CS5670: Computer Vision

Noah Snavely

Lecture 24: Convolutional neural networks

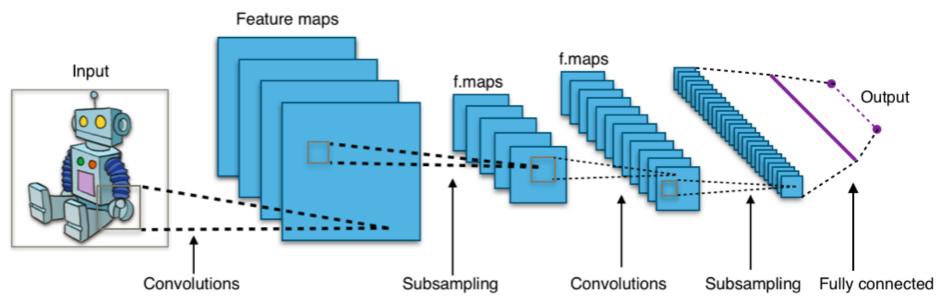


Image credit: Aphex34, [CC BY-SA 4.0 (http://creativecommons.org/licenses/by-sa/4.0)]

Today

- Deep learning
- Field is in rapid motion
- Readings: No standard textbooks yet!
- Some good resources:
 - https://sites.google.com/site/deeplearningsummerschool/
 - http://www.deeplearningbook.org/
 - http://www.cs.toronto.edu/~hinton/absps/NatureDeepRe view.pdf

Announcements

• Final project (P5), due Tuesday, 5/9, by 11:59pm, to be done in groups of two

Final exam will be handed out in class
 Tuesday, due Friday, 5/12, by 5pm

Aside: "CNN" vs "ConvNet"

Note:

- There are many papers that use either phrase, but
- "ConvNet" is the preferred term, since "CNN" clashes with other things called CNN

Motivation

10 BREAKTHROUGH

Introduction The 10 Technologies Past Years

Deep Learning

MIT Technology Review

With massive amounts of computational power, machines can now recognize objects and translate speech in real time. Artificial intelligence is finally getting smart.

Temporary Social Media

TECHNOLOGIES 2013

Messages that quickly self-destruct could enhance the privacy of online communications and make people freer to be spontaneous.

Prenatal DNA Sequencing

Reading the DNA of fetuses will be the next frontier of the genomic revolution. But do you really want to know about the genetic problems or musical aptitude of your unborn child?

Ultra-Efficient Solar

Additive Manufacturing

Skeptical about 3-D printing? GE, the world's largest manufacturer, is on the verge of using the technology to make jet parts.

Baxter: The Blue-Collar Robot

Rodney Brooks's newest creation is easy to interact with, but the complex innovations behind the robot show just how hard it is to get along with people.

