CS5670: Computer Vision
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Lecture 24: Convolutional neural networks
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Slides from Andrej Karpathy, Fei-Fei Li,
Kavita Bala, and Sean Bell



Today

Deep learning
~ield is in rapid motion

Readings: No standard textbooks yet!
Some good resources:

— https://sites.google.com/site/deeplearningsummerschool/

— http://www.deeplearningbook.org/

— http://www.cs.toronto.edu/~hinton/absps/NatureDeepRe
view.pdf



https://sites.google.com/site/deeplearningsummerschool/
http://www.deeplearningbook.org/
http://www.cs.toronto.edu/~hinton/absps/NatureDeepReview.pdf

Announcements

* Final project (P5), due Tuesday, 5/9, by
11:59pm, to be done in groups of two

* Final exam will be handed out in class
Tuesday, due Friday, 5/12, by 5pm



Aside: “CNN” vs “ConvNet”

Note:

- There are many papers that use either phrase, but

- “ConvNet’ is the preferred term, since “CNN”
clashes with other things called CNN
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Helping the Blind

...........

so that we can show the
text in a caption.
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https://www.facebook.com/zuck/videos/10102801434799001/
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CNNs in 2012: “SuperVision”
(aka “AlexNet”)

“AlexNet” — Won the ILSVRC2012 Challenge
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Major breakthrough: 15.3% Top-5 error on ILSVRC2012 |
(Next best 25.7%)
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Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440-186,624—64,896-64,896—43,264—

4096—4096—1000. _ _
[Krizhevsky, Sutskever, Hinton. NIPS 2012]



Recap: Before Deep Learning
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Figure: Karpathy 2016
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Why use features?
Why not pixels?

flzi, W,b) = Wz; +b

Q: What would be a
very hard set of classes
for a linear classifier to
distinguish?

(assuming x = pixels)

Slide from Karpathy 2016



The last layer of (most) CNNs
are linear classifiers

This piece Is just a linear classifi’e-r)
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Input Perform everything with a big neural
Pixels network, trained end-to-end

Key: perform enough processing so that by the time you get
to the end of the network, the classes are linearly separable



Linearly separable classes
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Example: Visualizing AlexNet in 2D with t-SNE
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(c) DeCAF; (d) DeCAFg

(2D visualization using t-SNE) [Donahue, “DeCAF: DeCAF: A Deep Convolutional ...”, arXiv 2013]



Roadmap for today

e Neural networks
 Convolutional neural networks

* Optimization matters!

— Backpropagation algorithm



Feature hierarchy with ConvNets
End-to-end models

[Zeiler and Fergus, “Visualizing and Understanding Convolutional Networks”, 2013]



Learning Feature Hierarchy

« Learn hierarchy
« All the way from pixels - classifier

* One layer extracts features from output of previous layer

Image/Video Simple
Pixels Classifier

Slide: R. Fergus



Neural Networks:
The Big Picture

X — | Function —>h(1)—> Function —>h(2)—>
(‘layer”) (‘layer”)

Key idea: composition of simpler functions
called “layers” (e.g., multiple linear layers (not
just one))



Neural Networks:
The Big Picture
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Neural Networks:
The Big Picture

(9(1)_2 6?2 ~
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Here, & represents whatever parameters that layer is using
(e.g. for a “linear layer” 8W={ W ® b1},
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Here, @ represents whatever parameters that layer is using
(e.g. for a “linear layer’@W={ W ® b1},



Neural Networks:
The Big Picture
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Here, & represents whatever parameters that layer is using
(e.g. for a “linear layer” 8W={ W ® b1},



Neural Networks:
The Big Picture

(9(1)_2 6?2 ~
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Here, @ represents whatever parameters that layer is using
(e.g. for a “linear layer” 8W={ W W b},

Recall: the loss “L” measures how far the predictions “f”
are from the labels “y”. The most common loss is Softmax.



Neural Networks:
The Big Picture

(9(1)_2 6?2 ~
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Here, @ represents whatever parameters that layer is using
(e.g. for a “linear layer” 8W={ W W b},

Key problem: Adjust the weights in all layers to minimize
the training loss. We do this with backpropagation.



Training Deep Neural Networks

 Must run many iterations of batch gradient descent
* With lots of other tweaks

EEEEE



Aside: Inspiration from Biology

impulses carried
toward cell body
branches

of axon

dendrites

nucleus

impulses carried

away from cell body
cell body

axon
terminals

Z( wy

*@® synapse
axon from a neuron
woxo

cell body

f (Zw;x,- -1 b)
Zwiwi +b :

output axon

activation
function

w1

W2x2

A cartoon drawing of a biological neuron (left) and its mathematical model (right).

Figure: Andrej Karpathy
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A cartoon drawing of a biological neuron (left) and its mathematical model (right).

Neural nets are loosely inspired by biology

Figure: Andrej Karpathy
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A cartoon drawing of a biological neuron (left) and its mathematical model (right).

Neural nets are loosely inspired by biology

But they certainly are not a model of how
the brain works, or even how neurons work

Figure: Andrej Karpathy



Simple Neural Net: 1 Layer

Let's consider a simple 1-layer network:

X | Wx+b |- f




Simple Neural Net: 1 Layer

Let's consider a simple 1-layer network:

X —

This is just what
we’ve seen before
(“linear classifier”):

WX +b

airplane classiﬁe/ o

/

deer classifier

f(zi,W,b) = Wz; +b



1 Layer Neural Net

Block X —|Wx+b [- f
Diagram:
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1 Layer Neural Net

Block X —|Wx+b |- f
Diagram:
(class
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Expanded
Block W y + |b —
Diagram:




1 Layer Neural Net

Block X —|Wx+b |- f
Diagram:
(class
(Input) scores)
Expanded
Block W y + |b —
Diagram:

NumPy: f = np.dot(W, x) + b




