CS5670: Computer Vision Noah Snavely

Lecture 33: Recognition Basics

Slides from Andrej Karpathy and Fei-Fei Li http://vision.stanford.edu/teaching/cs231n/

Announcements

- Quiz moved to Tuesday
- Project 4 due tomorrow, April 28, by 11:59pm
- Project 5 to be assigned soon
- Take-home final: Assigned Tuesday May 9 (in class), due May 11 (by 5pm)

Today

- Image classification pipeline
- Training, validation, testing
- Nearest neighbor classification
- Score function and loss function

Building up to CNNs for learning
 – Next 2-3 lectures on deep learning

Categorization

f() = "apple" f() = "tomato" f() = "cow"

Dataset: ETH-80, by B. Leibe Slide credit: L. Lazebnik

Dataset: ETH-80, by B. Leibe Slide credit: D. Hoiem, L. Lazebnik

Input image

Results

	Color	$D_x D_y$	Mag-Lap	PCA Masks	PCA Gray	Cont. Greedy	Cont. DynProg	Avg.
apple	57.56%	85.37%	80.24%	78.78%	88.29%	77.07%	76.34%	77.66%
pear	66.10%	90.00%	85.37%	99.51%	99.76%	90.73%	91.71%	89.03%
tomato	98.54%	94.63%	97.07%	67.80%	76.59%	70.73%	70.24%	82.23%
cow	86.59%	82.68%	94.39%	75.12%	62.44%	86.83%	86.34%	82.06%
dog	34.63%	62.44%	74.39%	72.20%	66.34%	81.95%	82.93%	67.84%
horse	32.68%	58.78%	70.98%	77.80%	77.32%	84.63%	84.63%	69.55%
cup	79.76%	66.10%	77.80%	96.10%	96.10%	99.76%	99.02%	87.81%
car	62.93%	98.29%	77.56%	100.0%	97.07%	99.51%	100.0%	90.77%
total	64.85%	79.79%	82.23%	83.41%	82.99%	86.40%	86.40%	80.87%

IM GENET Large Scale Visual Recognition Challenge

Dense grid descriptor: HOG, LBP Coding: local coordinate, super-vector Pooling, SPM Linear SVM

<u>Year 2010</u>

NEC-UIUC

[Krizhevsky NIPS 2012]

Deep Learning or CNNs

- Since 2012, huge impact..., best results
- Can soak up all the data for better prediction

Image Classification

(assume given set of discrete labels) {dog, cat, truck, plane, ...}

cat

Image Classification: Problem

Data-driven approach

- Collect a database of images with labels
- Use ML to train an image classifier
- Evaluate the classifier on test images Example training set

Slides from Andrej Karpathy and Fei-Fei Li http://vision.stanford.edu/teaching/cs231n/

Data-driven approach

- Collect a database of images with labels
- Use ML to train an image classifier
- Evaluate the classifier on test images

Train and Test

Split dataset between training images and test images

• Be careful about inflation of results

Classifiers

- Nearest Neighbor
- kNN

- SVM
- •

First: Nearest Neighbor (NN) Classifier

• Train

- Remember all training images and their labels

- Predict
 - Find the closest (most similar) training image
 - Predict its label as the true label

How to find the most similar training image? What is the distance metric?

L1 distance:

$$d_1(I_1,I_2) = \sum_p |I_1^p - I_2^p|$$

Where I_1 denotes image 1, and p denotes each pixel

test image					training image				pix	pixel-wise absolute value differences					
	56	32	<mark>1</mark> 0	18		10	20	24	17		46	12	14	1	
	90	23	128	133		8	10	89	100		82	13	39	33	
	24	26	178	200	-	12	16	178	170	-	12	10	0	30	456
	2	0	255	220		4	32	233	112		2	32	22	108	

Choice of distance metric

- Hyperparameter
- L1 (Manhattan) distance $d_1(I_1, I_2) = \sum_p |I_1^p - I_2^p|$ $d_2(I_1, I_2) = \sqrt{\sum_p (I_1^p - I_2^p)^2}$

- Two most commonly used special cases of p-norm $||x||_p = (|x_1|^p + \dots + |x_n|^p)^{\frac{1}{p}}$ $p \ge 1, x \in \mathbb{R}^n$

Visualization: L2 distance

CIFAR-10 and NN results

Example dataset: CIFAR-10 10 labels

50,000 training images, each image is tiny: 32x32 **10,000** test images.

CIFAR-10 and NN results

Example dataset: CIFAR-10 10 labels 50,000 training images 10,000 test images.

For every test image (first column), examples of nearest neighbors in rows

k-nearest neighbor

- Find the k closest points from training data
- Labels of the k points "vote" to classify

Hyperparameters

- What is the best distance to use?
- What is the best value of k to use?

• i.e., how do we set the hyperparameters?

- Very problem-dependent
- Must try them all and see what works best

Try out what hyperparameters work best on test set.

Trying out what hyperparameters work best on test set:

Very bad idea. The test set is a proxy for the generalization performance! Use only **VERY SPARINGLY**, at the end.

train data	test data

Validation

Cross-validation

Slides from Andrej Karpathy and Fei-Fei Li http://vision.stanford.edu/teaching/cs231n/

Example of 5-fold cross-validation for the value of **k**.