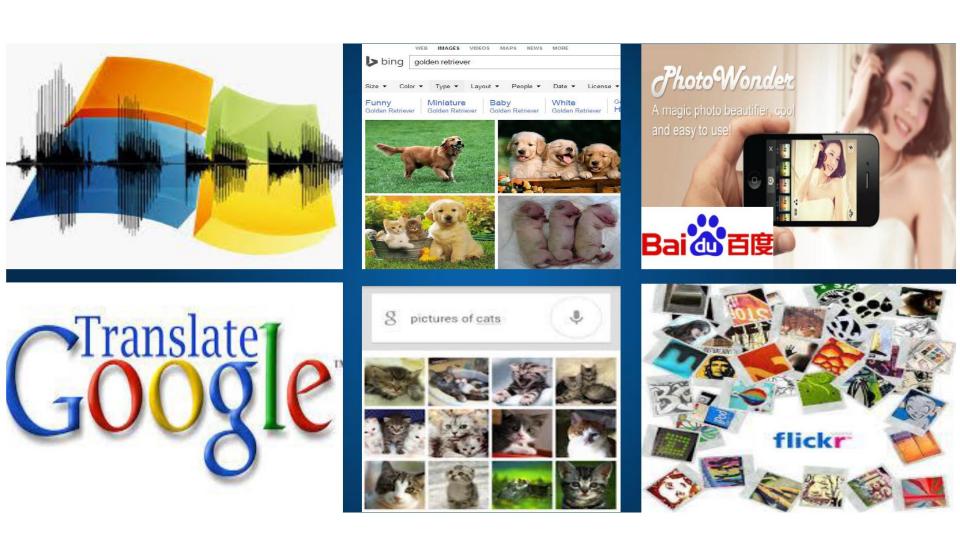
Memory Implants

Smart Watches

Big Data from

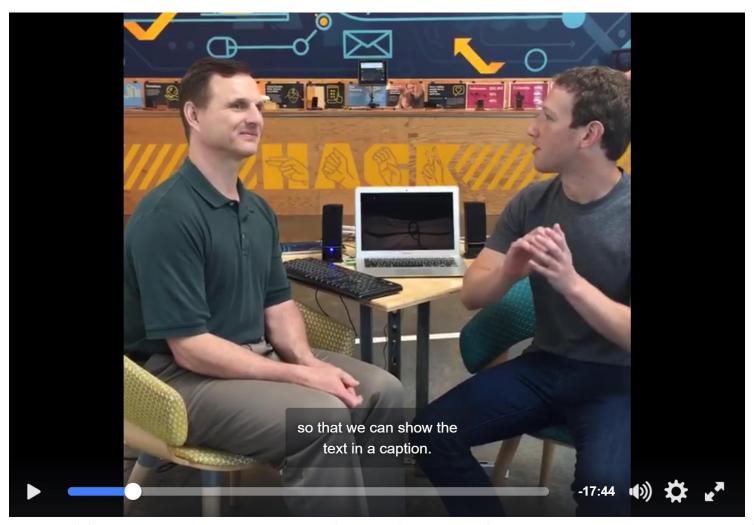
Supergrids

Products



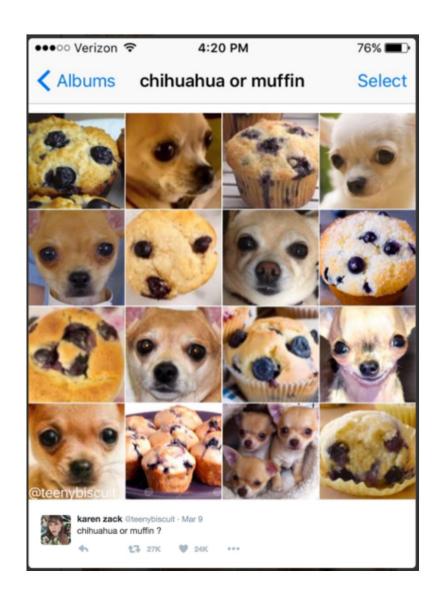
[Slide credit: Deva Ramanan]

