CS5670: Computer Vision
Noah Snavely

Single-View Modeling, Part 2

Announcements

- Midterm due today by the beginning of class
- Professor Snavely out Thursday
- Zhengqi will be in NYC to give a guest lecture
- Project 3 coming out soon

$$
111
$$

$$
118
$$

Perspective cues

Making measurements in images

WARBY PARKER

Measure your pupillary distance (PD)

Your PD is the distance between your pupils. To measure it, follow the instructions below - once you submit your photo, our team of experts will determine your PD and email you once we've applied it to your order.

Wearing glasses?
Take 'em off before you get started.

Hold up any card with a magnetic strip (we use this for scale).

Look straight ahead and snap a photo.

Comparing heights

Measuring height

Computing vanishing points (from

- Intersect $p_{1} q_{1}$ with $p_{2} q_{2}$

$$
v=\left(p_{1} \times q_{1}\right) \times\left(p_{2} \times q_{2}\right)
$$

Least squares version

- Better to use more than two lines and compute the "closest" point of intersection
- See notes by Bob Collins for one good way of doing this:
- http://www-2.cs.cmu.edu/~ph/869/www/notes/vanishing.txt

Measuring height without a ruler

Measuring height without a ruler

Compute Z from image measurements

- Need more than vanishing points to do this

The cross ratio

- A Projective Invariant
- Something that does not change under projective transformations (including perspective projection)
The cross-ratio of 4 collinear points

$$
\frac{\left\|\mathbf{P}_{3}-\mathbf{P}_{1}\right\|\left\|\mathbf{P}_{4}-\mathbf{P}_{2}\right\|}{\left\|\mathbf{P}_{3}-\mathbf{P}_{2}\right\|\left\|\mathbf{P}_{4}-\mathbf{P}_{1}\right\|}
$$

$$
\mathbf{P}_{i}=\left[\begin{array}{c}
X_{i} \\
Y_{i} \\
Z_{i} \\
1
\end{array}\right]
$$

Can permute the point ordering $\quad \frac{\left\|\mathbf{P}_{1}-\mathbf{P}_{3}\right\|\left\|\mathbf{P}_{4}-\mathbf{P}_{2}\right\|}{\left\|\mathbf{P}_{1}-\mathbf{P}_{2}\right\|\left\|\mathbf{P}_{4}-\mathbf{P}_{3}\right\|}$

- $4!=24$ different orders (but only 6 distinct values)

This is the fundamental invariant of projective geometry

Measuring height

Measuring height

Measuring height

\mathbf{V}_{z}

What if the point on the ground plane \mathbf{b}_{0} is not known?

- Here the person is standing on the box, height of box is known
- Use one side of the box to help find \mathbf{b}_{0} as shown above

3D Modeling from a photograph

St. Jerome in his Study, H. Steenwick

3D Modeling from a photograph

3D Modeling from a photograph

Flagellation, Piero della Francesca

3D Modeling from a photograph

video by Antonio Criminisi

3D Modeling from a photograph

Camera calibration

- Goal: estimate the camera parameters
- Version 1: solve for projection matrix

$$
\mathbf{X}=\left[\begin{array}{c}
w x \\
w y \\
w
\end{array}\right]=\left[\begin{array}{llll}
* & * & * & * \\
* & * & * & * \\
* & * & * & *
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]=\boldsymbol{\Pi} \mathbf{X}
$$

- Version 2: solve for camera parameters separately
- intrinsics (focal length, principle point, pixel size)
- extrinsics (rotation angles, translation)
- radial distortion

Vanishing points and projection matrix

- $\boldsymbol{\pi}_{1}=\boldsymbol{\Pi}\left[\begin{array}{llll}1 & 0 & 0 & 0\end{array}\right]^{T}=\mathbf{v}_{\mathrm{x}}(\mathrm{X}$ vanishing point $)$
- similarly, $\boldsymbol{\pi}_{2}=\mathbf{v}_{\mathrm{Y}}, \boldsymbol{\pi}_{3}=\mathbf{v}_{\mathrm{Z}}$
- $\boldsymbol{\pi}_{4}=\boldsymbol{\Pi}\left[\begin{array}{llll}0 & 0 & 0 & 1\end{array}\right]^{T}=$ projection of world origin

$$
\boldsymbol{\Pi}=\left[\begin{array}{llll}
\mathbf{v}_{X} & \mathbf{v}_{Y} & \mathbf{v}_{Z} & \mathbf{0}
\end{array}\right]
$$

Not So Fast! We only know v's up to a scale factor

$$
\mathbf{\Pi}=\left[\begin{array}{llll}
a \mathbf{v}_{X} & b \mathbf{v}_{Y} & c \mathbf{v}_{Z} & \mathbf{0}
\end{array}\right]
$$

- Can fully specify by providing 3 reference points

Calibration using a reference object

- Place a known object in the scene
- identify correspondence between image and scene
- compute mapping from scene to image

Issues

- must know geometry very accurately
- must know 3D->2D correspondence

Chromaglyphs

Courtesy of Bruce Culbertson, HP Labs
http://www.hpl.hp.com/personal/Bruce_Culbertson/ibr98/chromagl.htm

