CS5670: Computer Vision
Noah Snavely

Lecture 23: Optimization and Neural Nets

Slides from Andrej Karpathy and Fei-Fei Li
http://vision.stanford.edu/teaching/cs231n/

Today

* Optimization
* Today and Thursday: Neural nets, CNNs
— Mon: http://cs231n.github.io/classification/

— Wed: http://cs231n.github.io/linear-classify/

— Today:
e http://cs231n.github.io/optimization-1/
e http://cs231n.github.io/optimization-2/

http://cs231n.github.io/classification/
http://cs231n.github.io/linear-classify/
http://cs231n.github.io/optimization-1/
http://cs231n.github.io/optimization-1/
http://cs231n.github.io/optimization-2/

Announcements

* Final project (P5) released, due Tuesday, 5/9,
by 11:59pm, to be done in groups of two

* Final exam will be handed out in class
Tuesday, due Friday, 5/12, by 5pm

* Project 3 voting results

Tird S Ve

Boting Li and Ran Godrich

(econd Pace

Arpit Sabherwal and Jaldeep Acharya

ot |
Bl oD RS \

Tirst D Yuce

Hong Gan and Renkai Xiang

Summary

1. Score function
f(z;,W,b) = Wz; +b

2. Loss function

% S [max(0, f(zis W), — flai W), +A)] + AR(W)

v JFY;

regularization loss

W-—-«

score function

>

;¢

>

|
v |

H

f(mi’W)

data loss

Y;

Other loss functions

* Scores are not very intuitive

* Softmax classifier
— Score function is same
— Intuitive output: normalized class probabilities
— Extension of logistic regression to multiple classes

Softmax classifier

score function

s M =Wae .
flz) . IS the same

softmax function

[1,-2,0] — [e!,e2,e% =[2.71,0.14,1] — [0.7,0.04, 0.26]

Interpretation: squashes values into range O to 1
P(y; | zi; W)

Cross-entropy loss

f(:L‘z', W) — W:L‘z'

score function
IS the same

}
e
Li—_—lO .= —f <+ lo E i

l.e. we're minimizing
the negative log
likelihood.

Aside: Loss function interpretation

* Probability
— Maximum Likelihood Estimation (MLE)

— Regularization is Maximum a posteriori (MAP)
estimation

H(p,q) = —), p(x)log q(x)
* Cross-entropy H :

— pis true distribution (1 for the correct class), q is
estimated

— Softmax classifier minimizes cross-entropy

— Minimizes the KL divergence (Kullback-Leibler)
between the distribution: distance between p and g

SVM vs. Softmax

matrix multiply + bias offset

hinge loss (SVM)

001 | 005 | 01 | 0.05 -15 0.0
07 | 02 | 005 | 0.16 22 + 0.2
0.0 |-045 | -0.2 | 0.03 -44 -0.3

W 56 b

£

Yi | 2

Example of the difference between the SVM and Softmax classifiers for one datapoint. In both cases we compute the same
score vector f (e.g. by matrix multiplication in this section). The difference is in the interpretation of the scores in f. The SVM
interprets these as class scores and its loss function encourages the correct class (class 2, in blue) to have a score higher by a
margin than the other class scores. The Softmax classifier instead interprets the scores as (unnormalized) log probabilities for
each class and then encourages the (normalized) log probability of the correct class to be high (equivalently the negative of it to
be low). The final loss for this example is 1.58 for the SVM and 1.04 for the Softmax classifier, but note that these numbers are

-2.85
max(0, -2.85-028 + 1) +
0.86 max(0, 0.86 - 0.28 + 1)
0.28 1.58
cross-entropy loss (Softmax)
-2.85 0.058 0.016
ex normalize

0.86 _]E, 236 | — 5 | 0.631 - log(0.353)

{to sum =

to one} 1.04
0.28 1.32 0.353

not comparable; They are only meaningful in relation to loss computed within the same classifier and with the same data.