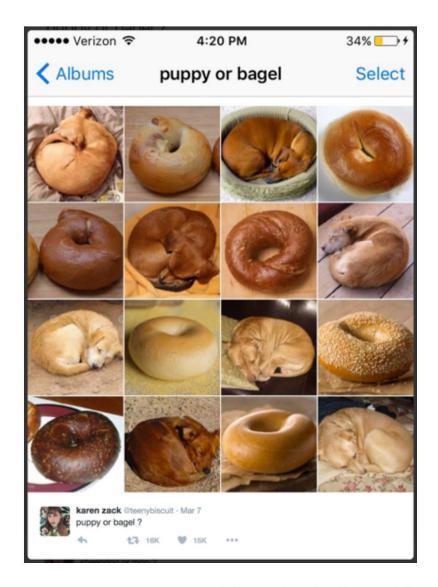
Helping the Blind



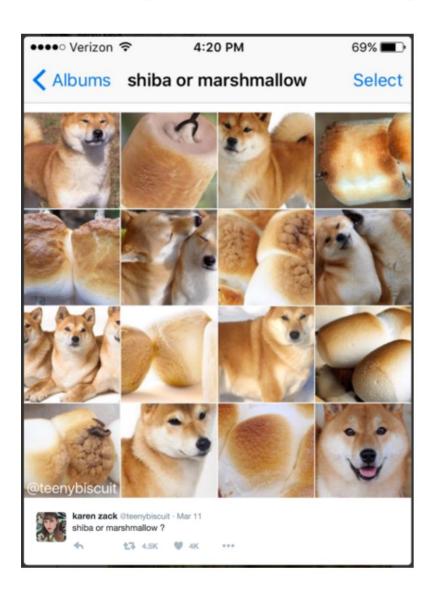
https://www.facebook.com/zuck/videos/10102801434799001/

(Unrelated) Dog vs Food





(Unrelated) Dog vs Food



CNNs in 2012: "SuperVision" (aka "AlexNet")

"AlexNet" — Won the ILSVRC2012 Challenge

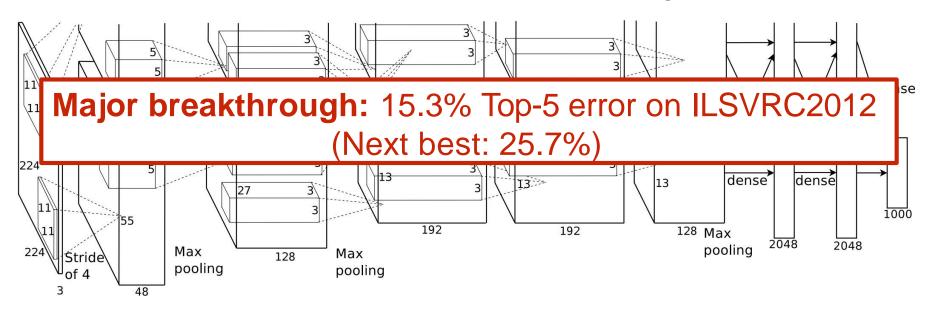
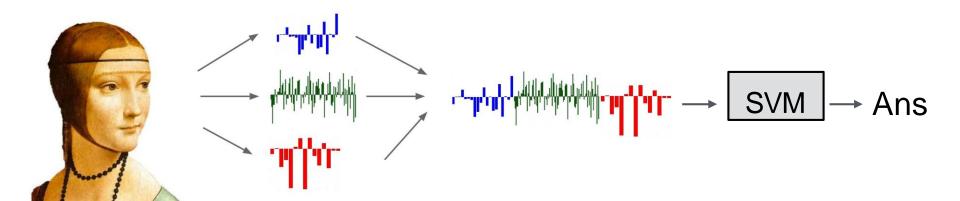


Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts at the bottom. The GPUs communicate only at certain layers. The network's input is 150,528-dimensional, and the number of neurons in the network's remaining layers is given by 253,440–186,624–64,896–64,896–43,264–4096–1000.

[Krizhevsky, Sutskever, Hinton. NIPS 2012]

Recap: Before Deep Learning

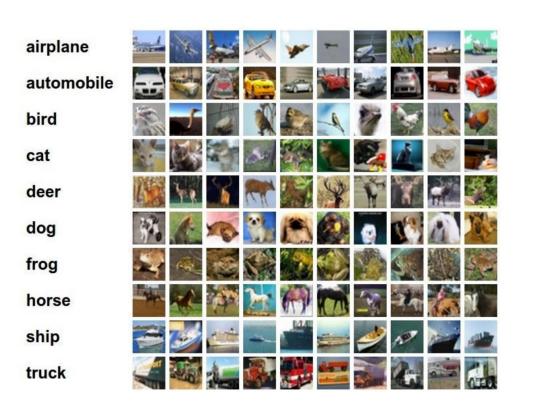


Input Pixels Extract Features Concatenate into a vector **x**

Linear Classifier

Figure: Karpathy 2016

Why use features? Why not pixels?

