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Today

• Deep learning

• Field is in rapid motion

• Readings: No standard textbooks yet!

• Some good resources:
– https://sites.google.com/site/deeplearningsummerschool/

– http://www.deeplearningbook.org/

– http://www.cs.toronto.edu/~hinton/absps/NatureDeepRe
view.pdf

https://sites.google.com/site/deeplearningsummerschool/
http://www.deeplearningbook.org/
http://www.cs.toronto.edu/~hinton/absps/NatureDeepReview.pdf


Announcements

• Final project (P5), due Tuesday, 5/9, by 
11:59pm, to be done in groups of two

• Final exam will be handed out in class 
Tuesday, due Friday, 5/12, by 5pm



Aside: “CNN” vs “ConvNet”

• There are many papers that use either phrase, but

• “ConvNet” is the preferred term, since “CNN”  

clashes with other things called CNN

Note:



Motivation



Products

[Slide credit: Deva Ramanan]



Helping the Blind

https://www.facebook.com/zuck/videos/10102801434799001/

https://www.facebook.com/zuck/videos/10102801434799001/






[Krizhevsky, Sutskever, Hinton. NIPS 2012]

“AlexNet” — Won the ILSVRC2012 Challenge

CNNs in 2012: “SuperVision”  

(aka “AlexNet”)

Major breakthrough: 15.3% Top-5 error on ILSVRC2012  

(Next best: 25.7%)



Recap: Before Deep Learning
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Slide from Karpathy 2016

Q: What would be a

very hard set of classes  

for a linear classifier to  

distinguish?

(assuming x = pixels)

Why use features?

Why not pixels?



The last layer of (most) CNNs 

are linear classifiers

Input  

Pixels

Ans

Perform everything with a big neural  

network, trained end-to-end

This piece is just a linear classifier

Key: perform enough processing so that by the time you get  

to the end of the network, the classes are linearly separable

(GoogLeNet)



Linearly separable classes



Example: Visualizing AlexNet in 2D with t-SNE

[Donahue, “DeCAF: DeCAF: A Deep Convolutional …”, arXiv 2013](2D visualization using t-SNE)

Linear  

Classifier



Roadmap for today

• Neural networks

• Convolutional neural networks

• Optimization matters!

– Backpropagation algorithm



Feature hierarchy with ConvNets  

End-to-end models

[Zeiler and Fergus, “Visualizing and Understanding Convolutional Networks”, 2013]



Slide: R. Fergus



Neural Networks: 

The Big Picture
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Key idea: composition of simpler functions 
called “layers” (e.g., multiple linear layers (not 
just one))
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Neural Networks: 

The Big Picture
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Here, represents whatever parameters that layer is using  

(e.g. for a “linear layer”  (1)  { W (1), b(1) }).
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Here, represents whatever parameters that layer is using  

(e.g. for a “linear layer”  (1)  { W (1), b(1) }).

Recall: the loss “L” measures how far the predictions “f”  

are from the labels “y”. The most common loss is Softmax.

…

Neural Networks: 

The Big Picture
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Here, represents whatever parameters that layer is using  

(e.g. for a “linear layer”  (1)  { W (1), b(1) }).

Key problem: Adjust the weights in all layers to minimize 

the training loss. We do this with backpropagation.

…

Neural Networks: 

The Big Picture



Training Deep Neural Networks

• Must run many iterations of batch gradient descent

• With lots of other tweaks



Aside: Inspiration from Biology

Figure: Andrej Karpathy



Neural nets are loosely inspired by biology

Figure: Andrej Karpathy

Aside: Inspiration from Biology



Neural nets are loosely inspired by biology

But they certainly are not a model of how  

the brain works, or even how neurons work

Figure: Andrej Karpathy

Aside: Inspiration from Biology



Simple Neural Net: 1 Layer

x Wx b f

Let’s consider a simple 1-layer network:



Simple Neural Net: 1 Layer

x Wx b f

Let’s consider a simple 1-layer network:

This is just what

we’ve seen before

(“linear classifier”):



1 Layer Neural Net
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1 Layer Neural Net
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