Each point: single outcome.

The line goes through the mean, bars indicated standard deviation

(Seems that $k \sim = 7$ works best for this data)

How to pick hyperparameters?

- Methodology
 - Train and test
 - Train, validate, test
- Train for original model
- Validate to find hyperparameters
- Test to understand generalizability

kNN -- Complexity and Storage

• N training images, M test images

- Training: O(1)
- Testing: O(MN)

- Hmm...
 - Normally need the opposite
 - Slow training (ok), fast testing (necessary)

k-Nearest Neighbor on images never used.

- terrible performance at test time
- distance metrics on level of whole images can be very unintuitive

(all 3 images have same L2 distance to the one on the left)

Instead

• Image classification using linear classifiers

Instead

• Image classification using linear classifiers

- Need
 - Score function: raw data to class scores
 - Loss function: agreement between predicted scores and ground truth labels

Score function

class scores

Slides from Andrej Karpathy and Fei-Fei Li http://vision.stanford.edu/teaching/cs231n/

Score function: f

Parametric approach

image parameters f(x,W)

10 numbers, indicating class scores

[32x32x3] array of numbers 0...1 (3072 numbers total)

Parametric approach: Linear classifier

Parametric approach: Linear classifier

Linear Classifier

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Interpretation: Template matching

 $f(x_i, W, b) = Wx_i + b$

Geometric Interpretation

Linear classifiers

• Find linear function (*hyperplane*) to separate positive and negative examples

Support vector machines

• Find hyperplane that maximizes the *margin* between the positive and negative examples

C. Burges, <u>A Tutorial on Support Vector Machines for Pattern Recognition</u>, Data Mining and Knowledge Discovery, 1998

Support vector machines

• Find hyperplane that maximizes the *margin* between the positive and negative examples

 \mathbf{x}_i positive $(y_i = 1)$: $\mathbf{x}_i \cdot \mathbf{w} + b \ge 1$ \mathbf{x}_i negative $(y_i = -1)$: $\mathbf{x}_i \cdot \mathbf{w} + b \le -1$ For support, vectors, $\mathbf{x}_i \cdot \mathbf{w} + b = \pm 1$ Distance between point
and hyperplane: $|\mathbf{x}_i \cdot \mathbf{w} + b|$
 $||\mathbf{w}||$ Therefore, the margin is $2/||\mathbf{w}||$

Bias Trick

 x_i

Summary

Data-driven: Train, validate, test
 – Need labeled data

- Classifier
 - Nearest neighbor, kNN

Loss function, cost/objective function

- Given ground truth labels (yi), scores f (xi, W)
 how unhappy are you with the scores?
- Loss function or objective/cost function

• Want to minimize the loss function

Loss function, cost/objective function

Given ground truth labels (yi) and scores f(xi, W)
 – how unhappy are you with the scores?

Intuition

Loss fn: Multi-class SVM loss

Given ground truth labels (yi) and scores f(xi, W)
 how unhappy are you with the scores?

$$L_i = \sum_{j
eq y_i} \max ig(0, f(x_i, W)_j - f(x_i, W)_{y_i} + \Delta ig)$$

(One possible generalization of Binary Support Vector Machine to multiple classes)

$$L_i = C \max(0, 1 - y_i w^T x_i) + R(W)$$

Loss fn: interpretation

Example: loss

$$\begin{array}{ll} {\sf Example:} & L_i = \sum_{j \neq y_i} \max(0, f(x_i, W)_j - f(x_i, W)_{y_i} + \Delta) & & \\ & & f(x_i, W) = [13, -7, 11] & & {\sf e.g. \ 10} \\ & & y_i = 0 \end{array}$$

loss = ?

Example: loss

$$\begin{array}{ll} {\sf Example:} & L_i = \sum_{j \neq y_i} \max(0, f(x_i, W)_j - f(x_i, W)_{y_i} + \Delta) & & & \\ & & f(x_i, W) = [13, -7, 11] & & {\sf e.g. \ 10} \\ & & y_i = 0 \end{array}$$

 $L_i = \max(0, -7 - 13 + 10) + \max(0, 11 - 13 + 10)$

Need more..

- Regularization
 - Ambiguity: W is not unique
 - If loss is 0, k W also has 0 loss
 - Add a regularization penalty
 - Try to keep the weights low
 - Also, weights can blow up if you don't have it

Important: regularization

Regularization strength

Determine by cross-validation

Final loss function

$$L = rac{1}{N} \sum_i \sum_{j
eq y_i} \left[\max(0, f(x_i; W)_j - f(x_i; W)_{y_i} + \Delta)
ight] + \lambda R(W)$$

Can set delta to 1

Summary

- 1. Score function
 - $f(x_i, W, b) = Wx_i + b$
- 2. Loss function

$$L = rac{1}{N} \sum_i \sum_{j
eq y_i} \left[\max(0, f(x_i; W)_j - f(x_i; W)_{y_i} + \Delta)
ight] + \lambda R(W)$$

http://vision.stanford.edu/teaching/cs231n/linear-classify-demo/

Summary

Have score function and loss function
 Will generalize the score function

- Find W and b to minimize loss
 Minimize loss using gradient descent
- Now to CNNs