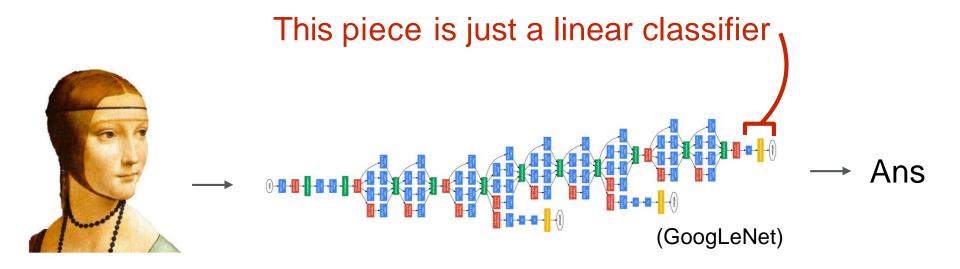


$$f(x_i, W, b) = Wx_i + b$$

Q: What would be a very hard set of classes for a linear classifier to distinguish?

(assuming x = pixels)

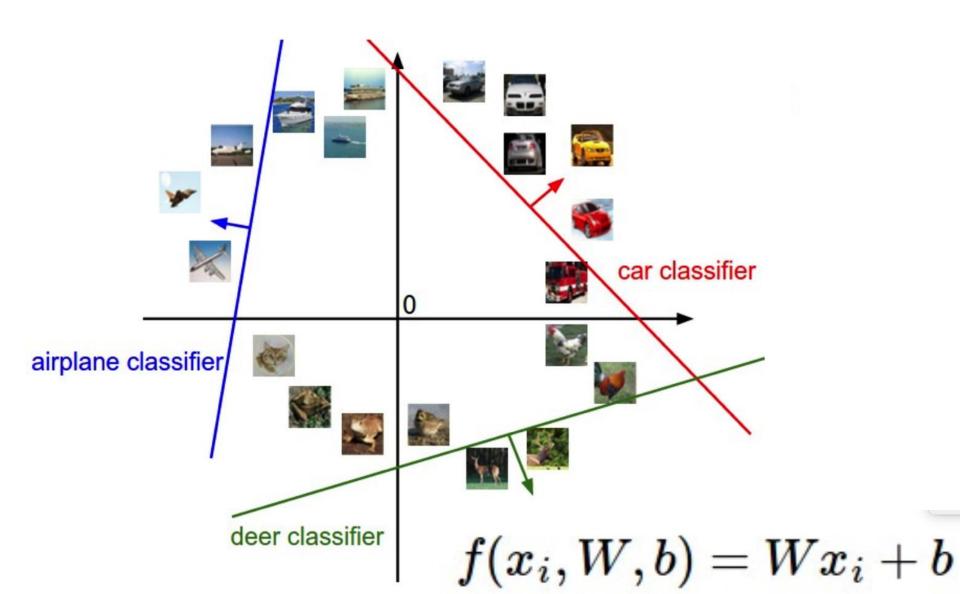
The last layer of (most) CNNs are linear classifiers



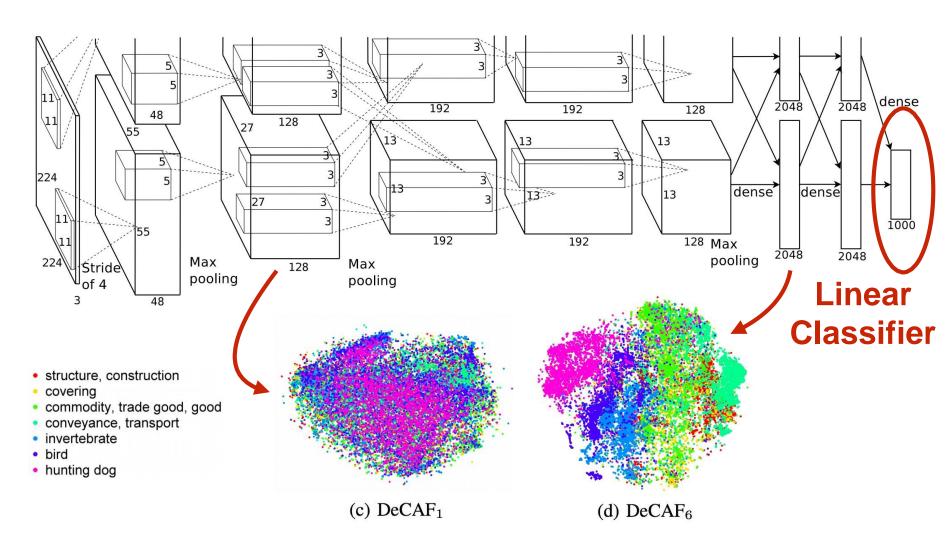
Input Pixels Perform everything with a big neural network, trained end-to-end