Summary

e Have score function and loss function

— Will generalize the score function

* Find W and b to minimize loss
— SVM vs. Softmax

 Comparable in performance
* SVM satisfies margins, softmax optimizes probabilities

L=+ 33 [max(0, f(z;;W); — @ W), +4)] + A3 "Wy,
: k l

v JFYi

1 ey 2
L= N ;—log (Zjefl)—I-/\;;WM

Gradient Descent

negative gradient direction

Step size: learning rate
Too big: will miss the minimum
Too small: slow convergence

Analytic Gradient

17 Yi

Vo, L; = 1(w;fa:i — wg::cz + A > 0)x;

wal.Lz' s (Z 1(w?a:i - wgz:ci + A> O)) x;
J7Yi

Full gradient is the sum of all L;s over all training examples x;

In summary:

- Numerical gradient: approximate, slow, easy to write

- Analytic gradient: exact, fast, error-prone

=>

In practice: Always use analytic gradient, but check
Implementation with numerical gradient. This is called a
gradient check.

Gradient Descent

while
weights grad = evaluate gradient(loss fun, data, weights)
weights += - step size * weights grad

Mini-batch Gradient Descent

only use a small portion of the training set to compute the gradient.

while
data batch = sample training data(data, 256)

weights grad = evaluate gradient(loss fun, data batch, weights)

weights += - step size * weights grad

Common mini-batch sizes are ~100 examples.
e.g. Krizhevsky ILSVRC ConvNet used 256 examples

Stochastic Gradient Descent (SGD)

- use a single example at a time 1

while
data batch = sample training data(data, 256)
weights grad = evaluate gradient(loss fun, data batch, weights)
weights += - step size * weights grad

(also sometimes called on-line Gradient Descent)

Summary

Always use mini-batch gradient descent

Incorrectly refer to it as “doing SGD” as everyone else
(or call it batch gradient descent)
The mini-batch size is a hyperparameter, but it is not
very common to cross-validate over it (usually based
on practical concerns, e.g. space/time efficiency)

The dynamics of Gradient Descent

pull some weights up and some down

L= % Zz [max(O,f(SUi;W)j - f(fEi;W)y,,. + A)] U AZEW’?J
. ko1

1 JFY;

1 elv 2
L= N Z— log (> uk Z Z Wi always pull the weights

Zj el ko1 down

Momentum Update gadien

update

momentum

weights grad = evaluate gradient(loss fun, data, weights)
vel = vel * 0.9 - step size * weights grad
weights += vel

=

(Fig. 2a) (Fig. 2b)

Many other ways to perform optimization...

- Second order methods that use the Hessian (or its
approximation): BFGS, LBFGS, etc.

- Currently, the lesson from the trenches is that well-tuned
SGD+Momentum is very hard to beat for CNNSs.

Where are we?

e Classifiers: SVM vs. Softmax
* Gradient descent to optimize loss functions

— Batch gradient descent, stochastic gradient
descent

— Momentum

— Numerical gradients (slow, approximate), analytic
gradients (fast, error-prone)

Derivatives

* Given f(x), where x is vector of inputs
— Compute gradient of f at x: Vf(x)

Examples

flz+h)=f(z)+h dff(;)

f(z,y) = zy . 2 =3 By
df(z) _ lim f(z+h) — f(z)
dx h —0 h

f(x+h)=f(x)+h

df(z)
dx

Example: x =4,y = -3. => f(x,y) = -12
of _ of _
=9 | =%

partial derivatives

of o
Vi=l5a

]

gradient

Compound expressions: f(z,y,z) = (z +y)z

))))
q:m—|—y %q:]"aq:l f:qz a—gzz’a—izq
Chain rule:
of _of & 2
or Oq Oz —

Now onto
Deep
Learning

WHEN A USER TAKES A PHOTO
THE APP SHOULD CHECK WHETHER
THEY'RE. IN A NATIONAL PARK ...

SURE, ERSY GIS LOOKUR
GIMME A FEW HOlRS.

. AND CHECK WHETHER
TrEPHOTDISOFABlRD

ILLNEEDAH'LSEHR(J-l

i

IN C5, IT CAN BE HARD TO EXPLAIN

THE DIFFERENCE BETWEEN THE EASY
AND THE VIRTUALLY IMPOSSIBLE.

[Monroe 2014, xkcd]

Flickr Flickr Blog @flickr @flickrapi Developer Guidelines API Jobs O Searcl

Posted on October 20, 2014 by Rob Hess, Clayton Mellina, and Friends «— Previous

Introducing: Flickr PARK or BIRD

NATIONAL
PARK

Zion National Park Utah by Les Haines (o) A

Slide: Flickr

code.flickr.com

flickr.com Flickr jobs!

