CS5670 : Computer Vision

 Noah Snavely
Lecture 14: Two-view geometry

Announcements

- Midterm graded
- Total: 95 points
- Mean: 79.4
- Median: 82
- Project 3 released

Announcements

- Reading: Szeliski, Ch. 7.2

Fundamental matrix song

https://www.youtube.com/watch?v=DgGV3I82NTk

Epipolar geometry

Rectified case

- Images have the same orientation, \mathbf{t} parallel to image planes
- Where are the epipoles?

Fundamental matrix - calibrated case

$\tilde{\mathbf{q}}^{T} \mathbf{R}[\mathbf{t}]_{\times} \tilde{\mathbf{p}}=0$
$\underset{\mathbf{q}^{T}}{\tilde{\mathbf{q}}^{T} \mathbf{E} \tilde{\mathbf{p}}}=0$

Fundamental matrix - uncalibrated case

Properties of the Fundamental Matrix

- Fp is the epipolar line associated with \mathbf{p}
- $\mathbf{F}^{T} \mathbf{q}$ is the epipolar line associated with \mathbf{q}
- $\mathbf{F e}_{1}=\mathbf{0}$ and $\mathbf{F}^{T} \mathbf{e}_{2}=\mathbf{0}$
- \mathbf{F} is rank 2
- How many parameters does \mathbf{F} have?

Rectified case

$\mathbf{R}=\mathbf{I}_{3 \times 3}$
$\mathbf{t}=\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]^{T}$
$\left[\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0\end{array}\right]$

Stereo image rectification

- reproject image planes onto a common
- plane parallel to the line between optical centers
- pixel motion is horizontal after this transformation
- two homographies (3x3 transform), one for each input image reprojection
> C. Loop and Z. Zhang. Computing Rectifying Homographies for Stereo
 Vision. IEEE Conf. Computer Vision and Pattern Recognition, 1999.

Original stereo pair

Questions?

Estimating F

- If we don't know $\mathbf{K}_{1}, \mathbf{K}_{2}, \mathbf{R}$, or \mathbf{t}, can we estimate \mathbf{F} for two images?
- Yes, given enough correspondences

Estimating F - 8-point algorithm

- The fundamental matrix F is defined by

$$
\mathbf{x}^{\prime \mathrm{T}} \mathbf{F x}=0
$$

for any pair of matches x and x^{\prime} in two images.

- Let $x=(u, v, 1)^{\top}$ and $x^{\prime}=\left(u^{\prime}, v^{\prime}, 1\right)^{\top}$,

$$
\mathbf{F}=\left[\begin{array}{lll}
f_{11} & f_{12} & f_{13} \\
f_{21} & f_{22} & f_{23} \\
f_{31} & f_{32} & f_{33}
\end{array}\right]
$$

each match gives a linear equation
$u u^{\prime} f_{11}+v u^{\prime} f_{12}+u^{\prime} f_{13}+u v^{\prime} f_{21}+v v^{\prime} f_{22}+v^{\prime} f_{23}+u f_{31}+v f_{32}+f_{33}=0$

8-point algorithm

- In reality, instead of solving $\mathbf{A f}=0$, we seek \mathbf{f} to minimize $\|\mathbf{A f}\|$, least eigenvector of $\mathbf{A}^{\mathrm{T}} \mathbf{A}$.

8-point algorithm - Problem?

- F should have rank 2
- To enforce that \mathbf{F} is of rank 2, F is replaced by F^{\prime} that minimizes $\left\|\mathbf{F}-\mathbf{F}^{\prime}\right\|$ subject to the rank constraint.
- This is achieved by SVD. Let $\mathbf{F}=\mathbf{U} \Sigma \mathbf{V}$, ${ }^{\mathrm{T}}$ where

$$
\Sigma=\left[\begin{array}{ccc}
\sigma_{1} & 0 & 0 \\
0 & \sigma_{2} & 0 \\
0 & 0 & \sigma_{3}
\end{array}\right] \text {, let } \quad \Sigma^{\prime}=\left[\begin{array}{ccc}
\sigma_{1} & 0 & 0 \\
0 & \sigma_{2} & 0 \\
0 & 0 & 0
\end{array}\right]
$$

then $\mathbf{F}^{\prime}=\mathbf{U} \Sigma^{\prime} \mathbf{V}^{\mathrm{T}}$ is the solution.

8-point algorithm

\% Build the constraint matrix

\% Extract fundamental matrix from the column of V
\% corresponding to the smallest singular value.
F = reshape (V(:,9),3,3)';
\% Enforce rank2 constraint
[U,D,V] = svd(F);
$F=U * \operatorname{diag}([D(1,1) \quad D(2,2) 0]) * V^{\prime} ;$

8-point algorithm

- Pros: it is linear, easy to implement and fast
- Cons: susceptible to noise

Problem with 8-point algorithm

Normalized 8-point algorithm

 normalized least squares yields good results Transform image to $\sim[-1,1] \times[-1,1]$

Normalized 8-point algorithm

1. Transform input by $\hat{\mathbf{x}}_{\mathbf{i}}=\mathbf{T x}_{\mathbf{i}}, \hat{\mathbf{x}}_{\mathbf{i}}^{\prime}=\mathbf{T x}_{\mathbf{i}}^{\prime}$
2. Call 8-point on $\hat{\mathbf{x}}_{\mathbf{i}}, \hat{\mathbf{x}}_{\mathbf{i}}^{\prime}$ to obtain $\hat{\mathbf{F}}$
3. $\mathbf{F}=\mathbf{T}^{\mathrm{T}} \hat{\mathbf{F}} \mathbf{T}$

Normalized 8-point algorithm

```
[x1, T1] = normalise2dpts(x1);
[x2, T2] = normalise2dpts(x2);
A = [x2(1,:)'.*x1(1,:)' x2(1,:)'.*x1(2,:)' x2(1,:)' ...
    x2(2,:)'.*x1(1,:)' x2(2,:)'.*x1(2,:)' x2(2,:)' ...
    x1(1,:)' x1(2,:)' ones(npts,1) ];
    [U,D,V] = svd(A);
F = reshape(V(:,9),3,3)';
    [U,D,V] = svd(F);
F = U*diag([D(1,1) D(2,2) 0])*V';
% Denormalise
F = T2'*F*T1;
```


Results (ground truth)

Results (8-point algorithm)

Results (normalized 8-point algorithm)

■ Normalized 8-point algorithm

What about more than two views?

- The geometry of three views is described by a $3 \times 3 \times 3$ tensor called the trifocal tensor
- The geometry of four views is described by a $3 \times 3 \times 3 \times 3$ tensor called the quadrifocal tensor
- After this it starts to get complicated...

Large-scale structure from motion