Key: perform enough processing so that by the time you get to the end of the network, the classes are linearly separable

Linearly separable classes



Example: Visualizing AlexNet in 2D with t-SNE



(2D visualization using t-SNE)

[Donahue, "DeCAF: DeCAF: A Deep Convolutional ...", arXiv 2013]

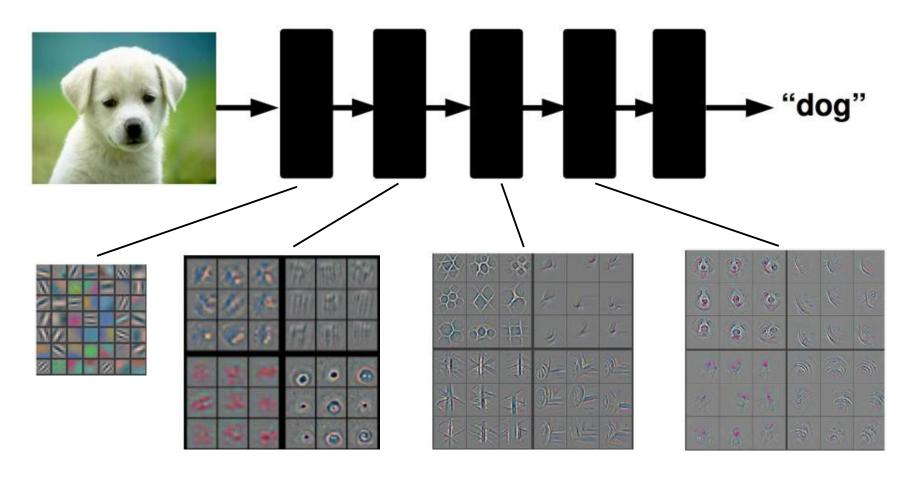
Roadmap for today

Neural networks

Convolutional neural networks

- Optimization matters!
 - Backpropagation algorithm

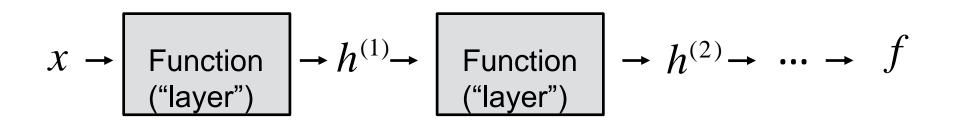
Feature hierarchy with ConvNets End-to-end models



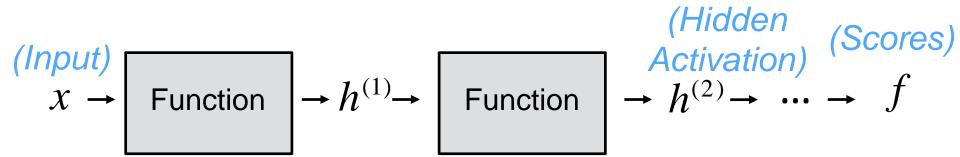
Learning Feature Hierarchy

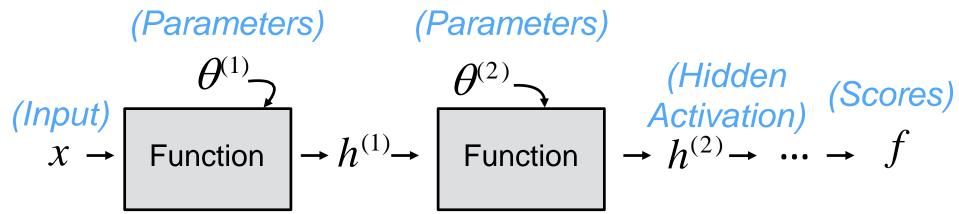
- Learn hierarchy
- All the way from pixels → classifier
- One layer extracts features from output of previous layer

