the
region of the input “ xr”

With output neuron hr

3D Activations

5

Figure: Andrej Karpathy

5

xr

hr

Example: consider the
region of the input “ xr”

With output neuron hr

ijk ijk
hr xr W b

ijk

Then the output is:

3D Activations

5

5

xr

hr

Example: consider the
region of the input “ xr”

With output neuron hr

ijk ijk

ijk

hr xr W b

Then the output is:

Sum over 3 axes
Figure: Andrej Karpathy

3D Activations

5

Figure: Andrej Karpathy

5

xr

hr

1

3D Activations

5

5

xr

hr r

1 h 2

Figure: Andrej Karpathy

3D Activations

5

5

xr

1
hr hr

2

hr

Figure: Andrej Karpathy

1 ijk 1ijk
 xr W b

ijk

1

With 2 output neurons

hr

2 ijk 2ijk
 xr W b

ijk

2

3D Activations

5

5

xr

1
hr hr

2

hr

1 ijk 1ijk
 xr W b

ijk

1

With 2 output neurons

hr

2 ijk 2ijk
 xr W b

ijk

2

Figure: Andrej Karpathy

3D Activations

Figure: Andrej Karpathy

3D Activations

We can keep adding

more outputs

These form a column

in the output volume:

[depth x 1 x 1]

Figure: Andrej Karpathy

3D Activations

We can keep adding

more outputs

These form a column

in the output volume:

[depth x 1 x 1]

Each neuron has its

own 3D filter and

own (scalar) bias

Figure: Andrej Karpathy

3D Activations

Now repeat this

across the input

D sets of weights

(also called filters)

Figure: Andrej Karpathy

3D Activations

Now repeat this

across the input

Weight sharing:

Each filter shares

the same weights

(but each depth

index has its own

set of weights) D sets of weights

(also called filters)

Figure: Andrej Karpathy

3D Activations

D sets of weights

(also called filters)

Figure: Andrej Karpathy

3D Activations
With weight

sharing,
this is called

convolution

D sets of weights

(also called filters)

Figure: Andrej Karpathy

3D Activations
With weight

sharing,
this is called

convolution

Without weight

sharing,

this is called a

locally

connected layer D sets of weights

(also called filters)

Figure: Andrej Karpathy

3D Activations

One set of weights gives

one slice in the output

To get a 3D output of depth D,

use D different filters

In practice, ConvNets use

many filters (~64 to 1024)

(input

depth)

(output

depth)

Output of one filter

3D Activations

One set of weights gives

one slice in the output

All together, the weights are 4 dimensional:

(output depth, input depth, kernel height, kernel width)

To get a 3D output of depth D,

use D different filters

In practice, ConvNets use

many filters (~64 to 1024)

(input

depth)

(output

depth)

Output of one filter

3D Activations

Let’s code this up in NumPy

3D Activations

Let’s code this up in NumPy

nth example

first filter

3D Activations

Let’s code this up in NumPy

nth example

output position

first filter

3D Activations

Let’s code this up in NumPy

nth example

output position

first filter

3D Activations

Let’s code this up in NumPy

nth example

output position

first filter

3D Activations

Let’s code this up in NumPy xr

nth example

3D Activations

Let’s code this up in NumPy xr

output position

first filter

nth example nth example

3D Activations

Let’s code this up in NumPy xr

output position

first filter all input channels

nth example nth example

3D Activations

Let’s code this up in NumPy xr

input region output position

first filter all input channels

nth example nth example

3D Activations

Let’s code this up in NumPy xr

input region output position

first filter all input channels

nth example nth example

3D Activations

Let’s code this up in NumPy xr

input region output position

first filter all input channels

nth example nth example first filter

3D Activations

Let’s code this up in NumPy xr

input region output position

first filter all input channels all channels

nth example nth example first filter

3D Activations

Let’s code this up in NumPy xr

input region output position

first filter

all positions

all channels all input channels

nth example nth example first filter

bias

3D Activations

Let’s code this up in NumPy xr

input region output position

first filter

all positions

all channels all input channels

nth example nth example first filter

We can unravel the 3D cube and show each layer separately:

(Input)

(32 filters, each 3x5x5)

Figure: Andrej Karpathy

3D Activations

We can unravel the 3D cube and show each layer separately:

(Input)

(32 filters, each 3x5x5)

3D Activations

Figure: Andrej Karpathy

We can unravel the 3D cube and show each layer separately:

(Input)

(32 filters, each 3x5x5)

Figure: Andrej Karpathy

3D Activations

3D Activations
We can unravel the 3D cube and show each layer separately:

(Input)

(32 filters, each 3x5x5)

Figure: Andrej Karpathy

Questions?