EXAMPLE PHOTOS

: iy
) £

Photo credits

~ARK or BIRD

Want to know if your photo is from a U.S. national park? Want to
know if it contains a bird? Just drag it into the box to the left, and
we'll tell you. We'll use the GPS embedded in your photo (if it's
there) to see whether it's from a park, and we'll use our super-
cool computer vision skills to try to see whether it's a bird (which
is a hard problem, but we do a pretty good job at it).

To try it out, just drag any photo from your desktop into the
upload box, or try dragging any of our example images. We'll give
you your answers below!

Want to know more about PARK or BIRD, including why the heck
we did this? Just click here for more info — @

PARKY BIRDY

Slide: Flickr

code fl iC kr.com flickr.com Flickr jobs!

PARK or BIRD

Want to know if your photo is from a U.S. national park? Want to
know if it contains a bird? Just drag it into the box to the left, and
we'll tell you. We'll use the GPS embedded in your photo (if it's
there) to see whether it's from a park, and we'll use our super-
cool computer vision skills to try to see whether it's a bird (which
is a hard problem, but we do a pretty good job at it).

To try it out, just drag any photo from your desktop into the
upload box, or try dragging any of our example images. We'll give
you your answers below!

Want to know more about PARK or BIRD, including why the heck
we did this? Just click here for more info — €

PARKY? BIRDY

YES NO

Ah yes, Bryce Canyon is truly Beautiful clouds, but | don't see
beautiful. any birds flying up there.

Photo credits

Slide: Flickr

code.flickr.com

flickr.com

Flickr jobs!

EXAMPLE PHOTOS

B Gy

_ ,,_.‘

Photo credits

PARK or BIRD

Want to know if your photo is from a U.S. national park? Want to
know if it contains a bird? Just drag it into the box to the left, and
we'll tell you. We'll use the GPS embedded in your photo (if it's
there) to see whether it's from a park, and we'll use our super-
cool computer vision skills to try to see whether it's a bird (which
is a hard problem, but we do a pretty good job at it).

To try it out, just drag any photo from your desktop into the
upload box, or try dragging any of our example images. We'll give
you your answers below!

Want to know more about PARK or BIRD, including why the heck
we did this? Just click here for more info — @

PARKY? BIRDY

¥ YES YES

Hey, yeah! | went to Everglades
once!

Hey! Nice bird shot!

Slide: Flickr

> pbird
l =0
l =0
O
I I I -0 [psunset
-0
D — = A ° ~o
> o >
=il = o No pdog
= = o)
=3 o o
° ° > p
o o cat
" . o o
convolution + max pooling vec |4 k
| nonlinearity | o
I |
convolution + pooling layers fully connected layers Nx binary classification

In the next week, we’ll learn what this is,
how to compute it, and how to learn it

Slide: Flickr

What is a Convolutional
Neural Network (CNN)?

th—» function |— | function —»---—>| | — “horse”
- |

P(class)

Key questions:
- What kinds of of functions should we use?

- How do we learn the parameters for those functions?

&
g
A O
g
> 0O
Z £
S
O w
>
O ERREERRREE}
Q. I I
-
X
: ——)
G [(EEEEEREEEN]
@)
I R [[[[[[[[
)
L] mllllllnllll

= [FE] I
— IIIIIIIIII
— |EREEEE NN

RelLU
Conv

Conv

[Andrej Karpathy]

CNNs Iin 1989: “LeNet”

CNNSs were not invented overnight

C3: f. maps 16@10x10
C1: feature maps S4: 1. maps 16@5x5

INPUT
30%32 6@28x28

S2: 1. maps
6@14x14

I
| Full conrlection | Gaussian connections

Convolutions Subsampling Convolutions Subsampling Full connection

LeNet: a classifier for handwritten digits. [LeCun 1989]

CNNs in 2012: “SuperVision”
(aka “AlexNet”)

“AlexNet” — Won the ILSVRC2012 Challenge

N N H

w

Major breakthrough: 15.3% Top-5 error on ILSVRC2012 |
(Next best 25.7%)
224 5 1\ = N R > > >
T R 13 3| | ‘__13;;:«. 13 dense dense
3 [% 1000
192 192 128 Max L L
Max T Max pooling 2048 a04s
pooling pooling

48

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440-186,624—64,896-64,896—43,264—

4096—4096—1000. _ _
[Krizhevsky, Sutskever, Hinton. NIPS 2012]

CNNs in 2014: "GoogLeNet”

“GooglLeNet” — Won the ILSVRC2014 Challenge

6.67% top-5 error ratel
(1000 classes!)