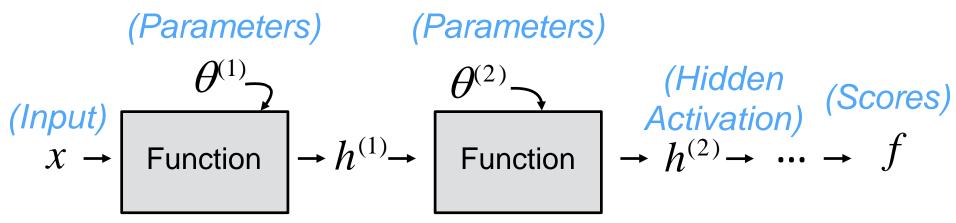
Slide: R. Fergus



Key idea: **composition of simpler functions** called "layers" (e.g., multiple linear layers (not just one))



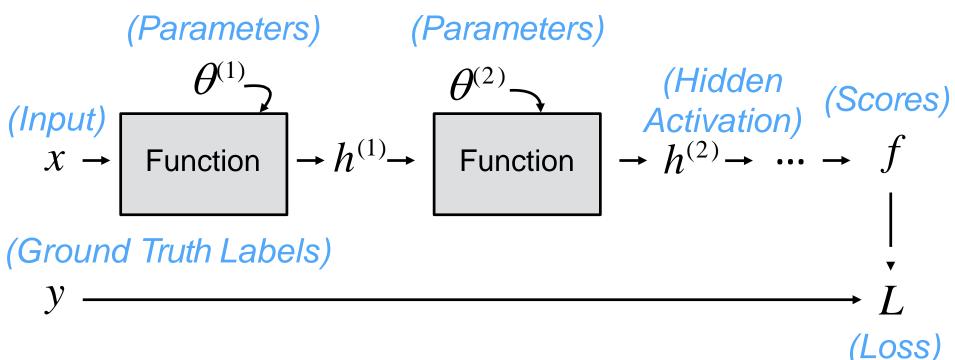




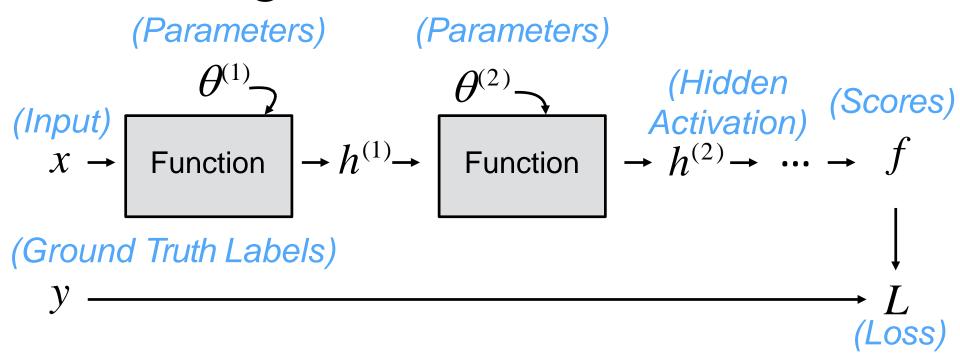
Here, θ represents whatever parameters that layer is using (e.g. for a "linear layer" $\theta^{(1)} = \{ W^{(1)}, b^{(1)} \}$).

