CS5670: Computer Vision

Noah Snavely

Lecture 15: Structure from motion

Readings

• Szeliski, Chapter 7.1 - 7.4

Structure from motion

- Given many images, how can we
 - a) figure out where they were all taken from?
 - b) build a 3D model of the scene?

This is (roughly) the structure from motion problem

Structure from motion

- Input: images with points in correspondence $p_{i,j} = (u_{i,j}, v_{i,j})$
- Output
 - structure: 3D location \mathbf{x}_i for each point p_i
 - motion: camera parameters \mathbf{R}_j , \mathbf{t}_j possibly \mathbf{K}_j
- Objective function: minimize reprojection error

Input

Camera calibration & triangulation

- Suppose we know 3D points
 - And have matches between these points and an image
 - How can we compute the camera parameters?
- Suppose we have know camera parameters, each of which observes a point
 - How can we compute the 3D location of that point?

Structure from motion

- SfM solves both of these problems at once
- A kind of chicken-and-egg problem
 - (but solvable)

Photo Tourism

First step: how to get correspondence?

Feature detection and matching

Feature detection

Detect features using SIFT [Lowe, IJCV 2004]

Feature detection

Detect features using SIFT [Lowe, IJCV 2004]

Feature matching

Match features between each pair of images

Feature matching

Refine matching using RANSAC to estimate fundamental matrix between each pair

Correspondence estimation

 Link up pairwise matches to form connected components of matches across several images

Image connectivity graph

(graph layout produced using the Graphviz toolkit: http://www.graphviz.org/)

Structure from motion

Problem size

- What are the variables?
- How many variables per camera?
- How many variables per point?

- Trevi Fountain collection
 - 466 input photos
 - + > 100,000 3D points
 - = very large optimization problem

Structure from motion

Minimize sum of squared reprojection errors:

- Minimizing this function is called bundle adjustment
 - Optimized using non-linear least squares,
 e.g. Levenberg-Marquardt

Is SfM always uniquely solvable?

Is SfM always uniquely solvable?

• No...

Photo Explorer

<u>Demo</u>

Questions?

SfM – Failure cases

Necker reversal

Structure from Motion – Failure cases

Repetitive structures

SfM applications

- 3D modeling
- Surveying
- Robot navigation and mapmaking
- Visual effects ("Match moving")
 - https://www.youtube.com/watch?v=RdYWp70P_kY

Applications – Photosynth

Applications – Hyperlapse

https://www.youtube.com/watch?v=SOpwHaQnRSY