[Szegedy et al, arXiv 2014]

CNNSs in 2014: "VGGNet”

“VGGNet” — Second Place in the ILSVRC2014 Challenge

ConvNet Configuration
A A-LRN B C D E
11 weight | 11 weight | 13 weight | 16 weight [16 weight | 19 weight
layers layers layers layers layers layers
Tnput (224 x 224 RGB image)

conv3-64 conv3-64 conv3-64 conv3-64 conv3-64 conv3-64
LRN conv3-64 conv3-64 conv3-64 conv3-64

maxpool
conv3-128 | conv3-128 | conv3-128 | conv3-128 | conv3-128 | conv3-128
conv3-128 | conv3-128 | conv3-128 | conv3-128

maxpool
conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256
conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256
convl-256 | conv3-256 | conv3-256
conv3-256

maxpool
conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512
conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512
convl-512 | conv3-512 | conv3-512
conv3-512

maxpool
conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512
conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512
convl-512 | conv3-512 | conv3-512
conv3-512

maxpool

FC-4096

FC-4096

FC-1000

soft-max

No fancy
picture, sorry

7.3% top-5 error rate

(and 1st place in the
detection challenge)

[Simonyan et al, arXiv 2014]

CNNs In 2015: “ResNet”J

AlexNet, 8 layers VGG, 19 layers GoogLeNet, 22 layers ResNet, 152 layers
(ILSVRC 2012) (ILSVRC 2014) (ILSVRC 2014) (ILSVRC 2015)

Note: Despite its massive depth, ResNet
has a lower runtime complexity than VGG

https://voutu.be/1PGL]-uKT1w?t=4m40s

[Kaiming et al, “Deep Residual Learning for Image Recognition” 2015]

CNNs In 2015: "ResNet”

* 1st places in all five main tracks
* ImageNet Classification: “Ultra-deep” (quote Yann) 152-layer nets
* ImageNet Detection: 16% better than 2nd
* ImageNet Localization: 27% better than 2nd
* COCO Detection: 11% better than 2nd
* COCO Segmentation: 12% better than 2nd

[Kaiming et al, “Deep Residual Learning for Image Recognition” 2015]

Aside: Before Deep Learning

el g i "I \
- WP‘WW“W iy “I|MFJ]WUM " |II — | SVM [— Ans
L

Input Extract Concatenate into Linear
Pixels Features a vector X Classifier

Yol

Figure: Karpathy 2016

airplane
automobile

bird

cat

deer

dog

frog
horse
ship

truck

¥

o R H&g&’l
10K

48 PRSI
il AN -EN

NS L
Sk MEFEYES |

—

-

=)

-

") .

. -
]

2 BN T
i [Efe MENE
HERISd=Ne
25 el) B

> “n
3 ¢ o
. ¥ . at 57 4
‘ “ :
% -

Why use features?
Why not pixels?

flzi, W,b) = Wz; +b

Q: What would be a
very hard set of classes
for a linear classifier to
distinguish?

(assuming x = pixels)

Slide from Karpathy 2016

The last layer of (most) CNNs
are linear classifiers

This piece Is just a linear classifi’e-r)

i1 1
Al
E ‘E;{Hﬁﬁ.@ﬁ W*
Al @ E E Eﬂ}ﬁﬁﬂm
|1 H gﬁ gﬂ Biss
-
(GoogLeNet)

Input Perform everything with a big neural
Pixels network, trained end-to-end

Key: perform enough processing so that by the time you get
to the end of the network, the classes are linearly separable

Linearly separable classes

car classifier

airplane classifier/] &%

\

deer classifier

Example: Visualizing AlexNet in 2D with t-SNE

NN 3\ .
N : N s 3 3
192 192 2048 zoas \dense
oy 128 ’ Ok 204
13 13
‘ e
————————— 3 = ENER 3 —-——::_“”":"“ b
N = 3l \ 3= ' 13 dense’| |dense
i \ L
192 192 128 Max H H
Max 128 Max pooling 2048 2048
pooling pooling .
Linear
Classifier

structure, construction
covering

« commodity, trade good, good
* conveyance, transport
invertebrate

bird

hunting dog

(c) DeCAF; (d) DeCAFg

(2D visualization using t-SNE) [Donahue, “DeCAF: DeCAF: A Deep Convolutional ...”, arXiv 2013]

Questions?