(Input) $\theta^{(1)}$ $\theta^{(2)}$ (Hidden Activation) $\phi^{(2)}$ $\phi^{(2)$

Here, θ represents whatever parameters that layer is using (e.g. for a "linear layer" $\theta^{(1)} = \{ W^{(1)}, b^{(1)} \}$).

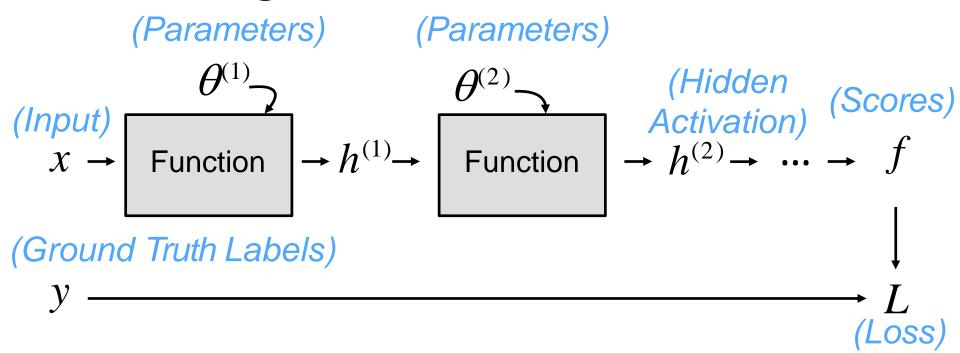


Here, θ represents whatever parameters that layer is using (e.g. for a "linear layer" $\theta^{(1)} = \{ W^{(1)}, b^{(1)} \}$).



Here, θ represents whatever parameters that layer is using (e.g. for a "linear layer" $\theta^{(1)} = \{ W^{(1)}, b^{(1)} \}$).

Recall: the loss "L" measures how far the predictions "f" are from the labels "y". The most common loss is Softmax.

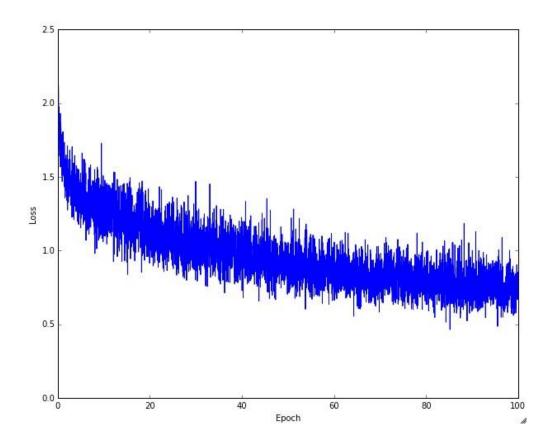


Here, θ represents whatever parameters that layer is using (e.g. for a "linear layer" $\theta^{(1)} = \{ W^{(1)}, b^{(1)} \}$).

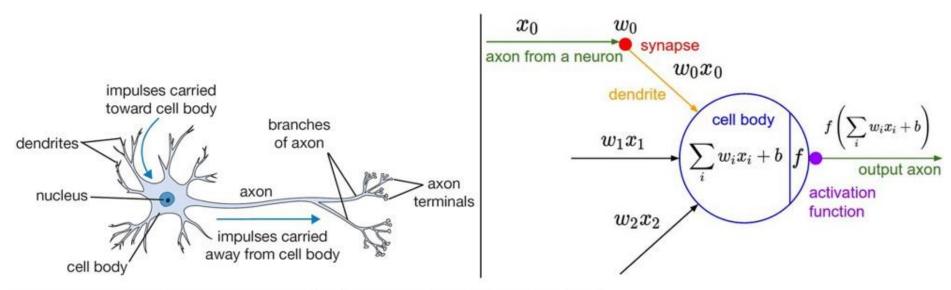
Key problem: Adjust the weights in all layers to minimize the training loss. We do this with *backpropagation*.