AR codes

Estimating the projection matrix

- Place a known object in the scene
- identify correspondence between image and scene
- compute mapping from scene to image

$$
\left[\begin{array}{c}
u_{i} \\
v_{i} \\
1
\end{array}\right] \cong\left[\begin{array}{llll}
m_{00} & m_{01} & m_{02} & m_{03} \\
m_{10} & m_{11} & m_{12} & m_{13} \\
m_{20} & m_{21} & m_{22} & m_{23}
\end{array}\right]\left[\begin{array}{c}
X_{i} \\
Y_{i} \\
Z_{i} \\
1
\end{array}\right]
$$

Direct linear calibration

$$
\begin{gathered}
{\left[\begin{array}{c}
u_{i} \\
v_{i} \\
1
\end{array}\right] \cong\left[\begin{array}{llll}
m_{00} & m_{01} & m_{02} & m_{03} \\
m_{10} & m_{11} & m_{12} & m_{13} \\
m_{20} & m_{21} & m_{22} & m_{23}
\end{array}\right]\left[\begin{array}{c}
X_{i} \\
Y_{i} \\
Z_{i} \\
1
\end{array}\right]} \\
u_{i}=\frac{m_{00} X_{i}+m_{01} Y_{i}+m_{02} Z_{i}+m_{03}}{m_{20} X_{i}+m_{21} Y_{i}+m_{22} Z_{i}+m_{23}} \\
v_{i}=\frac{m_{10} X_{i}+m_{11} Y_{i}+m_{12} Z_{i}+m_{13}}{m_{20} X_{i}+m_{21} Y_{i}+m_{22} Z_{i}+m_{23}} \\
u_{i}\left(m_{20} X_{i}+m_{21} Y_{i}+m_{22} Z_{i}+m_{23}\right)=m_{00} X_{i}+m_{01} Y_{i}+m_{02} Z_{i}+m_{03} \\
v_{i}\left(m_{20} X_{i}+m_{21} Y_{i}+m_{22} Z_{i}+m_{23}\right)=m_{10} X_{i}+m_{11} Y_{i}+m_{12} Z_{i}+m_{13}
\end{gathered}
$$

Direct linear calibration

$\left[\begin{array}{cccccccccccc}X_{1} & Y_{1} & Z_{1} & 1 & 0 & 0 & 0 & 0 & -u_{1} X_{1} & -u_{1} Y_{1} & -u_{1} Z_{1} & -u_{1} \\ 0 & 0 & 0 & 0 & X_{1} & Y_{1} & Z_{1} & 1 & -v_{1} X_{1} & -v_{1} Y_{1} & -v_{1} Z_{1} & -v_{1} \\ X_{n} & Y_{n} & Z_{n} & 1 & 0 & 0 & 0 & 0 & -u_{n} X_{n} & -u_{n} Y_{n} & -u_{n} Z_{n} & -u_{n} \\ 0 & 0 & 0 & 0 & X_{n} & Y_{n} & Z_{n} & 1 & -v_{n} X_{n} & -v_{n} Y_{n} & -v_{n} Z_{n} & -v_{n}\end{array}\right]\left[\begin{array}{l}m_{00} \\ m_{01} \\ m_{02} \\ m_{03} \\ m_{10} \\ m_{11} \\ m_{12} \\ m_{13} \\ m_{20} \\ m_{21} \\ m_{22}\end{array}\right]=\left[\begin{array}{c}0 \\ 0 \\ \vdots \\ 0 \\ 0\end{array}\right]$
Can solve for m_{ij} by linear least squares

- use eigenvector trick that we used for homographies

Direct linear calibration

- Advantage:
- Very simple to formulate and solve
- Disadvantages:
- Doesn't tell you the camera parameters
- Doesn't model radial distortion
- Hard to impose constraints (e.g., known f)
- Doesn't minimize the right error function

For these reasons, nonlinear methods are preferred

- Define error function E between projected 3D points and image positions
- E is nonlinear function of intrinsics, extrinsics, radial distortion
- Minimize E using nonlinear optimization techniques

Alternative: multi-plane calibration

Images courtesy Jean-Yves Bouguet, Intel Corp.

Advantage

- Only requires a plane
- Don't have to know positions/orientations
- Good code available online! (including in OpenCV)
- Matlab version by Jean-Yves Bouget: http://www.vision.caltech.edu/bouguetj/calib doc/index.html
- Zhengyou Zhang's web site: http://research.microsoft.com/~zhang/Calib/

Some Related Techniques

- Image-Based Modeling and Photo Editing
- Mok et al., SIGGRAPH 2001
- http://graphics.csail.mit.edu/ibedit/
- Single View Modeling of Free-Form Scenes
- Zhang et al., CVPR 2001
- http://grail.cs.washington.edu/projects/svm/
- Tour Into The Picture
- Anjyo et al., SIGGRAPH 1997
- http://koigakubo.hitachi.co.jp/little/DL TipE.html

