CS5670: Computer Vision
Noah Snavely

Single-View Modeling

Announcements

- Midterm to be handed out at the end of class
- Due on Tuesday (March 21) by 1pm (beginning of class).
- No late exams accepted
- Project 3 to be released after midterm (possibly next week)

Projection matrix recap

Projection matrix recap

This part converts 3D points in world coordinates to 3D rays in the camera's coordinate system

The K matrix converts 3D rays in the camera's coordinate system to 2D image points in image (pixel) coordinates

Image Blending

Feathering

Effect of window size

Effect of window size

Good window size

"Optimal" window: smooth but not ghosted

- Doesn't always work...

Pyramid blending

(d)

(h)

(1)

Create a Laplacian pyramid, blend each level

- Burt, P. J. and Adelson, E. H., A multiresolution spline with applications to image mosaics, ACM Transactions on Graphics, 42(4), October 1983, 217-236.

The Laplacian Pyramid

$$
L_{i}=G_{i}-\operatorname{expand}\left(G_{i+1}\right)
$$

Gaussian Pyramid $\quad G_{i}=L_{i}+\operatorname{expand}\left(G_{i+1}\right) \quad$ Laplacian Pyramid

Alpha Blending

Optional: see Blinn (CGA, 1994) for details:
http://ieeexplore.ieee.org/iel1/38/7531/00310740.pdf?isNumb er=7531\&prod=JNL\&arnumber=310740\&arSt=83\&ared=87\&a $\underline{\text { rAuthor=Blinn\%2C+J.F. }}$

Encoding blend weights: $\mathrm{I}(\mathrm{x}, \mathrm{y})=(\alpha \mathrm{R}, \alpha \mathrm{G}, \alpha \mathrm{B}, \alpha)$
color at $\mathrm{p}=\frac{\left(\alpha_{1} R_{1}, \alpha_{1} G_{1}, \alpha_{1} B_{1}\right)+\left(\alpha_{2} R_{2}, \alpha_{2} G_{2}, \alpha_{2} B_{2}\right)+\left(\alpha_{3} R_{3}, \alpha_{3} G_{3}, \alpha_{3} B_{3}\right)}{\alpha_{1}+\alpha_{2}+\alpha_{3}}$
Implement this in two steps:

1. accumulate: add up the (α premultiplied) RGB α values at each pixel
2. normalize: divide each pixel's accumulated RGB by its α value

Q: what if $\alpha=0$?

Poisson Image Editing

- For more info: Perez et al, SIGGRAPH 2003
- http://research.microsoft.com/vision/cambridge/papers/perez siggraph03.pdf

Some panorama examples

Before Siggraph Deadline:
http://www.cs.washington.edu/education/courses/cse590ss/01wi/projects/project1/students/d ougz/siggraph-hires.html

Some panorama examples

- Every image on Google Streetview

Magic: ghost removal

M. Uyttendaele, A. Eden, and R. Szeliski. Eliminating ghosting and exposure artifacts in image mosaics. In Proceedings of the Interational Conference on Computer Vision and Pattern Recognition, volume 2, pages 509--516, Kauai, Hawaii, December 2001.

Magic: ghost removal

M. Uyttendaele, A. Eden, and R. Szeliski. Eliminating ghosting and exposure artifacts in image mosaics. In Proceedings of the Interational Conference on Computer Vision and Pattern Recognition, volume 2, pages 509--516, Kauai, Hawaii, December 2001.

Other types of mosaics

- Can mosaic onto any surface if you know the geometry
- See NASA's Visible Earth project for some stunning earth mosaics
- http://earthobservatory.nasa.gov/Newsroom/BlueMarble/
- Click for images...
- http://earthobservatory.nasa.gov/NaturalHaza rds/view.php?id=87675\&src=twitter-nh

Questions?

Projective geometry

Ames Room

- Readings
- Mundy, J.L. and Zisserman, A., Geometric Invariance in Computer Vision, Appendix: Projective Geometry for Machine Vision, MIT Press, Cambridge, MA, 1992, (read 23.1-23.5, 23.10)
- available online: http://www.cs.cmu.edu/~ph/869/papers/zisser-mundy.pdf

Ames Room

Projective geometry—what's it good for?