Training Deep Neural Networks

- Must run many iterations of batch gradient descent
- With lots of other tweaks



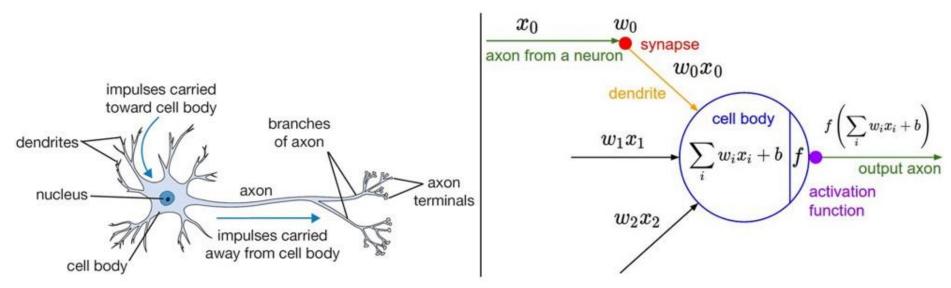
Aside: Inspiration from Biology



A cartoon drawing of a biological neuron (left) and its mathematical model (right).

Figure: Andrej Karpathy

Aside: Inspiration from Biology

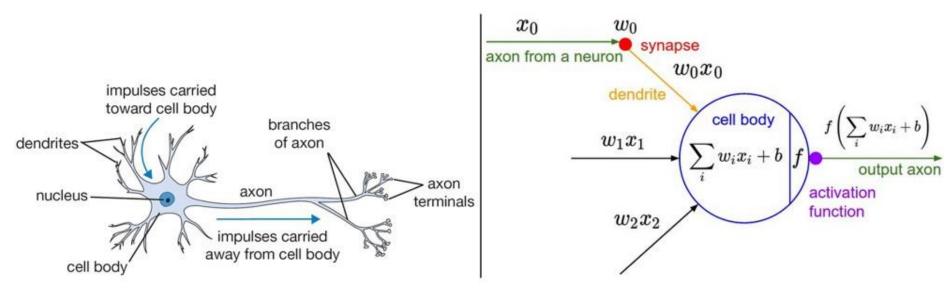


A cartoon drawing of a biological neuron (left) and its mathematical model (right).

Neural nets are **loosely inspired** by biology

Figure: Andrej Karpathy

Aside: Inspiration from Biology



A cartoon drawing of a biological neuron (left) and its mathematical model (right).

Neural nets are loosely inspired by biology

But they certainly are **not** a model of how the brain works, or even how neurons work

Figure: Andrej Karpathy

Simple Neural Net: 1 Layer

Let's consider a simple 1-layer network:

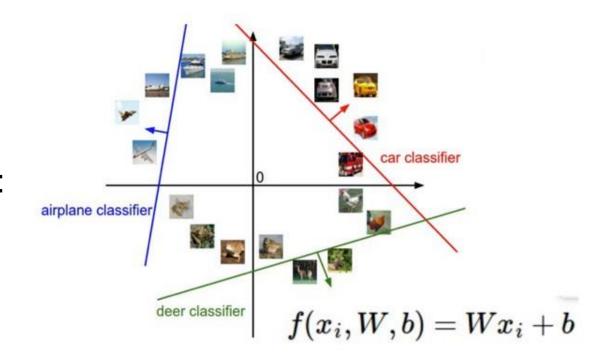
$$x \to \boxed{Wx + b} \to f$$

Simple Neural Net: 1 Layer

Let's consider a simple 1-layer network:

$$x \to \boxed{Wx + b} \to f$$

This is just what we've seen before ("linear classifier"):



1 Layer Neural Net

Block Diagram:

$$x \to \boxed{Wx + b} \to f$$

(Input) (class scores)

1 Layer Neural Net

Block Diagram:

$$x \to \boxed{Wx + b} \to f$$

(Input)

(class scores)

Expanded Block Diagram:

M classes
D features
1 example

1 Layer Neural Net

Block Diagram:

$$x \to \boxed{Wx + b} \to f$$

(Input)

(class scores)

Expanded Block Diagram:

1

NumPy:
$$f = np.dot(W, x) + b$$

M classes
D features
1 example