- Uses of projective geometry
- Drawing
- Measurements
- Mathematics for projection
- Undistorting images
- Camera pose estimation
- Object recognition

Paolo Uccello

Applications of projective geometry

Vermeer's Music Lesson

Measurements on planes

Approach: unwarp then measure

Point and line duality

- A line I is a homogeneous 3 -vector
- It is \perp to every point (ray) \mathbf{p} on the line: l-p=0

What is the line I spanned by rays \boldsymbol{p}_{1} and \boldsymbol{p}_{2} ?
$\cdot \mathbf{I}$ is \perp to \mathbf{p}_{1} and $\mathbf{p}_{\mathbf{2}} \Rightarrow \mathbf{I}=\mathbf{p}_{\mathbf{1}} \times \mathbf{p}_{\mathbf{2}}$

- I can be interpreted as a plane normal

What is the intersection of two lines \boldsymbol{I}_{1} and \mathbf{I}_{2} ?

- p is \perp to I_{1} and $I_{2} \Rightarrow p=I_{1} \times I_{2}$

Points and lines are dual in projective space

Ideal points and lines

- Ideal point ("point at infinity")
$-p \cong(x, y, 0)$ - parallel to image plane
- It has infinite image coordinates

Ideal line

- I $\cong(a, b, 0)$ - parallel to image plane
- Corresponds to a line in the image (finite coordinates)
- goes through image origin (principle point)

3D projective geometry

- These concepts generalize naturally to 3D
- Homogeneous coordinates
- Projective 3D points have four coords: $\mathbf{P}=(X, Y, Z, W)$
- Duality
- A plane \mathbf{N} is also represented by a 4-vector
- Points and planes are dual in 3D: $\mathbf{N} \mathbf{P}=0$
- Three points define a plane, three planes define a point

3D to 2D: perspective projection

Projection:

$$
\mathbf{p}=\left[\begin{array}{c}
w x \\
w y \\
w
\end{array}\right]=\left[\begin{array}{llll}
* & * & * & * \\
* & * & * & * \\
* & * & * & *
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]=\boldsymbol{\Pi} \mathbf{P}
$$

Figure 23.4
A perspective view of a set of parallel lines in the plane. All of the lines converge to a single vanishing point.

Vanishing points (1D)

- Vanishing point
- projection of a point at infinity
- can often (but not always) project to a finite point in the image

camera
center

Vanishing points

- Properties
- Any two parallel lines (in 3D) have the same vanishing point \mathbf{v}
- The ray from \mathbf{C} through \mathbf{v} is parallel to the lines
- An image may have more than one vanishing point
- in fact, every image point is a potential vanishing point

One-point perspective

Two-point perspective

Three-point perspective

Questions?

Vanishing lines

- Multiple Vanishing Points
- Any set of parallel lines on the plane define a vanishing point
- The union of all of these vanishing points is the horizon line - also called vanishing line
- Note that different planes (can) define different vanishing lines

Vanishing lines

- Multiple Vanishing Points
- Any set of parallel lines on the plane define a vanishing point
- The union of all of these vanishing points is the horizon line - also called vanishing line
- Note that different planes (can) define different vanishing lines

Computing vanishing points

Computing vanishing points

$$
\mathbf{P}_{t}=\left[\begin{array}{c}
P_{X}+t D_{X} \\
P_{Y}+t D_{Y} \\
P_{Z}+t D_{Z} \\
1
\end{array}\right] \cong\left[\begin{array}{c}
P_{X} / t+D_{X} \\
P_{Y} / t+D_{Y} \\
P_{Z} / t+D_{Z} \\
1 / t
\end{array}\right]
$$

- Properties $\mathbf{v}=\boldsymbol{\Pi} \mathbf{P}_{\infty}$
- \mathbf{P}_{∞} is a point at infinity, \mathbf{v} is its projection
- Depends only on line direction
- Parallel lines $\mathbf{P}_{0}+\mathrm{tD}, \mathbf{P}_{1}+\mathrm{tD}$ intersect at \mathbf{P}_{∞}

Computing vanishing lines

- Properties
- I is intersection of horizontal plane through \mathbf{C} with image plane
- Compute I from two sets of parallel lines on ground plane
- All points at same height as \mathbf{C} project to \mathbf{I}
- points higher than C project above I
- Provides way of comparing height of objects in the scene

Fun with vanishing points

$$
111
$$

$$
118
$$

Perspective cues

Comparing heights

